| Step | Hyp | Ref | Expression | 
						
							| 1 |  | stoweidlem59.1 | ⊢ Ⅎ 𝑡 𝐹 | 
						
							| 2 |  | stoweidlem59.2 | ⊢ Ⅎ 𝑡 𝜑 | 
						
							| 3 |  | stoweidlem59.3 | ⊢ 𝐾  =  ( topGen ‘ ran  (,) ) | 
						
							| 4 |  | stoweidlem59.4 | ⊢ 𝑇  =  ∪  𝐽 | 
						
							| 5 |  | stoweidlem59.5 | ⊢ 𝐶  =  ( 𝐽  Cn  𝐾 ) | 
						
							| 6 |  | stoweidlem59.6 | ⊢ 𝐷  =  ( 𝑗  ∈  ( 0 ... 𝑁 )  ↦  { 𝑡  ∈  𝑇  ∣  ( 𝐹 ‘ 𝑡 )  ≤  ( ( 𝑗  −  ( 1  /  3 ) )  ·  𝐸 ) } ) | 
						
							| 7 |  | stoweidlem59.7 | ⊢ 𝐵  =  ( 𝑗  ∈  ( 0 ... 𝑁 )  ↦  { 𝑡  ∈  𝑇  ∣  ( ( 𝑗  +  ( 1  /  3 ) )  ·  𝐸 )  ≤  ( 𝐹 ‘ 𝑡 ) } ) | 
						
							| 8 |  | stoweidlem59.8 | ⊢ 𝑌  =  { 𝑦  ∈  𝐴  ∣  ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( 𝑦 ‘ 𝑡 )  ∧  ( 𝑦 ‘ 𝑡 )  ≤  1 ) } | 
						
							| 9 |  | stoweidlem59.9 | ⊢ 𝐻  =  ( 𝑗  ∈  ( 0 ... 𝑁 )  ↦  { 𝑦  ∈  𝑌  ∣  ( ∀ 𝑡  ∈  ( 𝐷 ‘ 𝑗 ) ( 𝑦 ‘ 𝑡 )  <  ( 𝐸  /  𝑁 )  ∧  ∀ 𝑡  ∈  ( 𝐵 ‘ 𝑗 ) ( 1  −  ( 𝐸  /  𝑁 ) )  <  ( 𝑦 ‘ 𝑡 ) ) } ) | 
						
							| 10 |  | stoweidlem59.10 | ⊢ ( 𝜑  →  𝐽  ∈  Comp ) | 
						
							| 11 |  | stoweidlem59.11 | ⊢ ( 𝜑  →  𝐴  ⊆  𝐶 ) | 
						
							| 12 |  | stoweidlem59.12 | ⊢ ( ( 𝜑  ∧  𝑓  ∈  𝐴  ∧  𝑔  ∈  𝐴 )  →  ( 𝑡  ∈  𝑇  ↦  ( ( 𝑓 ‘ 𝑡 )  +  ( 𝑔 ‘ 𝑡 ) ) )  ∈  𝐴 ) | 
						
							| 13 |  | stoweidlem59.13 | ⊢ ( ( 𝜑  ∧  𝑓  ∈  𝐴  ∧  𝑔  ∈  𝐴 )  →  ( 𝑡  ∈  𝑇  ↦  ( ( 𝑓 ‘ 𝑡 )  ·  ( 𝑔 ‘ 𝑡 ) ) )  ∈  𝐴 ) | 
						
							| 14 |  | stoweidlem59.14 | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ℝ )  →  ( 𝑡  ∈  𝑇  ↦  𝑦 )  ∈  𝐴 ) | 
						
							| 15 |  | stoweidlem59.15 | ⊢ ( ( 𝜑  ∧  ( 𝑟  ∈  𝑇  ∧  𝑡  ∈  𝑇  ∧  𝑟  ≠  𝑡 ) )  →  ∃ 𝑞  ∈  𝐴 ( 𝑞 ‘ 𝑟 )  ≠  ( 𝑞 ‘ 𝑡 ) ) | 
						
							| 16 |  | stoweidlem59.16 | ⊢ ( 𝜑  →  𝐹  ∈  𝐶 ) | 
						
							| 17 |  | stoweidlem59.17 | ⊢ ( 𝜑  →  𝐸  ∈  ℝ+ ) | 
						
							| 18 |  | stoweidlem59.18 | ⊢ ( 𝜑  →  𝐸  <  ( 1  /  3 ) ) | 
						
							| 19 |  | stoweidlem59.19 | ⊢ ( 𝜑  →  𝑁  ∈  ℕ ) | 
						
							| 20 |  | nfrab1 | ⊢ Ⅎ 𝑦 { 𝑦  ∈  𝐴  ∣  ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( 𝑦 ‘ 𝑡 )  ∧  ( 𝑦 ‘ 𝑡 )  ≤  1 ) } | 
						
							| 21 | 8 20 | nfcxfr | ⊢ Ⅎ 𝑦 𝑌 | 
						
							| 22 |  | nfcv | ⊢ Ⅎ 𝑧 𝑌 | 
						
							| 23 |  | nfv | ⊢ Ⅎ 𝑧 ( ∀ 𝑡  ∈  ( 𝐷 ‘ 𝑗 ) ( 𝑦 ‘ 𝑡 )  <  ( 𝐸  /  𝑁 )  ∧  ∀ 𝑡  ∈  ( 𝐵 ‘ 𝑗 ) ( 1  −  ( 𝐸  /  𝑁 ) )  <  ( 𝑦 ‘ 𝑡 ) ) | 
						
							| 24 |  | nfv | ⊢ Ⅎ 𝑦 ( ∀ 𝑡  ∈  ( 𝐷 ‘ 𝑗 ) ( 𝑧 ‘ 𝑡 )  <  ( 𝐸  /  𝑁 )  ∧  ∀ 𝑡  ∈  ( 𝐵 ‘ 𝑗 ) ( 1  −  ( 𝐸  /  𝑁 ) )  <  ( 𝑧 ‘ 𝑡 ) ) | 
						
							| 25 |  | fveq1 | ⊢ ( 𝑦  =  𝑧  →  ( 𝑦 ‘ 𝑡 )  =  ( 𝑧 ‘ 𝑡 ) ) | 
						
							| 26 | 25 | breq1d | ⊢ ( 𝑦  =  𝑧  →  ( ( 𝑦 ‘ 𝑡 )  <  ( 𝐸  /  𝑁 )  ↔  ( 𝑧 ‘ 𝑡 )  <  ( 𝐸  /  𝑁 ) ) ) | 
						
							| 27 | 26 | ralbidv | ⊢ ( 𝑦  =  𝑧  →  ( ∀ 𝑡  ∈  ( 𝐷 ‘ 𝑗 ) ( 𝑦 ‘ 𝑡 )  <  ( 𝐸  /  𝑁 )  ↔  ∀ 𝑡  ∈  ( 𝐷 ‘ 𝑗 ) ( 𝑧 ‘ 𝑡 )  <  ( 𝐸  /  𝑁 ) ) ) | 
						
							| 28 | 25 | breq2d | ⊢ ( 𝑦  =  𝑧  →  ( ( 1  −  ( 𝐸  /  𝑁 ) )  <  ( 𝑦 ‘ 𝑡 )  ↔  ( 1  −  ( 𝐸  /  𝑁 ) )  <  ( 𝑧 ‘ 𝑡 ) ) ) | 
						
							| 29 | 28 | ralbidv | ⊢ ( 𝑦  =  𝑧  →  ( ∀ 𝑡  ∈  ( 𝐵 ‘ 𝑗 ) ( 1  −  ( 𝐸  /  𝑁 ) )  <  ( 𝑦 ‘ 𝑡 )  ↔  ∀ 𝑡  ∈  ( 𝐵 ‘ 𝑗 ) ( 1  −  ( 𝐸  /  𝑁 ) )  <  ( 𝑧 ‘ 𝑡 ) ) ) | 
						
							| 30 | 27 29 | anbi12d | ⊢ ( 𝑦  =  𝑧  →  ( ( ∀ 𝑡  ∈  ( 𝐷 ‘ 𝑗 ) ( 𝑦 ‘ 𝑡 )  <  ( 𝐸  /  𝑁 )  ∧  ∀ 𝑡  ∈  ( 𝐵 ‘ 𝑗 ) ( 1  −  ( 𝐸  /  𝑁 ) )  <  ( 𝑦 ‘ 𝑡 ) )  ↔  ( ∀ 𝑡  ∈  ( 𝐷 ‘ 𝑗 ) ( 𝑧 ‘ 𝑡 )  <  ( 𝐸  /  𝑁 )  ∧  ∀ 𝑡  ∈  ( 𝐵 ‘ 𝑗 ) ( 1  −  ( 𝐸  /  𝑁 ) )  <  ( 𝑧 ‘ 𝑡 ) ) ) ) | 
						
							| 31 | 21 22 23 24 30 | cbvrabw | ⊢ { 𝑦  ∈  𝑌  ∣  ( ∀ 𝑡  ∈  ( 𝐷 ‘ 𝑗 ) ( 𝑦 ‘ 𝑡 )  <  ( 𝐸  /  𝑁 )  ∧  ∀ 𝑡  ∈  ( 𝐵 ‘ 𝑗 ) ( 1  −  ( 𝐸  /  𝑁 ) )  <  ( 𝑦 ‘ 𝑡 ) ) }  =  { 𝑧  ∈  𝑌  ∣  ( ∀ 𝑡  ∈  ( 𝐷 ‘ 𝑗 ) ( 𝑧 ‘ 𝑡 )  <  ( 𝐸  /  𝑁 )  ∧  ∀ 𝑡  ∈  ( 𝐵 ‘ 𝑗 ) ( 1  −  ( 𝐸  /  𝑁 ) )  <  ( 𝑧 ‘ 𝑡 ) ) } | 
						
							| 32 |  | ovexd | ⊢ ( 𝜑  →  ( 𝐽  Cn  𝐾 )  ∈  V ) | 
						
							| 33 | 11 5 | sseqtrdi | ⊢ ( 𝜑  →  𝐴  ⊆  ( 𝐽  Cn  𝐾 ) ) | 
						
							| 34 | 32 33 | ssexd | ⊢ ( 𝜑  →  𝐴  ∈  V ) | 
						
							| 35 | 8 34 | rabexd | ⊢ ( 𝜑  →  𝑌  ∈  V ) | 
						
							| 36 | 31 35 | rabexd | ⊢ ( 𝜑  →  { 𝑦  ∈  𝑌  ∣  ( ∀ 𝑡  ∈  ( 𝐷 ‘ 𝑗 ) ( 𝑦 ‘ 𝑡 )  <  ( 𝐸  /  𝑁 )  ∧  ∀ 𝑡  ∈  ( 𝐵 ‘ 𝑗 ) ( 1  −  ( 𝐸  /  𝑁 ) )  <  ( 𝑦 ‘ 𝑡 ) ) }  ∈  V ) | 
						
							| 37 | 36 | ralrimivw | ⊢ ( 𝜑  →  ∀ 𝑗  ∈  ( 0 ... 𝑁 ) { 𝑦  ∈  𝑌  ∣  ( ∀ 𝑡  ∈  ( 𝐷 ‘ 𝑗 ) ( 𝑦 ‘ 𝑡 )  <  ( 𝐸  /  𝑁 )  ∧  ∀ 𝑡  ∈  ( 𝐵 ‘ 𝑗 ) ( 1  −  ( 𝐸  /  𝑁 ) )  <  ( 𝑦 ‘ 𝑡 ) ) }  ∈  V ) | 
						
							| 38 | 9 | fnmpt | ⊢ ( ∀ 𝑗  ∈  ( 0 ... 𝑁 ) { 𝑦  ∈  𝑌  ∣  ( ∀ 𝑡  ∈  ( 𝐷 ‘ 𝑗 ) ( 𝑦 ‘ 𝑡 )  <  ( 𝐸  /  𝑁 )  ∧  ∀ 𝑡  ∈  ( 𝐵 ‘ 𝑗 ) ( 1  −  ( 𝐸  /  𝑁 ) )  <  ( 𝑦 ‘ 𝑡 ) ) }  ∈  V  →  𝐻  Fn  ( 0 ... 𝑁 ) ) | 
						
							| 39 | 37 38 | syl | ⊢ ( 𝜑  →  𝐻  Fn  ( 0 ... 𝑁 ) ) | 
						
							| 40 |  | fzfi | ⊢ ( 0 ... 𝑁 )  ∈  Fin | 
						
							| 41 |  | fnfi | ⊢ ( ( 𝐻  Fn  ( 0 ... 𝑁 )  ∧  ( 0 ... 𝑁 )  ∈  Fin )  →  𝐻  ∈  Fin ) | 
						
							| 42 | 39 40 41 | sylancl | ⊢ ( 𝜑  →  𝐻  ∈  Fin ) | 
						
							| 43 |  | rnfi | ⊢ ( 𝐻  ∈  Fin  →  ran  𝐻  ∈  Fin ) | 
						
							| 44 | 42 43 | syl | ⊢ ( 𝜑  →  ran  𝐻  ∈  Fin ) | 
						
							| 45 |  | fnchoice | ⊢ ( ran  𝐻  ∈  Fin  →  ∃ ℎ ( ℎ  Fn  ran  𝐻  ∧  ∀ 𝑤  ∈  ran  𝐻 ( 𝑤  ≠  ∅  →  ( ℎ ‘ 𝑤 )  ∈  𝑤 ) ) ) | 
						
							| 46 | 44 45 | syl | ⊢ ( 𝜑  →  ∃ ℎ ( ℎ  Fn  ran  𝐻  ∧  ∀ 𝑤  ∈  ran  𝐻 ( 𝑤  ≠  ∅  →  ( ℎ ‘ 𝑤 )  ∈  𝑤 ) ) ) | 
						
							| 47 |  | simprl | ⊢ ( ( 𝜑  ∧  ( ℎ  Fn  ran  𝐻  ∧  ∀ 𝑤  ∈  ran  𝐻 ( 𝑤  ≠  ∅  →  ( ℎ ‘ 𝑤 )  ∈  𝑤 ) ) )  →  ℎ  Fn  ran  𝐻 ) | 
						
							| 48 |  | ovex | ⊢ ( 0 ... 𝑁 )  ∈  V | 
						
							| 49 | 48 | mptex | ⊢ ( 𝑗  ∈  ( 0 ... 𝑁 )  ↦  { 𝑦  ∈  𝑌  ∣  ( ∀ 𝑡  ∈  ( 𝐷 ‘ 𝑗 ) ( 𝑦 ‘ 𝑡 )  <  ( 𝐸  /  𝑁 )  ∧  ∀ 𝑡  ∈  ( 𝐵 ‘ 𝑗 ) ( 1  −  ( 𝐸  /  𝑁 ) )  <  ( 𝑦 ‘ 𝑡 ) ) } )  ∈  V | 
						
							| 50 | 9 49 | eqeltri | ⊢ 𝐻  ∈  V | 
						
							| 51 | 50 | rnex | ⊢ ran  𝐻  ∈  V | 
						
							| 52 |  | fnex | ⊢ ( ( ℎ  Fn  ran  𝐻  ∧  ran  𝐻  ∈  V )  →  ℎ  ∈  V ) | 
						
							| 53 | 47 51 52 | sylancl | ⊢ ( ( 𝜑  ∧  ( ℎ  Fn  ran  𝐻  ∧  ∀ 𝑤  ∈  ran  𝐻 ( 𝑤  ≠  ∅  →  ( ℎ ‘ 𝑤 )  ∈  𝑤 ) ) )  →  ℎ  ∈  V ) | 
						
							| 54 |  | coexg | ⊢ ( ( ℎ  ∈  V  ∧  𝐻  ∈  V )  →  ( ℎ  ∘  𝐻 )  ∈  V ) | 
						
							| 55 | 53 50 54 | sylancl | ⊢ ( ( 𝜑  ∧  ( ℎ  Fn  ran  𝐻  ∧  ∀ 𝑤  ∈  ran  𝐻 ( 𝑤  ≠  ∅  →  ( ℎ ‘ 𝑤 )  ∈  𝑤 ) ) )  →  ( ℎ  ∘  𝐻 )  ∈  V ) | 
						
							| 56 |  | dffn3 | ⊢ ( ℎ  Fn  ran  𝐻  ↔  ℎ : ran  𝐻 ⟶ ran  ℎ ) | 
						
							| 57 | 47 56 | sylib | ⊢ ( ( 𝜑  ∧  ( ℎ  Fn  ran  𝐻  ∧  ∀ 𝑤  ∈  ran  𝐻 ( 𝑤  ≠  ∅  →  ( ℎ ‘ 𝑤 )  ∈  𝑤 ) ) )  →  ℎ : ran  𝐻 ⟶ ran  ℎ ) | 
						
							| 58 |  | nfv | ⊢ Ⅎ 𝑤 𝜑 | 
						
							| 59 |  | nfv | ⊢ Ⅎ 𝑤 ℎ  Fn  ran  𝐻 | 
						
							| 60 |  | nfra1 | ⊢ Ⅎ 𝑤 ∀ 𝑤  ∈  ran  𝐻 ( 𝑤  ≠  ∅  →  ( ℎ ‘ 𝑤 )  ∈  𝑤 ) | 
						
							| 61 | 59 60 | nfan | ⊢ Ⅎ 𝑤 ( ℎ  Fn  ran  𝐻  ∧  ∀ 𝑤  ∈  ran  𝐻 ( 𝑤  ≠  ∅  →  ( ℎ ‘ 𝑤 )  ∈  𝑤 ) ) | 
						
							| 62 | 58 61 | nfan | ⊢ Ⅎ 𝑤 ( 𝜑  ∧  ( ℎ  Fn  ran  𝐻  ∧  ∀ 𝑤  ∈  ran  𝐻 ( 𝑤  ≠  ∅  →  ( ℎ ‘ 𝑤 )  ∈  𝑤 ) ) ) | 
						
							| 63 |  | simplrr | ⊢ ( ( ( 𝜑  ∧  ( ℎ  Fn  ran  𝐻  ∧  ∀ 𝑤  ∈  ran  𝐻 ( 𝑤  ≠  ∅  →  ( ℎ ‘ 𝑤 )  ∈  𝑤 ) ) )  ∧  𝑤  ∈  ran  𝐻 )  →  ∀ 𝑤  ∈  ran  𝐻 ( 𝑤  ≠  ∅  →  ( ℎ ‘ 𝑤 )  ∈  𝑤 ) ) | 
						
							| 64 |  | simpr | ⊢ ( ( ( 𝜑  ∧  ( ℎ  Fn  ran  𝐻  ∧  ∀ 𝑤  ∈  ran  𝐻 ( 𝑤  ≠  ∅  →  ( ℎ ‘ 𝑤 )  ∈  𝑤 ) ) )  ∧  𝑤  ∈  ran  𝐻 )  →  𝑤  ∈  ran  𝐻 ) | 
						
							| 65 |  | fvelrnb | ⊢ ( 𝐻  Fn  ( 0 ... 𝑁 )  →  ( 𝑤  ∈  ran  𝐻  ↔  ∃ 𝑎  ∈  ( 0 ... 𝑁 ) ( 𝐻 ‘ 𝑎 )  =  𝑤 ) ) | 
						
							| 66 |  | nfv | ⊢ Ⅎ 𝑎 ( 𝐻 ‘ 𝑗 )  =  𝑤 | 
						
							| 67 |  | nfmpt1 | ⊢ Ⅎ 𝑗 ( 𝑗  ∈  ( 0 ... 𝑁 )  ↦  { 𝑦  ∈  𝑌  ∣  ( ∀ 𝑡  ∈  ( 𝐷 ‘ 𝑗 ) ( 𝑦 ‘ 𝑡 )  <  ( 𝐸  /  𝑁 )  ∧  ∀ 𝑡  ∈  ( 𝐵 ‘ 𝑗 ) ( 1  −  ( 𝐸  /  𝑁 ) )  <  ( 𝑦 ‘ 𝑡 ) ) } ) | 
						
							| 68 | 9 67 | nfcxfr | ⊢ Ⅎ 𝑗 𝐻 | 
						
							| 69 |  | nfcv | ⊢ Ⅎ 𝑗 𝑎 | 
						
							| 70 | 68 69 | nffv | ⊢ Ⅎ 𝑗 ( 𝐻 ‘ 𝑎 ) | 
						
							| 71 |  | nfcv | ⊢ Ⅎ 𝑗 𝑤 | 
						
							| 72 | 70 71 | nfeq | ⊢ Ⅎ 𝑗 ( 𝐻 ‘ 𝑎 )  =  𝑤 | 
						
							| 73 |  | fveq2 | ⊢ ( 𝑗  =  𝑎  →  ( 𝐻 ‘ 𝑗 )  =  ( 𝐻 ‘ 𝑎 ) ) | 
						
							| 74 | 73 | eqeq1d | ⊢ ( 𝑗  =  𝑎  →  ( ( 𝐻 ‘ 𝑗 )  =  𝑤  ↔  ( 𝐻 ‘ 𝑎 )  =  𝑤 ) ) | 
						
							| 75 | 66 72 74 | cbvrexw | ⊢ ( ∃ 𝑗  ∈  ( 0 ... 𝑁 ) ( 𝐻 ‘ 𝑗 )  =  𝑤  ↔  ∃ 𝑎  ∈  ( 0 ... 𝑁 ) ( 𝐻 ‘ 𝑎 )  =  𝑤 ) | 
						
							| 76 | 65 75 | bitr4di | ⊢ ( 𝐻  Fn  ( 0 ... 𝑁 )  →  ( 𝑤  ∈  ran  𝐻  ↔  ∃ 𝑗  ∈  ( 0 ... 𝑁 ) ( 𝐻 ‘ 𝑗 )  =  𝑤 ) ) | 
						
							| 77 | 39 76 | syl | ⊢ ( 𝜑  →  ( 𝑤  ∈  ran  𝐻  ↔  ∃ 𝑗  ∈  ( 0 ... 𝑁 ) ( 𝐻 ‘ 𝑗 )  =  𝑤 ) ) | 
						
							| 78 | 77 | biimpa | ⊢ ( ( 𝜑  ∧  𝑤  ∈  ran  𝐻 )  →  ∃ 𝑗  ∈  ( 0 ... 𝑁 ) ( 𝐻 ‘ 𝑗 )  =  𝑤 ) | 
						
							| 79 |  | simp3 | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑁 )  ∧  ( 𝐻 ‘ 𝑗 )  =  𝑤 )  →  ( 𝐻 ‘ 𝑗 )  =  𝑤 ) | 
						
							| 80 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑁 ) )  →  𝑗  ∈  ( 0 ... 𝑁 ) ) | 
						
							| 81 | 36 | adantr | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑁 ) )  →  { 𝑦  ∈  𝑌  ∣  ( ∀ 𝑡  ∈  ( 𝐷 ‘ 𝑗 ) ( 𝑦 ‘ 𝑡 )  <  ( 𝐸  /  𝑁 )  ∧  ∀ 𝑡  ∈  ( 𝐵 ‘ 𝑗 ) ( 1  −  ( 𝐸  /  𝑁 ) )  <  ( 𝑦 ‘ 𝑡 ) ) }  ∈  V ) | 
						
							| 82 | 9 | fvmpt2 | ⊢ ( ( 𝑗  ∈  ( 0 ... 𝑁 )  ∧  { 𝑦  ∈  𝑌  ∣  ( ∀ 𝑡  ∈  ( 𝐷 ‘ 𝑗 ) ( 𝑦 ‘ 𝑡 )  <  ( 𝐸  /  𝑁 )  ∧  ∀ 𝑡  ∈  ( 𝐵 ‘ 𝑗 ) ( 1  −  ( 𝐸  /  𝑁 ) )  <  ( 𝑦 ‘ 𝑡 ) ) }  ∈  V )  →  ( 𝐻 ‘ 𝑗 )  =  { 𝑦  ∈  𝑌  ∣  ( ∀ 𝑡  ∈  ( 𝐷 ‘ 𝑗 ) ( 𝑦 ‘ 𝑡 )  <  ( 𝐸  /  𝑁 )  ∧  ∀ 𝑡  ∈  ( 𝐵 ‘ 𝑗 ) ( 1  −  ( 𝐸  /  𝑁 ) )  <  ( 𝑦 ‘ 𝑡 ) ) } ) | 
						
							| 83 | 80 81 82 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑁 ) )  →  ( 𝐻 ‘ 𝑗 )  =  { 𝑦  ∈  𝑌  ∣  ( ∀ 𝑡  ∈  ( 𝐷 ‘ 𝑗 ) ( 𝑦 ‘ 𝑡 )  <  ( 𝐸  /  𝑁 )  ∧  ∀ 𝑡  ∈  ( 𝐵 ‘ 𝑗 ) ( 1  −  ( 𝐸  /  𝑁 ) )  <  ( 𝑦 ‘ 𝑡 ) ) } ) | 
						
							| 84 |  | nfcv | ⊢ Ⅎ 𝑡 ( 0 ... 𝑁 ) | 
						
							| 85 |  | nfrab1 | ⊢ Ⅎ 𝑡 { 𝑡  ∈  𝑇  ∣  ( 𝐹 ‘ 𝑡 )  ≤  ( ( 𝑗  −  ( 1  /  3 ) )  ·  𝐸 ) } | 
						
							| 86 | 84 85 | nfmpt | ⊢ Ⅎ 𝑡 ( 𝑗  ∈  ( 0 ... 𝑁 )  ↦  { 𝑡  ∈  𝑇  ∣  ( 𝐹 ‘ 𝑡 )  ≤  ( ( 𝑗  −  ( 1  /  3 ) )  ·  𝐸 ) } ) | 
						
							| 87 | 6 86 | nfcxfr | ⊢ Ⅎ 𝑡 𝐷 | 
						
							| 88 |  | nfcv | ⊢ Ⅎ 𝑡 𝑗 | 
						
							| 89 | 87 88 | nffv | ⊢ Ⅎ 𝑡 ( 𝐷 ‘ 𝑗 ) | 
						
							| 90 |  | nfcv | ⊢ Ⅎ 𝑡 𝑇 | 
						
							| 91 |  | nfrab1 | ⊢ Ⅎ 𝑡 { 𝑡  ∈  𝑇  ∣  ( ( 𝑗  +  ( 1  /  3 ) )  ·  𝐸 )  ≤  ( 𝐹 ‘ 𝑡 ) } | 
						
							| 92 | 84 91 | nfmpt | ⊢ Ⅎ 𝑡 ( 𝑗  ∈  ( 0 ... 𝑁 )  ↦  { 𝑡  ∈  𝑇  ∣  ( ( 𝑗  +  ( 1  /  3 ) )  ·  𝐸 )  ≤  ( 𝐹 ‘ 𝑡 ) } ) | 
						
							| 93 | 7 92 | nfcxfr | ⊢ Ⅎ 𝑡 𝐵 | 
						
							| 94 | 93 88 | nffv | ⊢ Ⅎ 𝑡 ( 𝐵 ‘ 𝑗 ) | 
						
							| 95 | 90 94 | nfdif | ⊢ Ⅎ 𝑡 ( 𝑇  ∖  ( 𝐵 ‘ 𝑗 ) ) | 
						
							| 96 |  | nfv | ⊢ Ⅎ 𝑡 𝑗  ∈  ( 0 ... 𝑁 ) | 
						
							| 97 | 2 96 | nfan | ⊢ Ⅎ 𝑡 ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑁 ) ) | 
						
							| 98 | 10 | adantr | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑁 ) )  →  𝐽  ∈  Comp ) | 
						
							| 99 | 11 | adantr | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑁 ) )  →  𝐴  ⊆  𝐶 ) | 
						
							| 100 | 12 | 3adant1r | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑁 ) )  ∧  𝑓  ∈  𝐴  ∧  𝑔  ∈  𝐴 )  →  ( 𝑡  ∈  𝑇  ↦  ( ( 𝑓 ‘ 𝑡 )  +  ( 𝑔 ‘ 𝑡 ) ) )  ∈  𝐴 ) | 
						
							| 101 | 13 | 3adant1r | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑁 ) )  ∧  𝑓  ∈  𝐴  ∧  𝑔  ∈  𝐴 )  →  ( 𝑡  ∈  𝑇  ↦  ( ( 𝑓 ‘ 𝑡 )  ·  ( 𝑔 ‘ 𝑡 ) ) )  ∈  𝐴 ) | 
						
							| 102 | 14 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑁 ) )  ∧  𝑦  ∈  ℝ )  →  ( 𝑡  ∈  𝑇  ↦  𝑦 )  ∈  𝐴 ) | 
						
							| 103 | 15 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑁 ) )  ∧  ( 𝑟  ∈  𝑇  ∧  𝑡  ∈  𝑇  ∧  𝑟  ≠  𝑡 ) )  →  ∃ 𝑞  ∈  𝐴 ( 𝑞 ‘ 𝑟 )  ≠  ( 𝑞 ‘ 𝑡 ) ) | 
						
							| 104 | 10 | uniexd | ⊢ ( 𝜑  →  ∪  𝐽  ∈  V ) | 
						
							| 105 | 4 104 | eqeltrid | ⊢ ( 𝜑  →  𝑇  ∈  V ) | 
						
							| 106 | 105 | adantr | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑁 ) )  →  𝑇  ∈  V ) | 
						
							| 107 |  | rabexg | ⊢ ( 𝑇  ∈  V  →  { 𝑡  ∈  𝑇  ∣  ( ( 𝑗  +  ( 1  /  3 ) )  ·  𝐸 )  ≤  ( 𝐹 ‘ 𝑡 ) }  ∈  V ) | 
						
							| 108 | 106 107 | syl | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑁 ) )  →  { 𝑡  ∈  𝑇  ∣  ( ( 𝑗  +  ( 1  /  3 ) )  ·  𝐸 )  ≤  ( 𝐹 ‘ 𝑡 ) }  ∈  V ) | 
						
							| 109 | 7 | fvmpt2 | ⊢ ( ( 𝑗  ∈  ( 0 ... 𝑁 )  ∧  { 𝑡  ∈  𝑇  ∣  ( ( 𝑗  +  ( 1  /  3 ) )  ·  𝐸 )  ≤  ( 𝐹 ‘ 𝑡 ) }  ∈  V )  →  ( 𝐵 ‘ 𝑗 )  =  { 𝑡  ∈  𝑇  ∣  ( ( 𝑗  +  ( 1  /  3 ) )  ·  𝐸 )  ≤  ( 𝐹 ‘ 𝑡 ) } ) | 
						
							| 110 | 80 108 109 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑁 ) )  →  ( 𝐵 ‘ 𝑗 )  =  { 𝑡  ∈  𝑇  ∣  ( ( 𝑗  +  ( 1  /  3 ) )  ·  𝐸 )  ≤  ( 𝐹 ‘ 𝑡 ) } ) | 
						
							| 111 |  | eqid | ⊢ { 𝑡  ∈  𝑇  ∣  ( ( 𝑗  +  ( 1  /  3 ) )  ·  𝐸 )  ≤  ( 𝐹 ‘ 𝑡 ) }  =  { 𝑡  ∈  𝑇  ∣  ( ( 𝑗  +  ( 1  /  3 ) )  ·  𝐸 )  ≤  ( 𝐹 ‘ 𝑡 ) } | 
						
							| 112 |  | elfzelz | ⊢ ( 𝑗  ∈  ( 0 ... 𝑁 )  →  𝑗  ∈  ℤ ) | 
						
							| 113 | 112 | zred | ⊢ ( 𝑗  ∈  ( 0 ... 𝑁 )  →  𝑗  ∈  ℝ ) | 
						
							| 114 |  | 3re | ⊢ 3  ∈  ℝ | 
						
							| 115 |  | 3ne0 | ⊢ 3  ≠  0 | 
						
							| 116 | 114 115 | rereccli | ⊢ ( 1  /  3 )  ∈  ℝ | 
						
							| 117 |  | readdcl | ⊢ ( ( 𝑗  ∈  ℝ  ∧  ( 1  /  3 )  ∈  ℝ )  →  ( 𝑗  +  ( 1  /  3 ) )  ∈  ℝ ) | 
						
							| 118 | 113 116 117 | sylancl | ⊢ ( 𝑗  ∈  ( 0 ... 𝑁 )  →  ( 𝑗  +  ( 1  /  3 ) )  ∈  ℝ ) | 
						
							| 119 | 118 | adantl | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑁 ) )  →  ( 𝑗  +  ( 1  /  3 ) )  ∈  ℝ ) | 
						
							| 120 | 17 | rpred | ⊢ ( 𝜑  →  𝐸  ∈  ℝ ) | 
						
							| 121 | 120 | adantr | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑁 ) )  →  𝐸  ∈  ℝ ) | 
						
							| 122 | 119 121 | remulcld | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑁 ) )  →  ( ( 𝑗  +  ( 1  /  3 ) )  ·  𝐸 )  ∈  ℝ ) | 
						
							| 123 | 16 5 | eleqtrdi | ⊢ ( 𝜑  →  𝐹  ∈  ( 𝐽  Cn  𝐾 ) ) | 
						
							| 124 | 123 | adantr | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑁 ) )  →  𝐹  ∈  ( 𝐽  Cn  𝐾 ) ) | 
						
							| 125 | 1 3 4 111 122 124 | rfcnpre3 | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑁 ) )  →  { 𝑡  ∈  𝑇  ∣  ( ( 𝑗  +  ( 1  /  3 ) )  ·  𝐸 )  ≤  ( 𝐹 ‘ 𝑡 ) }  ∈  ( Clsd ‘ 𝐽 ) ) | 
						
							| 126 | 110 125 | eqeltrd | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑁 ) )  →  ( 𝐵 ‘ 𝑗 )  ∈  ( Clsd ‘ 𝐽 ) ) | 
						
							| 127 |  | rabexg | ⊢ ( 𝑇  ∈  V  →  { 𝑡  ∈  𝑇  ∣  ( 𝐹 ‘ 𝑡 )  ≤  ( ( 𝑗  −  ( 1  /  3 ) )  ·  𝐸 ) }  ∈  V ) | 
						
							| 128 | 106 127 | syl | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑁 ) )  →  { 𝑡  ∈  𝑇  ∣  ( 𝐹 ‘ 𝑡 )  ≤  ( ( 𝑗  −  ( 1  /  3 ) )  ·  𝐸 ) }  ∈  V ) | 
						
							| 129 | 6 | fvmpt2 | ⊢ ( ( 𝑗  ∈  ( 0 ... 𝑁 )  ∧  { 𝑡  ∈  𝑇  ∣  ( 𝐹 ‘ 𝑡 )  ≤  ( ( 𝑗  −  ( 1  /  3 ) )  ·  𝐸 ) }  ∈  V )  →  ( 𝐷 ‘ 𝑗 )  =  { 𝑡  ∈  𝑇  ∣  ( 𝐹 ‘ 𝑡 )  ≤  ( ( 𝑗  −  ( 1  /  3 ) )  ·  𝐸 ) } ) | 
						
							| 130 | 80 128 129 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑁 ) )  →  ( 𝐷 ‘ 𝑗 )  =  { 𝑡  ∈  𝑇  ∣  ( 𝐹 ‘ 𝑡 )  ≤  ( ( 𝑗  −  ( 1  /  3 ) )  ·  𝐸 ) } ) | 
						
							| 131 |  | eqid | ⊢ { 𝑡  ∈  𝑇  ∣  ( 𝐹 ‘ 𝑡 )  ≤  ( ( 𝑗  −  ( 1  /  3 ) )  ·  𝐸 ) }  =  { 𝑡  ∈  𝑇  ∣  ( 𝐹 ‘ 𝑡 )  ≤  ( ( 𝑗  −  ( 1  /  3 ) )  ·  𝐸 ) } | 
						
							| 132 |  | resubcl | ⊢ ( ( 𝑗  ∈  ℝ  ∧  ( 1  /  3 )  ∈  ℝ )  →  ( 𝑗  −  ( 1  /  3 ) )  ∈  ℝ ) | 
						
							| 133 | 113 116 132 | sylancl | ⊢ ( 𝑗  ∈  ( 0 ... 𝑁 )  →  ( 𝑗  −  ( 1  /  3 ) )  ∈  ℝ ) | 
						
							| 134 | 133 | adantl | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑁 ) )  →  ( 𝑗  −  ( 1  /  3 ) )  ∈  ℝ ) | 
						
							| 135 | 134 121 | remulcld | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑁 ) )  →  ( ( 𝑗  −  ( 1  /  3 ) )  ·  𝐸 )  ∈  ℝ ) | 
						
							| 136 | 1 3 4 131 135 124 | rfcnpre4 | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑁 ) )  →  { 𝑡  ∈  𝑇  ∣  ( 𝐹 ‘ 𝑡 )  ≤  ( ( 𝑗  −  ( 1  /  3 ) )  ·  𝐸 ) }  ∈  ( Clsd ‘ 𝐽 ) ) | 
						
							| 137 | 130 136 | eqeltrd | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑁 ) )  →  ( 𝐷 ‘ 𝑗 )  ∈  ( Clsd ‘ 𝐽 ) ) | 
						
							| 138 | 135 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑁 ) )  ∧  𝑡  ∈  ( 𝐵 ‘ 𝑗 ) )  →  ( ( 𝑗  −  ( 1  /  3 ) )  ·  𝐸 )  ∈  ℝ ) | 
						
							| 139 | 122 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑁 ) )  ∧  𝑡  ∈  ( 𝐵 ‘ 𝑗 ) )  →  ( ( 𝑗  +  ( 1  /  3 ) )  ·  𝐸 )  ∈  ℝ ) | 
						
							| 140 | 3 4 5 16 | fcnre | ⊢ ( 𝜑  →  𝐹 : 𝑇 ⟶ ℝ ) | 
						
							| 141 | 140 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑁 ) )  ∧  𝑡  ∈  ( 𝐵 ‘ 𝑗 ) )  →  𝐹 : 𝑇 ⟶ ℝ ) | 
						
							| 142 |  | ssrab2 | ⊢ { 𝑡  ∈  𝑇  ∣  ( ( 𝑗  +  ( 1  /  3 ) )  ·  𝐸 )  ≤  ( 𝐹 ‘ 𝑡 ) }  ⊆  𝑇 | 
						
							| 143 | 110 142 | eqsstrdi | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑁 ) )  →  ( 𝐵 ‘ 𝑗 )  ⊆  𝑇 ) | 
						
							| 144 | 143 | sselda | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑁 ) )  ∧  𝑡  ∈  ( 𝐵 ‘ 𝑗 ) )  →  𝑡  ∈  𝑇 ) | 
						
							| 145 | 141 144 | ffvelcdmd | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑁 ) )  ∧  𝑡  ∈  ( 𝐵 ‘ 𝑗 ) )  →  ( 𝐹 ‘ 𝑡 )  ∈  ℝ ) | 
						
							| 146 | 116 132 | mpan2 | ⊢ ( 𝑗  ∈  ℝ  →  ( 𝑗  −  ( 1  /  3 ) )  ∈  ℝ ) | 
						
							| 147 |  | id | ⊢ ( 𝑗  ∈  ℝ  →  𝑗  ∈  ℝ ) | 
						
							| 148 | 116 117 | mpan2 | ⊢ ( 𝑗  ∈  ℝ  →  ( 𝑗  +  ( 1  /  3 ) )  ∈  ℝ ) | 
						
							| 149 |  | 3pos | ⊢ 0  <  3 | 
						
							| 150 | 114 149 | recgt0ii | ⊢ 0  <  ( 1  /  3 ) | 
						
							| 151 | 116 150 | elrpii | ⊢ ( 1  /  3 )  ∈  ℝ+ | 
						
							| 152 |  | ltsubrp | ⊢ ( ( 𝑗  ∈  ℝ  ∧  ( 1  /  3 )  ∈  ℝ+ )  →  ( 𝑗  −  ( 1  /  3 ) )  <  𝑗 ) | 
						
							| 153 | 151 152 | mpan2 | ⊢ ( 𝑗  ∈  ℝ  →  ( 𝑗  −  ( 1  /  3 ) )  <  𝑗 ) | 
						
							| 154 |  | ltaddrp | ⊢ ( ( 𝑗  ∈  ℝ  ∧  ( 1  /  3 )  ∈  ℝ+ )  →  𝑗  <  ( 𝑗  +  ( 1  /  3 ) ) ) | 
						
							| 155 | 151 154 | mpan2 | ⊢ ( 𝑗  ∈  ℝ  →  𝑗  <  ( 𝑗  +  ( 1  /  3 ) ) ) | 
						
							| 156 | 146 147 148 153 155 | lttrd | ⊢ ( 𝑗  ∈  ℝ  →  ( 𝑗  −  ( 1  /  3 ) )  <  ( 𝑗  +  ( 1  /  3 ) ) ) | 
						
							| 157 | 113 156 | syl | ⊢ ( 𝑗  ∈  ( 0 ... 𝑁 )  →  ( 𝑗  −  ( 1  /  3 ) )  <  ( 𝑗  +  ( 1  /  3 ) ) ) | 
						
							| 158 | 157 | adantl | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑁 ) )  →  ( 𝑗  −  ( 1  /  3 ) )  <  ( 𝑗  +  ( 1  /  3 ) ) ) | 
						
							| 159 | 17 | rpregt0d | ⊢ ( 𝜑  →  ( 𝐸  ∈  ℝ  ∧  0  <  𝐸 ) ) | 
						
							| 160 | 159 | adantr | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑁 ) )  →  ( 𝐸  ∈  ℝ  ∧  0  <  𝐸 ) ) | 
						
							| 161 |  | ltmul1 | ⊢ ( ( ( 𝑗  −  ( 1  /  3 ) )  ∈  ℝ  ∧  ( 𝑗  +  ( 1  /  3 ) )  ∈  ℝ  ∧  ( 𝐸  ∈  ℝ  ∧  0  <  𝐸 ) )  →  ( ( 𝑗  −  ( 1  /  3 ) )  <  ( 𝑗  +  ( 1  /  3 ) )  ↔  ( ( 𝑗  −  ( 1  /  3 ) )  ·  𝐸 )  <  ( ( 𝑗  +  ( 1  /  3 ) )  ·  𝐸 ) ) ) | 
						
							| 162 | 134 119 160 161 | syl3anc | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑁 ) )  →  ( ( 𝑗  −  ( 1  /  3 ) )  <  ( 𝑗  +  ( 1  /  3 ) )  ↔  ( ( 𝑗  −  ( 1  /  3 ) )  ·  𝐸 )  <  ( ( 𝑗  +  ( 1  /  3 ) )  ·  𝐸 ) ) ) | 
						
							| 163 | 158 162 | mpbid | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑁 ) )  →  ( ( 𝑗  −  ( 1  /  3 ) )  ·  𝐸 )  <  ( ( 𝑗  +  ( 1  /  3 ) )  ·  𝐸 ) ) | 
						
							| 164 | 163 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑁 ) )  ∧  𝑡  ∈  ( 𝐵 ‘ 𝑗 ) )  →  ( ( 𝑗  −  ( 1  /  3 ) )  ·  𝐸 )  <  ( ( 𝑗  +  ( 1  /  3 ) )  ·  𝐸 ) ) | 
						
							| 165 | 110 | eleq2d | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑁 ) )  →  ( 𝑡  ∈  ( 𝐵 ‘ 𝑗 )  ↔  𝑡  ∈  { 𝑡  ∈  𝑇  ∣  ( ( 𝑗  +  ( 1  /  3 ) )  ·  𝐸 )  ≤  ( 𝐹 ‘ 𝑡 ) } ) ) | 
						
							| 166 | 165 | biimpa | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑁 ) )  ∧  𝑡  ∈  ( 𝐵 ‘ 𝑗 ) )  →  𝑡  ∈  { 𝑡  ∈  𝑇  ∣  ( ( 𝑗  +  ( 1  /  3 ) )  ·  𝐸 )  ≤  ( 𝐹 ‘ 𝑡 ) } ) | 
						
							| 167 |  | rabid | ⊢ ( 𝑡  ∈  { 𝑡  ∈  𝑇  ∣  ( ( 𝑗  +  ( 1  /  3 ) )  ·  𝐸 )  ≤  ( 𝐹 ‘ 𝑡 ) }  ↔  ( 𝑡  ∈  𝑇  ∧  ( ( 𝑗  +  ( 1  /  3 ) )  ·  𝐸 )  ≤  ( 𝐹 ‘ 𝑡 ) ) ) | 
						
							| 168 | 166 167 | sylib | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑁 ) )  ∧  𝑡  ∈  ( 𝐵 ‘ 𝑗 ) )  →  ( 𝑡  ∈  𝑇  ∧  ( ( 𝑗  +  ( 1  /  3 ) )  ·  𝐸 )  ≤  ( 𝐹 ‘ 𝑡 ) ) ) | 
						
							| 169 | 168 | simprd | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑁 ) )  ∧  𝑡  ∈  ( 𝐵 ‘ 𝑗 ) )  →  ( ( 𝑗  +  ( 1  /  3 ) )  ·  𝐸 )  ≤  ( 𝐹 ‘ 𝑡 ) ) | 
						
							| 170 | 138 139 145 164 169 | ltletrd | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑁 ) )  ∧  𝑡  ∈  ( 𝐵 ‘ 𝑗 ) )  →  ( ( 𝑗  −  ( 1  /  3 ) )  ·  𝐸 )  <  ( 𝐹 ‘ 𝑡 ) ) | 
						
							| 171 | 138 145 | ltnled | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑁 ) )  ∧  𝑡  ∈  ( 𝐵 ‘ 𝑗 ) )  →  ( ( ( 𝑗  −  ( 1  /  3 ) )  ·  𝐸 )  <  ( 𝐹 ‘ 𝑡 )  ↔  ¬  ( 𝐹 ‘ 𝑡 )  ≤  ( ( 𝑗  −  ( 1  /  3 ) )  ·  𝐸 ) ) ) | 
						
							| 172 | 170 171 | mpbid | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑁 ) )  ∧  𝑡  ∈  ( 𝐵 ‘ 𝑗 ) )  →  ¬  ( 𝐹 ‘ 𝑡 )  ≤  ( ( 𝑗  −  ( 1  /  3 ) )  ·  𝐸 ) ) | 
						
							| 173 | 172 | intnand | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑁 ) )  ∧  𝑡  ∈  ( 𝐵 ‘ 𝑗 ) )  →  ¬  ( 𝑡  ∈  𝑇  ∧  ( 𝐹 ‘ 𝑡 )  ≤  ( ( 𝑗  −  ( 1  /  3 ) )  ·  𝐸 ) ) ) | 
						
							| 174 |  | rabid | ⊢ ( 𝑡  ∈  { 𝑡  ∈  𝑇  ∣  ( 𝐹 ‘ 𝑡 )  ≤  ( ( 𝑗  −  ( 1  /  3 ) )  ·  𝐸 ) }  ↔  ( 𝑡  ∈  𝑇  ∧  ( 𝐹 ‘ 𝑡 )  ≤  ( ( 𝑗  −  ( 1  /  3 ) )  ·  𝐸 ) ) ) | 
						
							| 175 | 173 174 | sylnibr | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑁 ) )  ∧  𝑡  ∈  ( 𝐵 ‘ 𝑗 ) )  →  ¬  𝑡  ∈  { 𝑡  ∈  𝑇  ∣  ( 𝐹 ‘ 𝑡 )  ≤  ( ( 𝑗  −  ( 1  /  3 ) )  ·  𝐸 ) } ) | 
						
							| 176 | 130 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑁 ) )  ∧  𝑡  ∈  ( 𝐵 ‘ 𝑗 ) )  →  ( 𝐷 ‘ 𝑗 )  =  { 𝑡  ∈  𝑇  ∣  ( 𝐹 ‘ 𝑡 )  ≤  ( ( 𝑗  −  ( 1  /  3 ) )  ·  𝐸 ) } ) | 
						
							| 177 | 175 176 | neleqtrrd | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑁 ) )  ∧  𝑡  ∈  ( 𝐵 ‘ 𝑗 ) )  →  ¬  𝑡  ∈  ( 𝐷 ‘ 𝑗 ) ) | 
						
							| 178 | 177 | ex | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑁 ) )  →  ( 𝑡  ∈  ( 𝐵 ‘ 𝑗 )  →  ¬  𝑡  ∈  ( 𝐷 ‘ 𝑗 ) ) ) | 
						
							| 179 | 97 178 | ralrimi | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑁 ) )  →  ∀ 𝑡  ∈  ( 𝐵 ‘ 𝑗 ) ¬  𝑡  ∈  ( 𝐷 ‘ 𝑗 ) ) | 
						
							| 180 |  | disj | ⊢ ( ( ( 𝐵 ‘ 𝑗 )  ∩  ( 𝐷 ‘ 𝑗 ) )  =  ∅  ↔  ∀ 𝑎  ∈  ( 𝐵 ‘ 𝑗 ) ¬  𝑎  ∈  ( 𝐷 ‘ 𝑗 ) ) | 
						
							| 181 |  | nfcv | ⊢ Ⅎ 𝑎 ( 𝐵 ‘ 𝑗 ) | 
						
							| 182 | 89 | nfcri | ⊢ Ⅎ 𝑡 𝑎  ∈  ( 𝐷 ‘ 𝑗 ) | 
						
							| 183 | 182 | nfn | ⊢ Ⅎ 𝑡 ¬  𝑎  ∈  ( 𝐷 ‘ 𝑗 ) | 
						
							| 184 |  | nfv | ⊢ Ⅎ 𝑎 ¬  𝑡  ∈  ( 𝐷 ‘ 𝑗 ) | 
						
							| 185 |  | eleq1 | ⊢ ( 𝑎  =  𝑡  →  ( 𝑎  ∈  ( 𝐷 ‘ 𝑗 )  ↔  𝑡  ∈  ( 𝐷 ‘ 𝑗 ) ) ) | 
						
							| 186 | 185 | notbid | ⊢ ( 𝑎  =  𝑡  →  ( ¬  𝑎  ∈  ( 𝐷 ‘ 𝑗 )  ↔  ¬  𝑡  ∈  ( 𝐷 ‘ 𝑗 ) ) ) | 
						
							| 187 | 181 94 183 184 186 | cbvralfw | ⊢ ( ∀ 𝑎  ∈  ( 𝐵 ‘ 𝑗 ) ¬  𝑎  ∈  ( 𝐷 ‘ 𝑗 )  ↔  ∀ 𝑡  ∈  ( 𝐵 ‘ 𝑗 ) ¬  𝑡  ∈  ( 𝐷 ‘ 𝑗 ) ) | 
						
							| 188 | 180 187 | bitri | ⊢ ( ( ( 𝐵 ‘ 𝑗 )  ∩  ( 𝐷 ‘ 𝑗 ) )  =  ∅  ↔  ∀ 𝑡  ∈  ( 𝐵 ‘ 𝑗 ) ¬  𝑡  ∈  ( 𝐷 ‘ 𝑗 ) ) | 
						
							| 189 | 179 188 | sylibr | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑁 ) )  →  ( ( 𝐵 ‘ 𝑗 )  ∩  ( 𝐷 ‘ 𝑗 ) )  =  ∅ ) | 
						
							| 190 |  | eqid | ⊢ ( 𝑇  ∖  ( 𝐵 ‘ 𝑗 ) )  =  ( 𝑇  ∖  ( 𝐵 ‘ 𝑗 ) ) | 
						
							| 191 | 19 | nnrpd | ⊢ ( 𝜑  →  𝑁  ∈  ℝ+ ) | 
						
							| 192 | 17 191 | rpdivcld | ⊢ ( 𝜑  →  ( 𝐸  /  𝑁 )  ∈  ℝ+ ) | 
						
							| 193 | 192 | adantr | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑁 ) )  →  ( 𝐸  /  𝑁 )  ∈  ℝ+ ) | 
						
							| 194 | 120 19 | nndivred | ⊢ ( 𝜑  →  ( 𝐸  /  𝑁 )  ∈  ℝ ) | 
						
							| 195 | 116 | a1i | ⊢ ( 𝜑  →  ( 1  /  3 )  ∈  ℝ ) | 
						
							| 196 | 19 | nnge1d | ⊢ ( 𝜑  →  1  ≤  𝑁 ) | 
						
							| 197 |  | 1re | ⊢ 1  ∈  ℝ | 
						
							| 198 |  | 0lt1 | ⊢ 0  <  1 | 
						
							| 199 | 197 198 | pm3.2i | ⊢ ( 1  ∈  ℝ  ∧  0  <  1 ) | 
						
							| 200 | 199 | a1i | ⊢ ( 𝜑  →  ( 1  ∈  ℝ  ∧  0  <  1 ) ) | 
						
							| 201 | 19 | nnred | ⊢ ( 𝜑  →  𝑁  ∈  ℝ ) | 
						
							| 202 | 19 | nngt0d | ⊢ ( 𝜑  →  0  <  𝑁 ) | 
						
							| 203 |  | lediv2 | ⊢ ( ( ( 1  ∈  ℝ  ∧  0  <  1 )  ∧  ( 𝑁  ∈  ℝ  ∧  0  <  𝑁 )  ∧  ( 𝐸  ∈  ℝ  ∧  0  <  𝐸 ) )  →  ( 1  ≤  𝑁  ↔  ( 𝐸  /  𝑁 )  ≤  ( 𝐸  /  1 ) ) ) | 
						
							| 204 | 200 201 202 159 203 | syl121anc | ⊢ ( 𝜑  →  ( 1  ≤  𝑁  ↔  ( 𝐸  /  𝑁 )  ≤  ( 𝐸  /  1 ) ) ) | 
						
							| 205 | 196 204 | mpbid | ⊢ ( 𝜑  →  ( 𝐸  /  𝑁 )  ≤  ( 𝐸  /  1 ) ) | 
						
							| 206 | 17 | rpcnd | ⊢ ( 𝜑  →  𝐸  ∈  ℂ ) | 
						
							| 207 | 206 | div1d | ⊢ ( 𝜑  →  ( 𝐸  /  1 )  =  𝐸 ) | 
						
							| 208 | 205 207 | breqtrd | ⊢ ( 𝜑  →  ( 𝐸  /  𝑁 )  ≤  𝐸 ) | 
						
							| 209 | 194 120 195 208 18 | lelttrd | ⊢ ( 𝜑  →  ( 𝐸  /  𝑁 )  <  ( 1  /  3 ) ) | 
						
							| 210 | 209 | adantr | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑁 ) )  →  ( 𝐸  /  𝑁 )  <  ( 1  /  3 ) ) | 
						
							| 211 | 89 95 97 3 4 5 98 99 100 101 102 103 126 137 189 190 193 210 | stoweidlem58 | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑁 ) )  →  ∃ 𝑥  ∈  𝐴 ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( 𝑥 ‘ 𝑡 )  ∧  ( 𝑥 ‘ 𝑡 )  ≤  1 )  ∧  ∀ 𝑡  ∈  ( 𝐷 ‘ 𝑗 ) ( 𝑥 ‘ 𝑡 )  <  ( 𝐸  /  𝑁 )  ∧  ∀ 𝑡  ∈  ( 𝐵 ‘ 𝑗 ) ( 1  −  ( 𝐸  /  𝑁 ) )  <  ( 𝑥 ‘ 𝑡 ) ) ) | 
						
							| 212 |  | df-rex | ⊢ ( ∃ 𝑥  ∈  𝐴 ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( 𝑥 ‘ 𝑡 )  ∧  ( 𝑥 ‘ 𝑡 )  ≤  1 )  ∧  ∀ 𝑡  ∈  ( 𝐷 ‘ 𝑗 ) ( 𝑥 ‘ 𝑡 )  <  ( 𝐸  /  𝑁 )  ∧  ∀ 𝑡  ∈  ( 𝐵 ‘ 𝑗 ) ( 1  −  ( 𝐸  /  𝑁 ) )  <  ( 𝑥 ‘ 𝑡 ) )  ↔  ∃ 𝑥 ( 𝑥  ∈  𝐴  ∧  ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( 𝑥 ‘ 𝑡 )  ∧  ( 𝑥 ‘ 𝑡 )  ≤  1 )  ∧  ∀ 𝑡  ∈  ( 𝐷 ‘ 𝑗 ) ( 𝑥 ‘ 𝑡 )  <  ( 𝐸  /  𝑁 )  ∧  ∀ 𝑡  ∈  ( 𝐵 ‘ 𝑗 ) ( 1  −  ( 𝐸  /  𝑁 ) )  <  ( 𝑥 ‘ 𝑡 ) ) ) ) | 
						
							| 213 | 211 212 | sylib | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑁 ) )  →  ∃ 𝑥 ( 𝑥  ∈  𝐴  ∧  ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( 𝑥 ‘ 𝑡 )  ∧  ( 𝑥 ‘ 𝑡 )  ≤  1 )  ∧  ∀ 𝑡  ∈  ( 𝐷 ‘ 𝑗 ) ( 𝑥 ‘ 𝑡 )  <  ( 𝐸  /  𝑁 )  ∧  ∀ 𝑡  ∈  ( 𝐵 ‘ 𝑗 ) ( 1  −  ( 𝐸  /  𝑁 ) )  <  ( 𝑥 ‘ 𝑡 ) ) ) ) | 
						
							| 214 |  | simprl | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑁 ) )  ∧  ( 𝑥  ∈  𝐴  ∧  ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( 𝑥 ‘ 𝑡 )  ∧  ( 𝑥 ‘ 𝑡 )  ≤  1 )  ∧  ∀ 𝑡  ∈  ( 𝐷 ‘ 𝑗 ) ( 𝑥 ‘ 𝑡 )  <  ( 𝐸  /  𝑁 )  ∧  ∀ 𝑡  ∈  ( 𝐵 ‘ 𝑗 ) ( 1  −  ( 𝐸  /  𝑁 ) )  <  ( 𝑥 ‘ 𝑡 ) ) ) )  →  𝑥  ∈  𝐴 ) | 
						
							| 215 |  | simprr1 | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑁 ) )  ∧  ( 𝑥  ∈  𝐴  ∧  ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( 𝑥 ‘ 𝑡 )  ∧  ( 𝑥 ‘ 𝑡 )  ≤  1 )  ∧  ∀ 𝑡  ∈  ( 𝐷 ‘ 𝑗 ) ( 𝑥 ‘ 𝑡 )  <  ( 𝐸  /  𝑁 )  ∧  ∀ 𝑡  ∈  ( 𝐵 ‘ 𝑗 ) ( 1  −  ( 𝐸  /  𝑁 ) )  <  ( 𝑥 ‘ 𝑡 ) ) ) )  →  ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( 𝑥 ‘ 𝑡 )  ∧  ( 𝑥 ‘ 𝑡 )  ≤  1 ) ) | 
						
							| 216 |  | fveq1 | ⊢ ( 𝑦  =  𝑥  →  ( 𝑦 ‘ 𝑡 )  =  ( 𝑥 ‘ 𝑡 ) ) | 
						
							| 217 | 216 | breq2d | ⊢ ( 𝑦  =  𝑥  →  ( 0  ≤  ( 𝑦 ‘ 𝑡 )  ↔  0  ≤  ( 𝑥 ‘ 𝑡 ) ) ) | 
						
							| 218 | 216 | breq1d | ⊢ ( 𝑦  =  𝑥  →  ( ( 𝑦 ‘ 𝑡 )  ≤  1  ↔  ( 𝑥 ‘ 𝑡 )  ≤  1 ) ) | 
						
							| 219 | 217 218 | anbi12d | ⊢ ( 𝑦  =  𝑥  →  ( ( 0  ≤  ( 𝑦 ‘ 𝑡 )  ∧  ( 𝑦 ‘ 𝑡 )  ≤  1 )  ↔  ( 0  ≤  ( 𝑥 ‘ 𝑡 )  ∧  ( 𝑥 ‘ 𝑡 )  ≤  1 ) ) ) | 
						
							| 220 | 219 | ralbidv | ⊢ ( 𝑦  =  𝑥  →  ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( 𝑦 ‘ 𝑡 )  ∧  ( 𝑦 ‘ 𝑡 )  ≤  1 )  ↔  ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( 𝑥 ‘ 𝑡 )  ∧  ( 𝑥 ‘ 𝑡 )  ≤  1 ) ) ) | 
						
							| 221 | 220 8 | elrab2 | ⊢ ( 𝑥  ∈  𝑌  ↔  ( 𝑥  ∈  𝐴  ∧  ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( 𝑥 ‘ 𝑡 )  ∧  ( 𝑥 ‘ 𝑡 )  ≤  1 ) ) ) | 
						
							| 222 | 214 215 221 | sylanbrc | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑁 ) )  ∧  ( 𝑥  ∈  𝐴  ∧  ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( 𝑥 ‘ 𝑡 )  ∧  ( 𝑥 ‘ 𝑡 )  ≤  1 )  ∧  ∀ 𝑡  ∈  ( 𝐷 ‘ 𝑗 ) ( 𝑥 ‘ 𝑡 )  <  ( 𝐸  /  𝑁 )  ∧  ∀ 𝑡  ∈  ( 𝐵 ‘ 𝑗 ) ( 1  −  ( 𝐸  /  𝑁 ) )  <  ( 𝑥 ‘ 𝑡 ) ) ) )  →  𝑥  ∈  𝑌 ) | 
						
							| 223 |  | simprr2 | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑁 ) )  ∧  ( 𝑥  ∈  𝐴  ∧  ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( 𝑥 ‘ 𝑡 )  ∧  ( 𝑥 ‘ 𝑡 )  ≤  1 )  ∧  ∀ 𝑡  ∈  ( 𝐷 ‘ 𝑗 ) ( 𝑥 ‘ 𝑡 )  <  ( 𝐸  /  𝑁 )  ∧  ∀ 𝑡  ∈  ( 𝐵 ‘ 𝑗 ) ( 1  −  ( 𝐸  /  𝑁 ) )  <  ( 𝑥 ‘ 𝑡 ) ) ) )  →  ∀ 𝑡  ∈  ( 𝐷 ‘ 𝑗 ) ( 𝑥 ‘ 𝑡 )  <  ( 𝐸  /  𝑁 ) ) | 
						
							| 224 |  | simprr3 | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑁 ) )  ∧  ( 𝑥  ∈  𝐴  ∧  ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( 𝑥 ‘ 𝑡 )  ∧  ( 𝑥 ‘ 𝑡 )  ≤  1 )  ∧  ∀ 𝑡  ∈  ( 𝐷 ‘ 𝑗 ) ( 𝑥 ‘ 𝑡 )  <  ( 𝐸  /  𝑁 )  ∧  ∀ 𝑡  ∈  ( 𝐵 ‘ 𝑗 ) ( 1  −  ( 𝐸  /  𝑁 ) )  <  ( 𝑥 ‘ 𝑡 ) ) ) )  →  ∀ 𝑡  ∈  ( 𝐵 ‘ 𝑗 ) ( 1  −  ( 𝐸  /  𝑁 ) )  <  ( 𝑥 ‘ 𝑡 ) ) | 
						
							| 225 | 223 224 | jca | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑁 ) )  ∧  ( 𝑥  ∈  𝐴  ∧  ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( 𝑥 ‘ 𝑡 )  ∧  ( 𝑥 ‘ 𝑡 )  ≤  1 )  ∧  ∀ 𝑡  ∈  ( 𝐷 ‘ 𝑗 ) ( 𝑥 ‘ 𝑡 )  <  ( 𝐸  /  𝑁 )  ∧  ∀ 𝑡  ∈  ( 𝐵 ‘ 𝑗 ) ( 1  −  ( 𝐸  /  𝑁 ) )  <  ( 𝑥 ‘ 𝑡 ) ) ) )  →  ( ∀ 𝑡  ∈  ( 𝐷 ‘ 𝑗 ) ( 𝑥 ‘ 𝑡 )  <  ( 𝐸  /  𝑁 )  ∧  ∀ 𝑡  ∈  ( 𝐵 ‘ 𝑗 ) ( 1  −  ( 𝐸  /  𝑁 ) )  <  ( 𝑥 ‘ 𝑡 ) ) ) | 
						
							| 226 |  | nfcv | ⊢ Ⅎ 𝑦 𝑥 | 
						
							| 227 |  | nfv | ⊢ Ⅎ 𝑦 ( ∀ 𝑡  ∈  ( 𝐷 ‘ 𝑗 ) ( 𝑥 ‘ 𝑡 )  <  ( 𝐸  /  𝑁 )  ∧  ∀ 𝑡  ∈  ( 𝐵 ‘ 𝑗 ) ( 1  −  ( 𝐸  /  𝑁 ) )  <  ( 𝑥 ‘ 𝑡 ) ) | 
						
							| 228 | 216 | breq1d | ⊢ ( 𝑦  =  𝑥  →  ( ( 𝑦 ‘ 𝑡 )  <  ( 𝐸  /  𝑁 )  ↔  ( 𝑥 ‘ 𝑡 )  <  ( 𝐸  /  𝑁 ) ) ) | 
						
							| 229 | 228 | ralbidv | ⊢ ( 𝑦  =  𝑥  →  ( ∀ 𝑡  ∈  ( 𝐷 ‘ 𝑗 ) ( 𝑦 ‘ 𝑡 )  <  ( 𝐸  /  𝑁 )  ↔  ∀ 𝑡  ∈  ( 𝐷 ‘ 𝑗 ) ( 𝑥 ‘ 𝑡 )  <  ( 𝐸  /  𝑁 ) ) ) | 
						
							| 230 | 216 | breq2d | ⊢ ( 𝑦  =  𝑥  →  ( ( 1  −  ( 𝐸  /  𝑁 ) )  <  ( 𝑦 ‘ 𝑡 )  ↔  ( 1  −  ( 𝐸  /  𝑁 ) )  <  ( 𝑥 ‘ 𝑡 ) ) ) | 
						
							| 231 | 230 | ralbidv | ⊢ ( 𝑦  =  𝑥  →  ( ∀ 𝑡  ∈  ( 𝐵 ‘ 𝑗 ) ( 1  −  ( 𝐸  /  𝑁 ) )  <  ( 𝑦 ‘ 𝑡 )  ↔  ∀ 𝑡  ∈  ( 𝐵 ‘ 𝑗 ) ( 1  −  ( 𝐸  /  𝑁 ) )  <  ( 𝑥 ‘ 𝑡 ) ) ) | 
						
							| 232 | 229 231 | anbi12d | ⊢ ( 𝑦  =  𝑥  →  ( ( ∀ 𝑡  ∈  ( 𝐷 ‘ 𝑗 ) ( 𝑦 ‘ 𝑡 )  <  ( 𝐸  /  𝑁 )  ∧  ∀ 𝑡  ∈  ( 𝐵 ‘ 𝑗 ) ( 1  −  ( 𝐸  /  𝑁 ) )  <  ( 𝑦 ‘ 𝑡 ) )  ↔  ( ∀ 𝑡  ∈  ( 𝐷 ‘ 𝑗 ) ( 𝑥 ‘ 𝑡 )  <  ( 𝐸  /  𝑁 )  ∧  ∀ 𝑡  ∈  ( 𝐵 ‘ 𝑗 ) ( 1  −  ( 𝐸  /  𝑁 ) )  <  ( 𝑥 ‘ 𝑡 ) ) ) ) | 
						
							| 233 | 226 21 227 232 | elrabf | ⊢ ( 𝑥  ∈  { 𝑦  ∈  𝑌  ∣  ( ∀ 𝑡  ∈  ( 𝐷 ‘ 𝑗 ) ( 𝑦 ‘ 𝑡 )  <  ( 𝐸  /  𝑁 )  ∧  ∀ 𝑡  ∈  ( 𝐵 ‘ 𝑗 ) ( 1  −  ( 𝐸  /  𝑁 ) )  <  ( 𝑦 ‘ 𝑡 ) ) }  ↔  ( 𝑥  ∈  𝑌  ∧  ( ∀ 𝑡  ∈  ( 𝐷 ‘ 𝑗 ) ( 𝑥 ‘ 𝑡 )  <  ( 𝐸  /  𝑁 )  ∧  ∀ 𝑡  ∈  ( 𝐵 ‘ 𝑗 ) ( 1  −  ( 𝐸  /  𝑁 ) )  <  ( 𝑥 ‘ 𝑡 ) ) ) ) | 
						
							| 234 | 222 225 233 | sylanbrc | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑁 ) )  ∧  ( 𝑥  ∈  𝐴  ∧  ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( 𝑥 ‘ 𝑡 )  ∧  ( 𝑥 ‘ 𝑡 )  ≤  1 )  ∧  ∀ 𝑡  ∈  ( 𝐷 ‘ 𝑗 ) ( 𝑥 ‘ 𝑡 )  <  ( 𝐸  /  𝑁 )  ∧  ∀ 𝑡  ∈  ( 𝐵 ‘ 𝑗 ) ( 1  −  ( 𝐸  /  𝑁 ) )  <  ( 𝑥 ‘ 𝑡 ) ) ) )  →  𝑥  ∈  { 𝑦  ∈  𝑌  ∣  ( ∀ 𝑡  ∈  ( 𝐷 ‘ 𝑗 ) ( 𝑦 ‘ 𝑡 )  <  ( 𝐸  /  𝑁 )  ∧  ∀ 𝑡  ∈  ( 𝐵 ‘ 𝑗 ) ( 1  −  ( 𝐸  /  𝑁 ) )  <  ( 𝑦 ‘ 𝑡 ) ) } ) | 
						
							| 235 | 234 | ex | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑁 ) )  →  ( ( 𝑥  ∈  𝐴  ∧  ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( 𝑥 ‘ 𝑡 )  ∧  ( 𝑥 ‘ 𝑡 )  ≤  1 )  ∧  ∀ 𝑡  ∈  ( 𝐷 ‘ 𝑗 ) ( 𝑥 ‘ 𝑡 )  <  ( 𝐸  /  𝑁 )  ∧  ∀ 𝑡  ∈  ( 𝐵 ‘ 𝑗 ) ( 1  −  ( 𝐸  /  𝑁 ) )  <  ( 𝑥 ‘ 𝑡 ) ) )  →  𝑥  ∈  { 𝑦  ∈  𝑌  ∣  ( ∀ 𝑡  ∈  ( 𝐷 ‘ 𝑗 ) ( 𝑦 ‘ 𝑡 )  <  ( 𝐸  /  𝑁 )  ∧  ∀ 𝑡  ∈  ( 𝐵 ‘ 𝑗 ) ( 1  −  ( 𝐸  /  𝑁 ) )  <  ( 𝑦 ‘ 𝑡 ) ) } ) ) | 
						
							| 236 | 235 | eximdv | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑁 ) )  →  ( ∃ 𝑥 ( 𝑥  ∈  𝐴  ∧  ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( 𝑥 ‘ 𝑡 )  ∧  ( 𝑥 ‘ 𝑡 )  ≤  1 )  ∧  ∀ 𝑡  ∈  ( 𝐷 ‘ 𝑗 ) ( 𝑥 ‘ 𝑡 )  <  ( 𝐸  /  𝑁 )  ∧  ∀ 𝑡  ∈  ( 𝐵 ‘ 𝑗 ) ( 1  −  ( 𝐸  /  𝑁 ) )  <  ( 𝑥 ‘ 𝑡 ) ) )  →  ∃ 𝑥 𝑥  ∈  { 𝑦  ∈  𝑌  ∣  ( ∀ 𝑡  ∈  ( 𝐷 ‘ 𝑗 ) ( 𝑦 ‘ 𝑡 )  <  ( 𝐸  /  𝑁 )  ∧  ∀ 𝑡  ∈  ( 𝐵 ‘ 𝑗 ) ( 1  −  ( 𝐸  /  𝑁 ) )  <  ( 𝑦 ‘ 𝑡 ) ) } ) ) | 
						
							| 237 | 213 236 | mpd | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑁 ) )  →  ∃ 𝑥 𝑥  ∈  { 𝑦  ∈  𝑌  ∣  ( ∀ 𝑡  ∈  ( 𝐷 ‘ 𝑗 ) ( 𝑦 ‘ 𝑡 )  <  ( 𝐸  /  𝑁 )  ∧  ∀ 𝑡  ∈  ( 𝐵 ‘ 𝑗 ) ( 1  −  ( 𝐸  /  𝑁 ) )  <  ( 𝑦 ‘ 𝑡 ) ) } ) | 
						
							| 238 |  | ne0i | ⊢ ( 𝑥  ∈  { 𝑦  ∈  𝑌  ∣  ( ∀ 𝑡  ∈  ( 𝐷 ‘ 𝑗 ) ( 𝑦 ‘ 𝑡 )  <  ( 𝐸  /  𝑁 )  ∧  ∀ 𝑡  ∈  ( 𝐵 ‘ 𝑗 ) ( 1  −  ( 𝐸  /  𝑁 ) )  <  ( 𝑦 ‘ 𝑡 ) ) }  →  { 𝑦  ∈  𝑌  ∣  ( ∀ 𝑡  ∈  ( 𝐷 ‘ 𝑗 ) ( 𝑦 ‘ 𝑡 )  <  ( 𝐸  /  𝑁 )  ∧  ∀ 𝑡  ∈  ( 𝐵 ‘ 𝑗 ) ( 1  −  ( 𝐸  /  𝑁 ) )  <  ( 𝑦 ‘ 𝑡 ) ) }  ≠  ∅ ) | 
						
							| 239 | 238 | exlimiv | ⊢ ( ∃ 𝑥 𝑥  ∈  { 𝑦  ∈  𝑌  ∣  ( ∀ 𝑡  ∈  ( 𝐷 ‘ 𝑗 ) ( 𝑦 ‘ 𝑡 )  <  ( 𝐸  /  𝑁 )  ∧  ∀ 𝑡  ∈  ( 𝐵 ‘ 𝑗 ) ( 1  −  ( 𝐸  /  𝑁 ) )  <  ( 𝑦 ‘ 𝑡 ) ) }  →  { 𝑦  ∈  𝑌  ∣  ( ∀ 𝑡  ∈  ( 𝐷 ‘ 𝑗 ) ( 𝑦 ‘ 𝑡 )  <  ( 𝐸  /  𝑁 )  ∧  ∀ 𝑡  ∈  ( 𝐵 ‘ 𝑗 ) ( 1  −  ( 𝐸  /  𝑁 ) )  <  ( 𝑦 ‘ 𝑡 ) ) }  ≠  ∅ ) | 
						
							| 240 | 237 239 | syl | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑁 ) )  →  { 𝑦  ∈  𝑌  ∣  ( ∀ 𝑡  ∈  ( 𝐷 ‘ 𝑗 ) ( 𝑦 ‘ 𝑡 )  <  ( 𝐸  /  𝑁 )  ∧  ∀ 𝑡  ∈  ( 𝐵 ‘ 𝑗 ) ( 1  −  ( 𝐸  /  𝑁 ) )  <  ( 𝑦 ‘ 𝑡 ) ) }  ≠  ∅ ) | 
						
							| 241 | 83 240 | eqnetrd | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑁 ) )  →  ( 𝐻 ‘ 𝑗 )  ≠  ∅ ) | 
						
							| 242 | 241 | 3adant3 | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑁 )  ∧  ( 𝐻 ‘ 𝑗 )  =  𝑤 )  →  ( 𝐻 ‘ 𝑗 )  ≠  ∅ ) | 
						
							| 243 | 79 242 | eqnetrrd | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑁 )  ∧  ( 𝐻 ‘ 𝑗 )  =  𝑤 )  →  𝑤  ≠  ∅ ) | 
						
							| 244 | 243 | 3exp | ⊢ ( 𝜑  →  ( 𝑗  ∈  ( 0 ... 𝑁 )  →  ( ( 𝐻 ‘ 𝑗 )  =  𝑤  →  𝑤  ≠  ∅ ) ) ) | 
						
							| 245 | 244 | rexlimdv | ⊢ ( 𝜑  →  ( ∃ 𝑗  ∈  ( 0 ... 𝑁 ) ( 𝐻 ‘ 𝑗 )  =  𝑤  →  𝑤  ≠  ∅ ) ) | 
						
							| 246 | 245 | adantr | ⊢ ( ( 𝜑  ∧  𝑤  ∈  ran  𝐻 )  →  ( ∃ 𝑗  ∈  ( 0 ... 𝑁 ) ( 𝐻 ‘ 𝑗 )  =  𝑤  →  𝑤  ≠  ∅ ) ) | 
						
							| 247 | 78 246 | mpd | ⊢ ( ( 𝜑  ∧  𝑤  ∈  ran  𝐻 )  →  𝑤  ≠  ∅ ) | 
						
							| 248 | 247 | adantlr | ⊢ ( ( ( 𝜑  ∧  ( ℎ  Fn  ran  𝐻  ∧  ∀ 𝑤  ∈  ran  𝐻 ( 𝑤  ≠  ∅  →  ( ℎ ‘ 𝑤 )  ∈  𝑤 ) ) )  ∧  𝑤  ∈  ran  𝐻 )  →  𝑤  ≠  ∅ ) | 
						
							| 249 |  | rsp | ⊢ ( ∀ 𝑤  ∈  ran  𝐻 ( 𝑤  ≠  ∅  →  ( ℎ ‘ 𝑤 )  ∈  𝑤 )  →  ( 𝑤  ∈  ran  𝐻  →  ( 𝑤  ≠  ∅  →  ( ℎ ‘ 𝑤 )  ∈  𝑤 ) ) ) | 
						
							| 250 | 63 64 248 249 | syl3c | ⊢ ( ( ( 𝜑  ∧  ( ℎ  Fn  ran  𝐻  ∧  ∀ 𝑤  ∈  ran  𝐻 ( 𝑤  ≠  ∅  →  ( ℎ ‘ 𝑤 )  ∈  𝑤 ) ) )  ∧  𝑤  ∈  ran  𝐻 )  →  ( ℎ ‘ 𝑤 )  ∈  𝑤 ) | 
						
							| 251 | 250 | ex | ⊢ ( ( 𝜑  ∧  ( ℎ  Fn  ran  𝐻  ∧  ∀ 𝑤  ∈  ran  𝐻 ( 𝑤  ≠  ∅  →  ( ℎ ‘ 𝑤 )  ∈  𝑤 ) ) )  →  ( 𝑤  ∈  ran  𝐻  →  ( ℎ ‘ 𝑤 )  ∈  𝑤 ) ) | 
						
							| 252 | 62 251 | ralrimi | ⊢ ( ( 𝜑  ∧  ( ℎ  Fn  ran  𝐻  ∧  ∀ 𝑤  ∈  ran  𝐻 ( 𝑤  ≠  ∅  →  ( ℎ ‘ 𝑤 )  ∈  𝑤 ) ) )  →  ∀ 𝑤  ∈  ran  𝐻 ( ℎ ‘ 𝑤 )  ∈  𝑤 ) | 
						
							| 253 |  | chfnrn | ⊢ ( ( ℎ  Fn  ran  𝐻  ∧  ∀ 𝑤  ∈  ran  𝐻 ( ℎ ‘ 𝑤 )  ∈  𝑤 )  →  ran  ℎ  ⊆  ∪  ran  𝐻 ) | 
						
							| 254 | 47 252 253 | syl2anc | ⊢ ( ( 𝜑  ∧  ( ℎ  Fn  ran  𝐻  ∧  ∀ 𝑤  ∈  ran  𝐻 ( 𝑤  ≠  ∅  →  ( ℎ ‘ 𝑤 )  ∈  𝑤 ) ) )  →  ran  ℎ  ⊆  ∪  ran  𝐻 ) | 
						
							| 255 |  | nfv | ⊢ Ⅎ 𝑦 𝜑 | 
						
							| 256 |  | nfcv | ⊢ Ⅎ 𝑦 ℎ | 
						
							| 257 |  | nfcv | ⊢ Ⅎ 𝑦 ( 0 ... 𝑁 ) | 
						
							| 258 |  | nfrab1 | ⊢ Ⅎ 𝑦 { 𝑦  ∈  𝑌  ∣  ( ∀ 𝑡  ∈  ( 𝐷 ‘ 𝑗 ) ( 𝑦 ‘ 𝑡 )  <  ( 𝐸  /  𝑁 )  ∧  ∀ 𝑡  ∈  ( 𝐵 ‘ 𝑗 ) ( 1  −  ( 𝐸  /  𝑁 ) )  <  ( 𝑦 ‘ 𝑡 ) ) } | 
						
							| 259 | 257 258 | nfmpt | ⊢ Ⅎ 𝑦 ( 𝑗  ∈  ( 0 ... 𝑁 )  ↦  { 𝑦  ∈  𝑌  ∣  ( ∀ 𝑡  ∈  ( 𝐷 ‘ 𝑗 ) ( 𝑦 ‘ 𝑡 )  <  ( 𝐸  /  𝑁 )  ∧  ∀ 𝑡  ∈  ( 𝐵 ‘ 𝑗 ) ( 1  −  ( 𝐸  /  𝑁 ) )  <  ( 𝑦 ‘ 𝑡 ) ) } ) | 
						
							| 260 | 9 259 | nfcxfr | ⊢ Ⅎ 𝑦 𝐻 | 
						
							| 261 | 260 | nfrn | ⊢ Ⅎ 𝑦 ran  𝐻 | 
						
							| 262 | 256 261 | nffn | ⊢ Ⅎ 𝑦 ℎ  Fn  ran  𝐻 | 
						
							| 263 |  | nfv | ⊢ Ⅎ 𝑦 ( 𝑤  ≠  ∅  →  ( ℎ ‘ 𝑤 )  ∈  𝑤 ) | 
						
							| 264 | 261 263 | nfralw | ⊢ Ⅎ 𝑦 ∀ 𝑤  ∈  ran  𝐻 ( 𝑤  ≠  ∅  →  ( ℎ ‘ 𝑤 )  ∈  𝑤 ) | 
						
							| 265 | 262 264 | nfan | ⊢ Ⅎ 𝑦 ( ℎ  Fn  ran  𝐻  ∧  ∀ 𝑤  ∈  ran  𝐻 ( 𝑤  ≠  ∅  →  ( ℎ ‘ 𝑤 )  ∈  𝑤 ) ) | 
						
							| 266 | 255 265 | nfan | ⊢ Ⅎ 𝑦 ( 𝜑  ∧  ( ℎ  Fn  ran  𝐻  ∧  ∀ 𝑤  ∈  ran  𝐻 ( 𝑤  ≠  ∅  →  ( ℎ ‘ 𝑤 )  ∈  𝑤 ) ) ) | 
						
							| 267 | 261 | nfuni | ⊢ Ⅎ 𝑦 ∪  ran  𝐻 | 
						
							| 268 |  | fnunirn | ⊢ ( 𝐻  Fn  ( 0 ... 𝑁 )  →  ( 𝑦  ∈  ∪  ran  𝐻  ↔  ∃ 𝑧  ∈  ( 0 ... 𝑁 ) 𝑦  ∈  ( 𝐻 ‘ 𝑧 ) ) ) | 
						
							| 269 |  | nfcv | ⊢ Ⅎ 𝑗 𝑧 | 
						
							| 270 | 68 269 | nffv | ⊢ Ⅎ 𝑗 ( 𝐻 ‘ 𝑧 ) | 
						
							| 271 | 270 | nfcri | ⊢ Ⅎ 𝑗 𝑦  ∈  ( 𝐻 ‘ 𝑧 ) | 
						
							| 272 |  | nfv | ⊢ Ⅎ 𝑧 𝑦  ∈  ( 𝐻 ‘ 𝑗 ) | 
						
							| 273 |  | fveq2 | ⊢ ( 𝑧  =  𝑗  →  ( 𝐻 ‘ 𝑧 )  =  ( 𝐻 ‘ 𝑗 ) ) | 
						
							| 274 | 273 | eleq2d | ⊢ ( 𝑧  =  𝑗  →  ( 𝑦  ∈  ( 𝐻 ‘ 𝑧 )  ↔  𝑦  ∈  ( 𝐻 ‘ 𝑗 ) ) ) | 
						
							| 275 | 271 272 274 | cbvrexw | ⊢ ( ∃ 𝑧  ∈  ( 0 ... 𝑁 ) 𝑦  ∈  ( 𝐻 ‘ 𝑧 )  ↔  ∃ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑦  ∈  ( 𝐻 ‘ 𝑗 ) ) | 
						
							| 276 | 268 275 | bitrdi | ⊢ ( 𝐻  Fn  ( 0 ... 𝑁 )  →  ( 𝑦  ∈  ∪  ran  𝐻  ↔  ∃ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑦  ∈  ( 𝐻 ‘ 𝑗 ) ) ) | 
						
							| 277 | 39 276 | syl | ⊢ ( 𝜑  →  ( 𝑦  ∈  ∪  ran  𝐻  ↔  ∃ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑦  ∈  ( 𝐻 ‘ 𝑗 ) ) ) | 
						
							| 278 | 277 | biimpa | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ∪  ran  𝐻 )  →  ∃ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑦  ∈  ( 𝐻 ‘ 𝑗 ) ) | 
						
							| 279 |  | nfv | ⊢ Ⅎ 𝑗 𝜑 | 
						
							| 280 | 68 | nfrn | ⊢ Ⅎ 𝑗 ran  𝐻 | 
						
							| 281 | 280 | nfuni | ⊢ Ⅎ 𝑗 ∪  ran  𝐻 | 
						
							| 282 | 281 | nfcri | ⊢ Ⅎ 𝑗 𝑦  ∈  ∪  ran  𝐻 | 
						
							| 283 | 279 282 | nfan | ⊢ Ⅎ 𝑗 ( 𝜑  ∧  𝑦  ∈  ∪  ran  𝐻 ) | 
						
							| 284 |  | nfv | ⊢ Ⅎ 𝑗 𝑦  ∈  𝑌 | 
						
							| 285 |  | simp1l | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ∪  ran  𝐻 )  ∧  𝑗  ∈  ( 0 ... 𝑁 )  ∧  𝑦  ∈  ( 𝐻 ‘ 𝑗 ) )  →  𝜑 ) | 
						
							| 286 |  | simp2 | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ∪  ran  𝐻 )  ∧  𝑗  ∈  ( 0 ... 𝑁 )  ∧  𝑦  ∈  ( 𝐻 ‘ 𝑗 ) )  →  𝑗  ∈  ( 0 ... 𝑁 ) ) | 
						
							| 287 |  | simp3 | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ∪  ran  𝐻 )  ∧  𝑗  ∈  ( 0 ... 𝑁 )  ∧  𝑦  ∈  ( 𝐻 ‘ 𝑗 ) )  →  𝑦  ∈  ( 𝐻 ‘ 𝑗 ) ) | 
						
							| 288 | 83 | eleq2d | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑁 ) )  →  ( 𝑦  ∈  ( 𝐻 ‘ 𝑗 )  ↔  𝑦  ∈  { 𝑦  ∈  𝑌  ∣  ( ∀ 𝑡  ∈  ( 𝐷 ‘ 𝑗 ) ( 𝑦 ‘ 𝑡 )  <  ( 𝐸  /  𝑁 )  ∧  ∀ 𝑡  ∈  ( 𝐵 ‘ 𝑗 ) ( 1  −  ( 𝐸  /  𝑁 ) )  <  ( 𝑦 ‘ 𝑡 ) ) } ) ) | 
						
							| 289 | 288 | biimpa | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑁 ) )  ∧  𝑦  ∈  ( 𝐻 ‘ 𝑗 ) )  →  𝑦  ∈  { 𝑦  ∈  𝑌  ∣  ( ∀ 𝑡  ∈  ( 𝐷 ‘ 𝑗 ) ( 𝑦 ‘ 𝑡 )  <  ( 𝐸  /  𝑁 )  ∧  ∀ 𝑡  ∈  ( 𝐵 ‘ 𝑗 ) ( 1  −  ( 𝐸  /  𝑁 ) )  <  ( 𝑦 ‘ 𝑡 ) ) } ) | 
						
							| 290 |  | rabid | ⊢ ( 𝑦  ∈  { 𝑦  ∈  𝑌  ∣  ( ∀ 𝑡  ∈  ( 𝐷 ‘ 𝑗 ) ( 𝑦 ‘ 𝑡 )  <  ( 𝐸  /  𝑁 )  ∧  ∀ 𝑡  ∈  ( 𝐵 ‘ 𝑗 ) ( 1  −  ( 𝐸  /  𝑁 ) )  <  ( 𝑦 ‘ 𝑡 ) ) }  ↔  ( 𝑦  ∈  𝑌  ∧  ( ∀ 𝑡  ∈  ( 𝐷 ‘ 𝑗 ) ( 𝑦 ‘ 𝑡 )  <  ( 𝐸  /  𝑁 )  ∧  ∀ 𝑡  ∈  ( 𝐵 ‘ 𝑗 ) ( 1  −  ( 𝐸  /  𝑁 ) )  <  ( 𝑦 ‘ 𝑡 ) ) ) ) | 
						
							| 291 | 289 290 | sylib | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑁 ) )  ∧  𝑦  ∈  ( 𝐻 ‘ 𝑗 ) )  →  ( 𝑦  ∈  𝑌  ∧  ( ∀ 𝑡  ∈  ( 𝐷 ‘ 𝑗 ) ( 𝑦 ‘ 𝑡 )  <  ( 𝐸  /  𝑁 )  ∧  ∀ 𝑡  ∈  ( 𝐵 ‘ 𝑗 ) ( 1  −  ( 𝐸  /  𝑁 ) )  <  ( 𝑦 ‘ 𝑡 ) ) ) ) | 
						
							| 292 | 291 | simpld | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑁 ) )  ∧  𝑦  ∈  ( 𝐻 ‘ 𝑗 ) )  →  𝑦  ∈  𝑌 ) | 
						
							| 293 | 285 286 287 292 | syl21anc | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ∪  ran  𝐻 )  ∧  𝑗  ∈  ( 0 ... 𝑁 )  ∧  𝑦  ∈  ( 𝐻 ‘ 𝑗 ) )  →  𝑦  ∈  𝑌 ) | 
						
							| 294 | 293 | 3exp | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ∪  ran  𝐻 )  →  ( 𝑗  ∈  ( 0 ... 𝑁 )  →  ( 𝑦  ∈  ( 𝐻 ‘ 𝑗 )  →  𝑦  ∈  𝑌 ) ) ) | 
						
							| 295 | 283 284 294 | rexlimd | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ∪  ran  𝐻 )  →  ( ∃ 𝑗  ∈  ( 0 ... 𝑁 ) 𝑦  ∈  ( 𝐻 ‘ 𝑗 )  →  𝑦  ∈  𝑌 ) ) | 
						
							| 296 | 278 295 | mpd | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ∪  ran  𝐻 )  →  𝑦  ∈  𝑌 ) | 
						
							| 297 | 296 | adantlr | ⊢ ( ( ( 𝜑  ∧  ( ℎ  Fn  ran  𝐻  ∧  ∀ 𝑤  ∈  ran  𝐻 ( 𝑤  ≠  ∅  →  ( ℎ ‘ 𝑤 )  ∈  𝑤 ) ) )  ∧  𝑦  ∈  ∪  ran  𝐻 )  →  𝑦  ∈  𝑌 ) | 
						
							| 298 | 297 | ex | ⊢ ( ( 𝜑  ∧  ( ℎ  Fn  ran  𝐻  ∧  ∀ 𝑤  ∈  ran  𝐻 ( 𝑤  ≠  ∅  →  ( ℎ ‘ 𝑤 )  ∈  𝑤 ) ) )  →  ( 𝑦  ∈  ∪  ran  𝐻  →  𝑦  ∈  𝑌 ) ) | 
						
							| 299 | 266 267 21 298 | ssrd | ⊢ ( ( 𝜑  ∧  ( ℎ  Fn  ran  𝐻  ∧  ∀ 𝑤  ∈  ran  𝐻 ( 𝑤  ≠  ∅  →  ( ℎ ‘ 𝑤 )  ∈  𝑤 ) ) )  →  ∪  ran  𝐻  ⊆  𝑌 ) | 
						
							| 300 |  | ssrab2 | ⊢ { 𝑦  ∈  𝐴  ∣  ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( 𝑦 ‘ 𝑡 )  ∧  ( 𝑦 ‘ 𝑡 )  ≤  1 ) }  ⊆  𝐴 | 
						
							| 301 | 8 300 | eqsstri | ⊢ 𝑌  ⊆  𝐴 | 
						
							| 302 | 299 301 | sstrdi | ⊢ ( ( 𝜑  ∧  ( ℎ  Fn  ran  𝐻  ∧  ∀ 𝑤  ∈  ran  𝐻 ( 𝑤  ≠  ∅  →  ( ℎ ‘ 𝑤 )  ∈  𝑤 ) ) )  →  ∪  ran  𝐻  ⊆  𝐴 ) | 
						
							| 303 | 254 302 | sstrd | ⊢ ( ( 𝜑  ∧  ( ℎ  Fn  ran  𝐻  ∧  ∀ 𝑤  ∈  ran  𝐻 ( 𝑤  ≠  ∅  →  ( ℎ ‘ 𝑤 )  ∈  𝑤 ) ) )  →  ran  ℎ  ⊆  𝐴 ) | 
						
							| 304 | 57 303 | fssd | ⊢ ( ( 𝜑  ∧  ( ℎ  Fn  ran  𝐻  ∧  ∀ 𝑤  ∈  ran  𝐻 ( 𝑤  ≠  ∅  →  ( ℎ ‘ 𝑤 )  ∈  𝑤 ) ) )  →  ℎ : ran  𝐻 ⟶ 𝐴 ) | 
						
							| 305 |  | dffn3 | ⊢ ( 𝐻  Fn  ( 0 ... 𝑁 )  ↔  𝐻 : ( 0 ... 𝑁 ) ⟶ ran  𝐻 ) | 
						
							| 306 | 39 305 | sylib | ⊢ ( 𝜑  →  𝐻 : ( 0 ... 𝑁 ) ⟶ ran  𝐻 ) | 
						
							| 307 | 306 | adantr | ⊢ ( ( 𝜑  ∧  ( ℎ  Fn  ran  𝐻  ∧  ∀ 𝑤  ∈  ran  𝐻 ( 𝑤  ≠  ∅  →  ( ℎ ‘ 𝑤 )  ∈  𝑤 ) ) )  →  𝐻 : ( 0 ... 𝑁 ) ⟶ ran  𝐻 ) | 
						
							| 308 |  | fco | ⊢ ( ( ℎ : ran  𝐻 ⟶ 𝐴  ∧  𝐻 : ( 0 ... 𝑁 ) ⟶ ran  𝐻 )  →  ( ℎ  ∘  𝐻 ) : ( 0 ... 𝑁 ) ⟶ 𝐴 ) | 
						
							| 309 | 304 307 308 | syl2anc | ⊢ ( ( 𝜑  ∧  ( ℎ  Fn  ran  𝐻  ∧  ∀ 𝑤  ∈  ran  𝐻 ( 𝑤  ≠  ∅  →  ( ℎ ‘ 𝑤 )  ∈  𝑤 ) ) )  →  ( ℎ  ∘  𝐻 ) : ( 0 ... 𝑁 ) ⟶ 𝐴 ) | 
						
							| 310 |  | nfcv | ⊢ Ⅎ 𝑗 ℎ | 
						
							| 311 | 310 280 | nffn | ⊢ Ⅎ 𝑗 ℎ  Fn  ran  𝐻 | 
						
							| 312 |  | nfv | ⊢ Ⅎ 𝑗 ( 𝑤  ≠  ∅  →  ( ℎ ‘ 𝑤 )  ∈  𝑤 ) | 
						
							| 313 | 280 312 | nfralw | ⊢ Ⅎ 𝑗 ∀ 𝑤  ∈  ran  𝐻 ( 𝑤  ≠  ∅  →  ( ℎ ‘ 𝑤 )  ∈  𝑤 ) | 
						
							| 314 | 311 313 | nfan | ⊢ Ⅎ 𝑗 ( ℎ  Fn  ran  𝐻  ∧  ∀ 𝑤  ∈  ran  𝐻 ( 𝑤  ≠  ∅  →  ( ℎ ‘ 𝑤 )  ∈  𝑤 ) ) | 
						
							| 315 | 279 314 | nfan | ⊢ Ⅎ 𝑗 ( 𝜑  ∧  ( ℎ  Fn  ran  𝐻  ∧  ∀ 𝑤  ∈  ran  𝐻 ( 𝑤  ≠  ∅  →  ( ℎ ‘ 𝑤 )  ∈  𝑤 ) ) ) | 
						
							| 316 |  | simpll | ⊢ ( ( ( 𝜑  ∧  ( ℎ  Fn  ran  𝐻  ∧  ∀ 𝑤  ∈  ran  𝐻 ( 𝑤  ≠  ∅  →  ( ℎ ‘ 𝑤 )  ∈  𝑤 ) ) )  ∧  𝑗  ∈  ( 0 ... 𝑁 ) )  →  𝜑 ) | 
						
							| 317 |  | simpr | ⊢ ( ( ( 𝜑  ∧  ( ℎ  Fn  ran  𝐻  ∧  ∀ 𝑤  ∈  ran  𝐻 ( 𝑤  ≠  ∅  →  ( ℎ ‘ 𝑤 )  ∈  𝑤 ) ) )  ∧  𝑗  ∈  ( 0 ... 𝑁 ) )  →  𝑗  ∈  ( 0 ... 𝑁 ) ) | 
						
							| 318 | 39 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( ℎ  Fn  ran  𝐻  ∧  ∀ 𝑤  ∈  ran  𝐻 ( 𝑤  ≠  ∅  →  ( ℎ ‘ 𝑤 )  ∈  𝑤 ) ) )  ∧  𝑗  ∈  ( 0 ... 𝑁 ) )  →  𝐻  Fn  ( 0 ... 𝑁 ) ) | 
						
							| 319 |  | fvco2 | ⊢ ( ( 𝐻  Fn  ( 0 ... 𝑁 )  ∧  𝑗  ∈  ( 0 ... 𝑁 ) )  →  ( ( ℎ  ∘  𝐻 ) ‘ 𝑗 )  =  ( ℎ ‘ ( 𝐻 ‘ 𝑗 ) ) ) | 
						
							| 320 | 318 319 | sylancom | ⊢ ( ( ( 𝜑  ∧  ( ℎ  Fn  ran  𝐻  ∧  ∀ 𝑤  ∈  ran  𝐻 ( 𝑤  ≠  ∅  →  ( ℎ ‘ 𝑤 )  ∈  𝑤 ) ) )  ∧  𝑗  ∈  ( 0 ... 𝑁 ) )  →  ( ( ℎ  ∘  𝐻 ) ‘ 𝑗 )  =  ( ℎ ‘ ( 𝐻 ‘ 𝑗 ) ) ) | 
						
							| 321 |  | simplrr | ⊢ ( ( ( 𝜑  ∧  ( ℎ  Fn  ran  𝐻  ∧  ∀ 𝑤  ∈  ran  𝐻 ( 𝑤  ≠  ∅  →  ( ℎ ‘ 𝑤 )  ∈  𝑤 ) ) )  ∧  𝑗  ∈  ( 0 ... 𝑁 ) )  →  ∀ 𝑤  ∈  ran  𝐻 ( 𝑤  ≠  ∅  →  ( ℎ ‘ 𝑤 )  ∈  𝑤 ) ) | 
						
							| 322 |  | fnfun | ⊢ ( 𝐻  Fn  ( 0 ... 𝑁 )  →  Fun  𝐻 ) | 
						
							| 323 | 39 322 | syl | ⊢ ( 𝜑  →  Fun  𝐻 ) | 
						
							| 324 | 323 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( ℎ  Fn  ran  𝐻  ∧  ∀ 𝑤  ∈  ran  𝐻 ( 𝑤  ≠  ∅  →  ( ℎ ‘ 𝑤 )  ∈  𝑤 ) ) )  ∧  𝑗  ∈  ( 0 ... 𝑁 ) )  →  Fun  𝐻 ) | 
						
							| 325 | 39 | fndmd | ⊢ ( 𝜑  →  dom  𝐻  =  ( 0 ... 𝑁 ) ) | 
						
							| 326 | 325 | adantr | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑁 ) )  →  dom  𝐻  =  ( 0 ... 𝑁 ) ) | 
						
							| 327 | 80 326 | eleqtrrd | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑁 ) )  →  𝑗  ∈  dom  𝐻 ) | 
						
							| 328 | 327 | adantlr | ⊢ ( ( ( 𝜑  ∧  ( ℎ  Fn  ran  𝐻  ∧  ∀ 𝑤  ∈  ran  𝐻 ( 𝑤  ≠  ∅  →  ( ℎ ‘ 𝑤 )  ∈  𝑤 ) ) )  ∧  𝑗  ∈  ( 0 ... 𝑁 ) )  →  𝑗  ∈  dom  𝐻 ) | 
						
							| 329 |  | fvelrn | ⊢ ( ( Fun  𝐻  ∧  𝑗  ∈  dom  𝐻 )  →  ( 𝐻 ‘ 𝑗 )  ∈  ran  𝐻 ) | 
						
							| 330 | 324 328 329 | syl2anc | ⊢ ( ( ( 𝜑  ∧  ( ℎ  Fn  ran  𝐻  ∧  ∀ 𝑤  ∈  ran  𝐻 ( 𝑤  ≠  ∅  →  ( ℎ ‘ 𝑤 )  ∈  𝑤 ) ) )  ∧  𝑗  ∈  ( 0 ... 𝑁 ) )  →  ( 𝐻 ‘ 𝑗 )  ∈  ran  𝐻 ) | 
						
							| 331 | 321 330 | jca | ⊢ ( ( ( 𝜑  ∧  ( ℎ  Fn  ran  𝐻  ∧  ∀ 𝑤  ∈  ran  𝐻 ( 𝑤  ≠  ∅  →  ( ℎ ‘ 𝑤 )  ∈  𝑤 ) ) )  ∧  𝑗  ∈  ( 0 ... 𝑁 ) )  →  ( ∀ 𝑤  ∈  ran  𝐻 ( 𝑤  ≠  ∅  →  ( ℎ ‘ 𝑤 )  ∈  𝑤 )  ∧  ( 𝐻 ‘ 𝑗 )  ∈  ran  𝐻 ) ) | 
						
							| 332 | 241 | adantlr | ⊢ ( ( ( 𝜑  ∧  ( ℎ  Fn  ran  𝐻  ∧  ∀ 𝑤  ∈  ran  𝐻 ( 𝑤  ≠  ∅  →  ( ℎ ‘ 𝑤 )  ∈  𝑤 ) ) )  ∧  𝑗  ∈  ( 0 ... 𝑁 ) )  →  ( 𝐻 ‘ 𝑗 )  ≠  ∅ ) | 
						
							| 333 |  | neeq1 | ⊢ ( 𝑤  =  ( 𝐻 ‘ 𝑗 )  →  ( 𝑤  ≠  ∅  ↔  ( 𝐻 ‘ 𝑗 )  ≠  ∅ ) ) | 
						
							| 334 |  | fveq2 | ⊢ ( 𝑤  =  ( 𝐻 ‘ 𝑗 )  →  ( ℎ ‘ 𝑤 )  =  ( ℎ ‘ ( 𝐻 ‘ 𝑗 ) ) ) | 
						
							| 335 |  | id | ⊢ ( 𝑤  =  ( 𝐻 ‘ 𝑗 )  →  𝑤  =  ( 𝐻 ‘ 𝑗 ) ) | 
						
							| 336 | 334 335 | eleq12d | ⊢ ( 𝑤  =  ( 𝐻 ‘ 𝑗 )  →  ( ( ℎ ‘ 𝑤 )  ∈  𝑤  ↔  ( ℎ ‘ ( 𝐻 ‘ 𝑗 ) )  ∈  ( 𝐻 ‘ 𝑗 ) ) ) | 
						
							| 337 | 333 336 | imbi12d | ⊢ ( 𝑤  =  ( 𝐻 ‘ 𝑗 )  →  ( ( 𝑤  ≠  ∅  →  ( ℎ ‘ 𝑤 )  ∈  𝑤 )  ↔  ( ( 𝐻 ‘ 𝑗 )  ≠  ∅  →  ( ℎ ‘ ( 𝐻 ‘ 𝑗 ) )  ∈  ( 𝐻 ‘ 𝑗 ) ) ) ) | 
						
							| 338 | 337 | rspccva | ⊢ ( ( ∀ 𝑤  ∈  ran  𝐻 ( 𝑤  ≠  ∅  →  ( ℎ ‘ 𝑤 )  ∈  𝑤 )  ∧  ( 𝐻 ‘ 𝑗 )  ∈  ran  𝐻 )  →  ( ( 𝐻 ‘ 𝑗 )  ≠  ∅  →  ( ℎ ‘ ( 𝐻 ‘ 𝑗 ) )  ∈  ( 𝐻 ‘ 𝑗 ) ) ) | 
						
							| 339 | 331 332 338 | sylc | ⊢ ( ( ( 𝜑  ∧  ( ℎ  Fn  ran  𝐻  ∧  ∀ 𝑤  ∈  ran  𝐻 ( 𝑤  ≠  ∅  →  ( ℎ ‘ 𝑤 )  ∈  𝑤 ) ) )  ∧  𝑗  ∈  ( 0 ... 𝑁 ) )  →  ( ℎ ‘ ( 𝐻 ‘ 𝑗 ) )  ∈  ( 𝐻 ‘ 𝑗 ) ) | 
						
							| 340 | 320 339 | eqeltrd | ⊢ ( ( ( 𝜑  ∧  ( ℎ  Fn  ran  𝐻  ∧  ∀ 𝑤  ∈  ran  𝐻 ( 𝑤  ≠  ∅  →  ( ℎ ‘ 𝑤 )  ∈  𝑤 ) ) )  ∧  𝑗  ∈  ( 0 ... 𝑁 ) )  →  ( ( ℎ  ∘  𝐻 ) ‘ 𝑗 )  ∈  ( 𝐻 ‘ 𝑗 ) ) | 
						
							| 341 | 256 260 | nfco | ⊢ Ⅎ 𝑦 ( ℎ  ∘  𝐻 ) | 
						
							| 342 |  | nfcv | ⊢ Ⅎ 𝑦 𝑗 | 
						
							| 343 | 341 342 | nffv | ⊢ Ⅎ 𝑦 ( ( ℎ  ∘  𝐻 ) ‘ 𝑗 ) | 
						
							| 344 |  | nfv | ⊢ Ⅎ 𝑦 ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑁 ) ) | 
						
							| 345 | 260 342 | nffv | ⊢ Ⅎ 𝑦 ( 𝐻 ‘ 𝑗 ) | 
						
							| 346 | 343 345 | nfel | ⊢ Ⅎ 𝑦 ( ( ℎ  ∘  𝐻 ) ‘ 𝑗 )  ∈  ( 𝐻 ‘ 𝑗 ) | 
						
							| 347 | 344 346 | nfan | ⊢ Ⅎ 𝑦 ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑁 ) )  ∧  ( ( ℎ  ∘  𝐻 ) ‘ 𝑗 )  ∈  ( 𝐻 ‘ 𝑗 ) ) | 
						
							| 348 | 343 21 | nfel | ⊢ Ⅎ 𝑦 ( ( ℎ  ∘  𝐻 ) ‘ 𝑗 )  ∈  𝑌 | 
						
							| 349 | 347 348 | nfim | ⊢ Ⅎ 𝑦 ( ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑁 ) )  ∧  ( ( ℎ  ∘  𝐻 ) ‘ 𝑗 )  ∈  ( 𝐻 ‘ 𝑗 ) )  →  ( ( ℎ  ∘  𝐻 ) ‘ 𝑗 )  ∈  𝑌 ) | 
						
							| 350 |  | eleq1 | ⊢ ( 𝑦  =  ( ( ℎ  ∘  𝐻 ) ‘ 𝑗 )  →  ( 𝑦  ∈  ( 𝐻 ‘ 𝑗 )  ↔  ( ( ℎ  ∘  𝐻 ) ‘ 𝑗 )  ∈  ( 𝐻 ‘ 𝑗 ) ) ) | 
						
							| 351 | 350 | anbi2d | ⊢ ( 𝑦  =  ( ( ℎ  ∘  𝐻 ) ‘ 𝑗 )  →  ( ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑁 ) )  ∧  𝑦  ∈  ( 𝐻 ‘ 𝑗 ) )  ↔  ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑁 ) )  ∧  ( ( ℎ  ∘  𝐻 ) ‘ 𝑗 )  ∈  ( 𝐻 ‘ 𝑗 ) ) ) ) | 
						
							| 352 |  | eleq1 | ⊢ ( 𝑦  =  ( ( ℎ  ∘  𝐻 ) ‘ 𝑗 )  →  ( 𝑦  ∈  𝑌  ↔  ( ( ℎ  ∘  𝐻 ) ‘ 𝑗 )  ∈  𝑌 ) ) | 
						
							| 353 | 351 352 | imbi12d | ⊢ ( 𝑦  =  ( ( ℎ  ∘  𝐻 ) ‘ 𝑗 )  →  ( ( ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑁 ) )  ∧  𝑦  ∈  ( 𝐻 ‘ 𝑗 ) )  →  𝑦  ∈  𝑌 )  ↔  ( ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑁 ) )  ∧  ( ( ℎ  ∘  𝐻 ) ‘ 𝑗 )  ∈  ( 𝐻 ‘ 𝑗 ) )  →  ( ( ℎ  ∘  𝐻 ) ‘ 𝑗 )  ∈  𝑌 ) ) ) | 
						
							| 354 | 343 349 353 292 | vtoclgf | ⊢ ( ( ( ℎ  ∘  𝐻 ) ‘ 𝑗 )  ∈  ( 𝐻 ‘ 𝑗 )  →  ( ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑁 ) )  ∧  ( ( ℎ  ∘  𝐻 ) ‘ 𝑗 )  ∈  ( 𝐻 ‘ 𝑗 ) )  →  ( ( ℎ  ∘  𝐻 ) ‘ 𝑗 )  ∈  𝑌 ) ) | 
						
							| 355 | 354 | anabsi7 | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑁 ) )  ∧  ( ( ℎ  ∘  𝐻 ) ‘ 𝑗 )  ∈  ( 𝐻 ‘ 𝑗 ) )  →  ( ( ℎ  ∘  𝐻 ) ‘ 𝑗 )  ∈  𝑌 ) | 
						
							| 356 | 316 317 340 355 | syl21anc | ⊢ ( ( ( 𝜑  ∧  ( ℎ  Fn  ran  𝐻  ∧  ∀ 𝑤  ∈  ran  𝐻 ( 𝑤  ≠  ∅  →  ( ℎ ‘ 𝑤 )  ∈  𝑤 ) ) )  ∧  𝑗  ∈  ( 0 ... 𝑁 ) )  →  ( ( ℎ  ∘  𝐻 ) ‘ 𝑗 )  ∈  𝑌 ) | 
						
							| 357 | 8 | eleq2i | ⊢ ( ( ( ℎ  ∘  𝐻 ) ‘ 𝑗 )  ∈  𝑌  ↔  ( ( ℎ  ∘  𝐻 ) ‘ 𝑗 )  ∈  { 𝑦  ∈  𝐴  ∣  ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( 𝑦 ‘ 𝑡 )  ∧  ( 𝑦 ‘ 𝑡 )  ≤  1 ) } ) | 
						
							| 358 |  | nfcv | ⊢ Ⅎ 𝑦 𝐴 | 
						
							| 359 |  | nfcv | ⊢ Ⅎ 𝑦 𝑇 | 
						
							| 360 |  | nfcv | ⊢ Ⅎ 𝑦 0 | 
						
							| 361 |  | nfcv | ⊢ Ⅎ 𝑦  ≤ | 
						
							| 362 |  | nfcv | ⊢ Ⅎ 𝑦 𝑡 | 
						
							| 363 | 343 362 | nffv | ⊢ Ⅎ 𝑦 ( ( ( ℎ  ∘  𝐻 ) ‘ 𝑗 ) ‘ 𝑡 ) | 
						
							| 364 | 360 361 363 | nfbr | ⊢ Ⅎ 𝑦 0  ≤  ( ( ( ℎ  ∘  𝐻 ) ‘ 𝑗 ) ‘ 𝑡 ) | 
						
							| 365 |  | nfcv | ⊢ Ⅎ 𝑦 1 | 
						
							| 366 | 363 361 365 | nfbr | ⊢ Ⅎ 𝑦 ( ( ( ℎ  ∘  𝐻 ) ‘ 𝑗 ) ‘ 𝑡 )  ≤  1 | 
						
							| 367 | 364 366 | nfan | ⊢ Ⅎ 𝑦 ( 0  ≤  ( ( ( ℎ  ∘  𝐻 ) ‘ 𝑗 ) ‘ 𝑡 )  ∧  ( ( ( ℎ  ∘  𝐻 ) ‘ 𝑗 ) ‘ 𝑡 )  ≤  1 ) | 
						
							| 368 | 359 367 | nfralw | ⊢ Ⅎ 𝑦 ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ( ( ℎ  ∘  𝐻 ) ‘ 𝑗 ) ‘ 𝑡 )  ∧  ( ( ( ℎ  ∘  𝐻 ) ‘ 𝑗 ) ‘ 𝑡 )  ≤  1 ) | 
						
							| 369 |  | nfcv | ⊢ Ⅎ 𝑡 𝑦 | 
						
							| 370 |  | nfcv | ⊢ Ⅎ 𝑡 ℎ | 
						
							| 371 |  | nfra1 | ⊢ Ⅎ 𝑡 ∀ 𝑡  ∈  ( 𝐷 ‘ 𝑗 ) ( 𝑦 ‘ 𝑡 )  <  ( 𝐸  /  𝑁 ) | 
						
							| 372 |  | nfra1 | ⊢ Ⅎ 𝑡 ∀ 𝑡  ∈  ( 𝐵 ‘ 𝑗 ) ( 1  −  ( 𝐸  /  𝑁 ) )  <  ( 𝑦 ‘ 𝑡 ) | 
						
							| 373 | 371 372 | nfan | ⊢ Ⅎ 𝑡 ( ∀ 𝑡  ∈  ( 𝐷 ‘ 𝑗 ) ( 𝑦 ‘ 𝑡 )  <  ( 𝐸  /  𝑁 )  ∧  ∀ 𝑡  ∈  ( 𝐵 ‘ 𝑗 ) ( 1  −  ( 𝐸  /  𝑁 ) )  <  ( 𝑦 ‘ 𝑡 ) ) | 
						
							| 374 |  | nfra1 | ⊢ Ⅎ 𝑡 ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( 𝑦 ‘ 𝑡 )  ∧  ( 𝑦 ‘ 𝑡 )  ≤  1 ) | 
						
							| 375 |  | nfcv | ⊢ Ⅎ 𝑡 𝐴 | 
						
							| 376 | 374 375 | nfrabw | ⊢ Ⅎ 𝑡 { 𝑦  ∈  𝐴  ∣  ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( 𝑦 ‘ 𝑡 )  ∧  ( 𝑦 ‘ 𝑡 )  ≤  1 ) } | 
						
							| 377 | 8 376 | nfcxfr | ⊢ Ⅎ 𝑡 𝑌 | 
						
							| 378 | 373 377 | nfrabw | ⊢ Ⅎ 𝑡 { 𝑦  ∈  𝑌  ∣  ( ∀ 𝑡  ∈  ( 𝐷 ‘ 𝑗 ) ( 𝑦 ‘ 𝑡 )  <  ( 𝐸  /  𝑁 )  ∧  ∀ 𝑡  ∈  ( 𝐵 ‘ 𝑗 ) ( 1  −  ( 𝐸  /  𝑁 ) )  <  ( 𝑦 ‘ 𝑡 ) ) } | 
						
							| 379 | 84 378 | nfmpt | ⊢ Ⅎ 𝑡 ( 𝑗  ∈  ( 0 ... 𝑁 )  ↦  { 𝑦  ∈  𝑌  ∣  ( ∀ 𝑡  ∈  ( 𝐷 ‘ 𝑗 ) ( 𝑦 ‘ 𝑡 )  <  ( 𝐸  /  𝑁 )  ∧  ∀ 𝑡  ∈  ( 𝐵 ‘ 𝑗 ) ( 1  −  ( 𝐸  /  𝑁 ) )  <  ( 𝑦 ‘ 𝑡 ) ) } ) | 
						
							| 380 | 9 379 | nfcxfr | ⊢ Ⅎ 𝑡 𝐻 | 
						
							| 381 | 370 380 | nfco | ⊢ Ⅎ 𝑡 ( ℎ  ∘  𝐻 ) | 
						
							| 382 | 381 88 | nffv | ⊢ Ⅎ 𝑡 ( ( ℎ  ∘  𝐻 ) ‘ 𝑗 ) | 
						
							| 383 | 369 382 | nfeq | ⊢ Ⅎ 𝑡 𝑦  =  ( ( ℎ  ∘  𝐻 ) ‘ 𝑗 ) | 
						
							| 384 |  | fveq1 | ⊢ ( 𝑦  =  ( ( ℎ  ∘  𝐻 ) ‘ 𝑗 )  →  ( 𝑦 ‘ 𝑡 )  =  ( ( ( ℎ  ∘  𝐻 ) ‘ 𝑗 ) ‘ 𝑡 ) ) | 
						
							| 385 | 384 | breq2d | ⊢ ( 𝑦  =  ( ( ℎ  ∘  𝐻 ) ‘ 𝑗 )  →  ( 0  ≤  ( 𝑦 ‘ 𝑡 )  ↔  0  ≤  ( ( ( ℎ  ∘  𝐻 ) ‘ 𝑗 ) ‘ 𝑡 ) ) ) | 
						
							| 386 | 384 | breq1d | ⊢ ( 𝑦  =  ( ( ℎ  ∘  𝐻 ) ‘ 𝑗 )  →  ( ( 𝑦 ‘ 𝑡 )  ≤  1  ↔  ( ( ( ℎ  ∘  𝐻 ) ‘ 𝑗 ) ‘ 𝑡 )  ≤  1 ) ) | 
						
							| 387 | 385 386 | anbi12d | ⊢ ( 𝑦  =  ( ( ℎ  ∘  𝐻 ) ‘ 𝑗 )  →  ( ( 0  ≤  ( 𝑦 ‘ 𝑡 )  ∧  ( 𝑦 ‘ 𝑡 )  ≤  1 )  ↔  ( 0  ≤  ( ( ( ℎ  ∘  𝐻 ) ‘ 𝑗 ) ‘ 𝑡 )  ∧  ( ( ( ℎ  ∘  𝐻 ) ‘ 𝑗 ) ‘ 𝑡 )  ≤  1 ) ) ) | 
						
							| 388 | 383 387 | ralbid | ⊢ ( 𝑦  =  ( ( ℎ  ∘  𝐻 ) ‘ 𝑗 )  →  ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( 𝑦 ‘ 𝑡 )  ∧  ( 𝑦 ‘ 𝑡 )  ≤  1 )  ↔  ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ( ( ℎ  ∘  𝐻 ) ‘ 𝑗 ) ‘ 𝑡 )  ∧  ( ( ( ℎ  ∘  𝐻 ) ‘ 𝑗 ) ‘ 𝑡 )  ≤  1 ) ) ) | 
						
							| 389 | 343 358 368 388 | elrabf | ⊢ ( ( ( ℎ  ∘  𝐻 ) ‘ 𝑗 )  ∈  { 𝑦  ∈  𝐴  ∣  ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( 𝑦 ‘ 𝑡 )  ∧  ( 𝑦 ‘ 𝑡 )  ≤  1 ) }  ↔  ( ( ( ℎ  ∘  𝐻 ) ‘ 𝑗 )  ∈  𝐴  ∧  ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ( ( ℎ  ∘  𝐻 ) ‘ 𝑗 ) ‘ 𝑡 )  ∧  ( ( ( ℎ  ∘  𝐻 ) ‘ 𝑗 ) ‘ 𝑡 )  ≤  1 ) ) ) | 
						
							| 390 | 357 389 | bitri | ⊢ ( ( ( ℎ  ∘  𝐻 ) ‘ 𝑗 )  ∈  𝑌  ↔  ( ( ( ℎ  ∘  𝐻 ) ‘ 𝑗 )  ∈  𝐴  ∧  ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ( ( ℎ  ∘  𝐻 ) ‘ 𝑗 ) ‘ 𝑡 )  ∧  ( ( ( ℎ  ∘  𝐻 ) ‘ 𝑗 ) ‘ 𝑡 )  ≤  1 ) ) ) | 
						
							| 391 | 356 390 | sylib | ⊢ ( ( ( 𝜑  ∧  ( ℎ  Fn  ran  𝐻  ∧  ∀ 𝑤  ∈  ran  𝐻 ( 𝑤  ≠  ∅  →  ( ℎ ‘ 𝑤 )  ∈  𝑤 ) ) )  ∧  𝑗  ∈  ( 0 ... 𝑁 ) )  →  ( ( ( ℎ  ∘  𝐻 ) ‘ 𝑗 )  ∈  𝐴  ∧  ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ( ( ℎ  ∘  𝐻 ) ‘ 𝑗 ) ‘ 𝑡 )  ∧  ( ( ( ℎ  ∘  𝐻 ) ‘ 𝑗 ) ‘ 𝑡 )  ≤  1 ) ) ) | 
						
							| 392 | 391 | simprd | ⊢ ( ( ( 𝜑  ∧  ( ℎ  Fn  ran  𝐻  ∧  ∀ 𝑤  ∈  ran  𝐻 ( 𝑤  ≠  ∅  →  ( ℎ ‘ 𝑤 )  ∈  𝑤 ) ) )  ∧  𝑗  ∈  ( 0 ... 𝑁 ) )  →  ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ( ( ℎ  ∘  𝐻 ) ‘ 𝑗 ) ‘ 𝑡 )  ∧  ( ( ( ℎ  ∘  𝐻 ) ‘ 𝑗 ) ‘ 𝑡 )  ≤  1 ) ) | 
						
							| 393 |  | nfcv | ⊢ Ⅎ 𝑦 ( 𝐷 ‘ 𝑗 ) | 
						
							| 394 |  | nfcv | ⊢ Ⅎ 𝑦  < | 
						
							| 395 |  | nfcv | ⊢ Ⅎ 𝑦 ( 𝐸  /  𝑁 ) | 
						
							| 396 | 363 394 395 | nfbr | ⊢ Ⅎ 𝑦 ( ( ( ℎ  ∘  𝐻 ) ‘ 𝑗 ) ‘ 𝑡 )  <  ( 𝐸  /  𝑁 ) | 
						
							| 397 | 393 396 | nfralw | ⊢ Ⅎ 𝑦 ∀ 𝑡  ∈  ( 𝐷 ‘ 𝑗 ) ( ( ( ℎ  ∘  𝐻 ) ‘ 𝑗 ) ‘ 𝑡 )  <  ( 𝐸  /  𝑁 ) | 
						
							| 398 | 347 397 | nfim | ⊢ Ⅎ 𝑦 ( ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑁 ) )  ∧  ( ( ℎ  ∘  𝐻 ) ‘ 𝑗 )  ∈  ( 𝐻 ‘ 𝑗 ) )  →  ∀ 𝑡  ∈  ( 𝐷 ‘ 𝑗 ) ( ( ( ℎ  ∘  𝐻 ) ‘ 𝑗 ) ‘ 𝑡 )  <  ( 𝐸  /  𝑁 ) ) | 
						
							| 399 | 384 | breq1d | ⊢ ( 𝑦  =  ( ( ℎ  ∘  𝐻 ) ‘ 𝑗 )  →  ( ( 𝑦 ‘ 𝑡 )  <  ( 𝐸  /  𝑁 )  ↔  ( ( ( ℎ  ∘  𝐻 ) ‘ 𝑗 ) ‘ 𝑡 )  <  ( 𝐸  /  𝑁 ) ) ) | 
						
							| 400 | 383 399 | ralbid | ⊢ ( 𝑦  =  ( ( ℎ  ∘  𝐻 ) ‘ 𝑗 )  →  ( ∀ 𝑡  ∈  ( 𝐷 ‘ 𝑗 ) ( 𝑦 ‘ 𝑡 )  <  ( 𝐸  /  𝑁 )  ↔  ∀ 𝑡  ∈  ( 𝐷 ‘ 𝑗 ) ( ( ( ℎ  ∘  𝐻 ) ‘ 𝑗 ) ‘ 𝑡 )  <  ( 𝐸  /  𝑁 ) ) ) | 
						
							| 401 | 351 400 | imbi12d | ⊢ ( 𝑦  =  ( ( ℎ  ∘  𝐻 ) ‘ 𝑗 )  →  ( ( ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑁 ) )  ∧  𝑦  ∈  ( 𝐻 ‘ 𝑗 ) )  →  ∀ 𝑡  ∈  ( 𝐷 ‘ 𝑗 ) ( 𝑦 ‘ 𝑡 )  <  ( 𝐸  /  𝑁 ) )  ↔  ( ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑁 ) )  ∧  ( ( ℎ  ∘  𝐻 ) ‘ 𝑗 )  ∈  ( 𝐻 ‘ 𝑗 ) )  →  ∀ 𝑡  ∈  ( 𝐷 ‘ 𝑗 ) ( ( ( ℎ  ∘  𝐻 ) ‘ 𝑗 ) ‘ 𝑡 )  <  ( 𝐸  /  𝑁 ) ) ) ) | 
						
							| 402 | 291 | simprd | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑁 ) )  ∧  𝑦  ∈  ( 𝐻 ‘ 𝑗 ) )  →  ( ∀ 𝑡  ∈  ( 𝐷 ‘ 𝑗 ) ( 𝑦 ‘ 𝑡 )  <  ( 𝐸  /  𝑁 )  ∧  ∀ 𝑡  ∈  ( 𝐵 ‘ 𝑗 ) ( 1  −  ( 𝐸  /  𝑁 ) )  <  ( 𝑦 ‘ 𝑡 ) ) ) | 
						
							| 403 | 402 | simpld | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑁 ) )  ∧  𝑦  ∈  ( 𝐻 ‘ 𝑗 ) )  →  ∀ 𝑡  ∈  ( 𝐷 ‘ 𝑗 ) ( 𝑦 ‘ 𝑡 )  <  ( 𝐸  /  𝑁 ) ) | 
						
							| 404 | 343 398 401 403 | vtoclgf | ⊢ ( ( ( ℎ  ∘  𝐻 ) ‘ 𝑗 )  ∈  ( 𝐻 ‘ 𝑗 )  →  ( ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑁 ) )  ∧  ( ( ℎ  ∘  𝐻 ) ‘ 𝑗 )  ∈  ( 𝐻 ‘ 𝑗 ) )  →  ∀ 𝑡  ∈  ( 𝐷 ‘ 𝑗 ) ( ( ( ℎ  ∘  𝐻 ) ‘ 𝑗 ) ‘ 𝑡 )  <  ( 𝐸  /  𝑁 ) ) ) | 
						
							| 405 | 404 | anabsi7 | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑁 ) )  ∧  ( ( ℎ  ∘  𝐻 ) ‘ 𝑗 )  ∈  ( 𝐻 ‘ 𝑗 ) )  →  ∀ 𝑡  ∈  ( 𝐷 ‘ 𝑗 ) ( ( ( ℎ  ∘  𝐻 ) ‘ 𝑗 ) ‘ 𝑡 )  <  ( 𝐸  /  𝑁 ) ) | 
						
							| 406 | 316 317 340 405 | syl21anc | ⊢ ( ( ( 𝜑  ∧  ( ℎ  Fn  ran  𝐻  ∧  ∀ 𝑤  ∈  ran  𝐻 ( 𝑤  ≠  ∅  →  ( ℎ ‘ 𝑤 )  ∈  𝑤 ) ) )  ∧  𝑗  ∈  ( 0 ... 𝑁 ) )  →  ∀ 𝑡  ∈  ( 𝐷 ‘ 𝑗 ) ( ( ( ℎ  ∘  𝐻 ) ‘ 𝑗 ) ‘ 𝑡 )  <  ( 𝐸  /  𝑁 ) ) | 
						
							| 407 |  | nfcv | ⊢ Ⅎ 𝑦 ( 𝐵 ‘ 𝑗 ) | 
						
							| 408 |  | nfcv | ⊢ Ⅎ 𝑦 ( 1  −  ( 𝐸  /  𝑁 ) ) | 
						
							| 409 | 408 394 363 | nfbr | ⊢ Ⅎ 𝑦 ( 1  −  ( 𝐸  /  𝑁 ) )  <  ( ( ( ℎ  ∘  𝐻 ) ‘ 𝑗 ) ‘ 𝑡 ) | 
						
							| 410 | 407 409 | nfralw | ⊢ Ⅎ 𝑦 ∀ 𝑡  ∈  ( 𝐵 ‘ 𝑗 ) ( 1  −  ( 𝐸  /  𝑁 ) )  <  ( ( ( ℎ  ∘  𝐻 ) ‘ 𝑗 ) ‘ 𝑡 ) | 
						
							| 411 | 347 410 | nfim | ⊢ Ⅎ 𝑦 ( ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑁 ) )  ∧  ( ( ℎ  ∘  𝐻 ) ‘ 𝑗 )  ∈  ( 𝐻 ‘ 𝑗 ) )  →  ∀ 𝑡  ∈  ( 𝐵 ‘ 𝑗 ) ( 1  −  ( 𝐸  /  𝑁 ) )  <  ( ( ( ℎ  ∘  𝐻 ) ‘ 𝑗 ) ‘ 𝑡 ) ) | 
						
							| 412 | 384 | breq2d | ⊢ ( 𝑦  =  ( ( ℎ  ∘  𝐻 ) ‘ 𝑗 )  →  ( ( 1  −  ( 𝐸  /  𝑁 ) )  <  ( 𝑦 ‘ 𝑡 )  ↔  ( 1  −  ( 𝐸  /  𝑁 ) )  <  ( ( ( ℎ  ∘  𝐻 ) ‘ 𝑗 ) ‘ 𝑡 ) ) ) | 
						
							| 413 | 383 412 | ralbid | ⊢ ( 𝑦  =  ( ( ℎ  ∘  𝐻 ) ‘ 𝑗 )  →  ( ∀ 𝑡  ∈  ( 𝐵 ‘ 𝑗 ) ( 1  −  ( 𝐸  /  𝑁 ) )  <  ( 𝑦 ‘ 𝑡 )  ↔  ∀ 𝑡  ∈  ( 𝐵 ‘ 𝑗 ) ( 1  −  ( 𝐸  /  𝑁 ) )  <  ( ( ( ℎ  ∘  𝐻 ) ‘ 𝑗 ) ‘ 𝑡 ) ) ) | 
						
							| 414 | 351 413 | imbi12d | ⊢ ( 𝑦  =  ( ( ℎ  ∘  𝐻 ) ‘ 𝑗 )  →  ( ( ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑁 ) )  ∧  𝑦  ∈  ( 𝐻 ‘ 𝑗 ) )  →  ∀ 𝑡  ∈  ( 𝐵 ‘ 𝑗 ) ( 1  −  ( 𝐸  /  𝑁 ) )  <  ( 𝑦 ‘ 𝑡 ) )  ↔  ( ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑁 ) )  ∧  ( ( ℎ  ∘  𝐻 ) ‘ 𝑗 )  ∈  ( 𝐻 ‘ 𝑗 ) )  →  ∀ 𝑡  ∈  ( 𝐵 ‘ 𝑗 ) ( 1  −  ( 𝐸  /  𝑁 ) )  <  ( ( ( ℎ  ∘  𝐻 ) ‘ 𝑗 ) ‘ 𝑡 ) ) ) ) | 
						
							| 415 | 402 | simprd | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑁 ) )  ∧  𝑦  ∈  ( 𝐻 ‘ 𝑗 ) )  →  ∀ 𝑡  ∈  ( 𝐵 ‘ 𝑗 ) ( 1  −  ( 𝐸  /  𝑁 ) )  <  ( 𝑦 ‘ 𝑡 ) ) | 
						
							| 416 | 343 411 414 415 | vtoclgf | ⊢ ( ( ( ℎ  ∘  𝐻 ) ‘ 𝑗 )  ∈  ( 𝐻 ‘ 𝑗 )  →  ( ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑁 ) )  ∧  ( ( ℎ  ∘  𝐻 ) ‘ 𝑗 )  ∈  ( 𝐻 ‘ 𝑗 ) )  →  ∀ 𝑡  ∈  ( 𝐵 ‘ 𝑗 ) ( 1  −  ( 𝐸  /  𝑁 ) )  <  ( ( ( ℎ  ∘  𝐻 ) ‘ 𝑗 ) ‘ 𝑡 ) ) ) | 
						
							| 417 | 416 | anabsi7 | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( 0 ... 𝑁 ) )  ∧  ( ( ℎ  ∘  𝐻 ) ‘ 𝑗 )  ∈  ( 𝐻 ‘ 𝑗 ) )  →  ∀ 𝑡  ∈  ( 𝐵 ‘ 𝑗 ) ( 1  −  ( 𝐸  /  𝑁 ) )  <  ( ( ( ℎ  ∘  𝐻 ) ‘ 𝑗 ) ‘ 𝑡 ) ) | 
						
							| 418 | 316 317 340 417 | syl21anc | ⊢ ( ( ( 𝜑  ∧  ( ℎ  Fn  ran  𝐻  ∧  ∀ 𝑤  ∈  ran  𝐻 ( 𝑤  ≠  ∅  →  ( ℎ ‘ 𝑤 )  ∈  𝑤 ) ) )  ∧  𝑗  ∈  ( 0 ... 𝑁 ) )  →  ∀ 𝑡  ∈  ( 𝐵 ‘ 𝑗 ) ( 1  −  ( 𝐸  /  𝑁 ) )  <  ( ( ( ℎ  ∘  𝐻 ) ‘ 𝑗 ) ‘ 𝑡 ) ) | 
						
							| 419 | 392 406 418 | 3jca | ⊢ ( ( ( 𝜑  ∧  ( ℎ  Fn  ran  𝐻  ∧  ∀ 𝑤  ∈  ran  𝐻 ( 𝑤  ≠  ∅  →  ( ℎ ‘ 𝑤 )  ∈  𝑤 ) ) )  ∧  𝑗  ∈  ( 0 ... 𝑁 ) )  →  ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ( ( ℎ  ∘  𝐻 ) ‘ 𝑗 ) ‘ 𝑡 )  ∧  ( ( ( ℎ  ∘  𝐻 ) ‘ 𝑗 ) ‘ 𝑡 )  ≤  1 )  ∧  ∀ 𝑡  ∈  ( 𝐷 ‘ 𝑗 ) ( ( ( ℎ  ∘  𝐻 ) ‘ 𝑗 ) ‘ 𝑡 )  <  ( 𝐸  /  𝑁 )  ∧  ∀ 𝑡  ∈  ( 𝐵 ‘ 𝑗 ) ( 1  −  ( 𝐸  /  𝑁 ) )  <  ( ( ( ℎ  ∘  𝐻 ) ‘ 𝑗 ) ‘ 𝑡 ) ) ) | 
						
							| 420 | 419 | ex | ⊢ ( ( 𝜑  ∧  ( ℎ  Fn  ran  𝐻  ∧  ∀ 𝑤  ∈  ran  𝐻 ( 𝑤  ≠  ∅  →  ( ℎ ‘ 𝑤 )  ∈  𝑤 ) ) )  →  ( 𝑗  ∈  ( 0 ... 𝑁 )  →  ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ( ( ℎ  ∘  𝐻 ) ‘ 𝑗 ) ‘ 𝑡 )  ∧  ( ( ( ℎ  ∘  𝐻 ) ‘ 𝑗 ) ‘ 𝑡 )  ≤  1 )  ∧  ∀ 𝑡  ∈  ( 𝐷 ‘ 𝑗 ) ( ( ( ℎ  ∘  𝐻 ) ‘ 𝑗 ) ‘ 𝑡 )  <  ( 𝐸  /  𝑁 )  ∧  ∀ 𝑡  ∈  ( 𝐵 ‘ 𝑗 ) ( 1  −  ( 𝐸  /  𝑁 ) )  <  ( ( ( ℎ  ∘  𝐻 ) ‘ 𝑗 ) ‘ 𝑡 ) ) ) ) | 
						
							| 421 | 315 420 | ralrimi | ⊢ ( ( 𝜑  ∧  ( ℎ  Fn  ran  𝐻  ∧  ∀ 𝑤  ∈  ran  𝐻 ( 𝑤  ≠  ∅  →  ( ℎ ‘ 𝑤 )  ∈  𝑤 ) ) )  →  ∀ 𝑗  ∈  ( 0 ... 𝑁 ) ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ( ( ℎ  ∘  𝐻 ) ‘ 𝑗 ) ‘ 𝑡 )  ∧  ( ( ( ℎ  ∘  𝐻 ) ‘ 𝑗 ) ‘ 𝑡 )  ≤  1 )  ∧  ∀ 𝑡  ∈  ( 𝐷 ‘ 𝑗 ) ( ( ( ℎ  ∘  𝐻 ) ‘ 𝑗 ) ‘ 𝑡 )  <  ( 𝐸  /  𝑁 )  ∧  ∀ 𝑡  ∈  ( 𝐵 ‘ 𝑗 ) ( 1  −  ( 𝐸  /  𝑁 ) )  <  ( ( ( ℎ  ∘  𝐻 ) ‘ 𝑗 ) ‘ 𝑡 ) ) ) | 
						
							| 422 | 309 421 | jca | ⊢ ( ( 𝜑  ∧  ( ℎ  Fn  ran  𝐻  ∧  ∀ 𝑤  ∈  ran  𝐻 ( 𝑤  ≠  ∅  →  ( ℎ ‘ 𝑤 )  ∈  𝑤 ) ) )  →  ( ( ℎ  ∘  𝐻 ) : ( 0 ... 𝑁 ) ⟶ 𝐴  ∧  ∀ 𝑗  ∈  ( 0 ... 𝑁 ) ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ( ( ℎ  ∘  𝐻 ) ‘ 𝑗 ) ‘ 𝑡 )  ∧  ( ( ( ℎ  ∘  𝐻 ) ‘ 𝑗 ) ‘ 𝑡 )  ≤  1 )  ∧  ∀ 𝑡  ∈  ( 𝐷 ‘ 𝑗 ) ( ( ( ℎ  ∘  𝐻 ) ‘ 𝑗 ) ‘ 𝑡 )  <  ( 𝐸  /  𝑁 )  ∧  ∀ 𝑡  ∈  ( 𝐵 ‘ 𝑗 ) ( 1  −  ( 𝐸  /  𝑁 ) )  <  ( ( ( ℎ  ∘  𝐻 ) ‘ 𝑗 ) ‘ 𝑡 ) ) ) ) | 
						
							| 423 |  | feq1 | ⊢ ( 𝑥  =  ( ℎ  ∘  𝐻 )  →  ( 𝑥 : ( 0 ... 𝑁 ) ⟶ 𝐴  ↔  ( ℎ  ∘  𝐻 ) : ( 0 ... 𝑁 ) ⟶ 𝐴 ) ) | 
						
							| 424 |  | nfcv | ⊢ Ⅎ 𝑗 𝑥 | 
						
							| 425 | 310 68 | nfco | ⊢ Ⅎ 𝑗 ( ℎ  ∘  𝐻 ) | 
						
							| 426 | 424 425 | nfeq | ⊢ Ⅎ 𝑗 𝑥  =  ( ℎ  ∘  𝐻 ) | 
						
							| 427 |  | nfcv | ⊢ Ⅎ 𝑡 𝑥 | 
						
							| 428 | 427 381 | nfeq | ⊢ Ⅎ 𝑡 𝑥  =  ( ℎ  ∘  𝐻 ) | 
						
							| 429 |  | fveq1 | ⊢ ( 𝑥  =  ( ℎ  ∘  𝐻 )  →  ( 𝑥 ‘ 𝑗 )  =  ( ( ℎ  ∘  𝐻 ) ‘ 𝑗 ) ) | 
						
							| 430 | 429 | fveq1d | ⊢ ( 𝑥  =  ( ℎ  ∘  𝐻 )  →  ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 )  =  ( ( ( ℎ  ∘  𝐻 ) ‘ 𝑗 ) ‘ 𝑡 ) ) | 
						
							| 431 | 430 | breq2d | ⊢ ( 𝑥  =  ( ℎ  ∘  𝐻 )  →  ( 0  ≤  ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 )  ↔  0  ≤  ( ( ( ℎ  ∘  𝐻 ) ‘ 𝑗 ) ‘ 𝑡 ) ) ) | 
						
							| 432 | 430 | breq1d | ⊢ ( 𝑥  =  ( ℎ  ∘  𝐻 )  →  ( ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 )  ≤  1  ↔  ( ( ( ℎ  ∘  𝐻 ) ‘ 𝑗 ) ‘ 𝑡 )  ≤  1 ) ) | 
						
							| 433 | 431 432 | anbi12d | ⊢ ( 𝑥  =  ( ℎ  ∘  𝐻 )  →  ( ( 0  ≤  ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 )  ∧  ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 )  ≤  1 )  ↔  ( 0  ≤  ( ( ( ℎ  ∘  𝐻 ) ‘ 𝑗 ) ‘ 𝑡 )  ∧  ( ( ( ℎ  ∘  𝐻 ) ‘ 𝑗 ) ‘ 𝑡 )  ≤  1 ) ) ) | 
						
							| 434 | 428 433 | ralbid | ⊢ ( 𝑥  =  ( ℎ  ∘  𝐻 )  →  ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 )  ∧  ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 )  ≤  1 )  ↔  ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ( ( ℎ  ∘  𝐻 ) ‘ 𝑗 ) ‘ 𝑡 )  ∧  ( ( ( ℎ  ∘  𝐻 ) ‘ 𝑗 ) ‘ 𝑡 )  ≤  1 ) ) ) | 
						
							| 435 | 430 | breq1d | ⊢ ( 𝑥  =  ( ℎ  ∘  𝐻 )  →  ( ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 )  <  ( 𝐸  /  𝑁 )  ↔  ( ( ( ℎ  ∘  𝐻 ) ‘ 𝑗 ) ‘ 𝑡 )  <  ( 𝐸  /  𝑁 ) ) ) | 
						
							| 436 | 428 435 | ralbid | ⊢ ( 𝑥  =  ( ℎ  ∘  𝐻 )  →  ( ∀ 𝑡  ∈  ( 𝐷 ‘ 𝑗 ) ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 )  <  ( 𝐸  /  𝑁 )  ↔  ∀ 𝑡  ∈  ( 𝐷 ‘ 𝑗 ) ( ( ( ℎ  ∘  𝐻 ) ‘ 𝑗 ) ‘ 𝑡 )  <  ( 𝐸  /  𝑁 ) ) ) | 
						
							| 437 | 430 | breq2d | ⊢ ( 𝑥  =  ( ℎ  ∘  𝐻 )  →  ( ( 1  −  ( 𝐸  /  𝑁 ) )  <  ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 )  ↔  ( 1  −  ( 𝐸  /  𝑁 ) )  <  ( ( ( ℎ  ∘  𝐻 ) ‘ 𝑗 ) ‘ 𝑡 ) ) ) | 
						
							| 438 | 428 437 | ralbid | ⊢ ( 𝑥  =  ( ℎ  ∘  𝐻 )  →  ( ∀ 𝑡  ∈  ( 𝐵 ‘ 𝑗 ) ( 1  −  ( 𝐸  /  𝑁 ) )  <  ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 )  ↔  ∀ 𝑡  ∈  ( 𝐵 ‘ 𝑗 ) ( 1  −  ( 𝐸  /  𝑁 ) )  <  ( ( ( ℎ  ∘  𝐻 ) ‘ 𝑗 ) ‘ 𝑡 ) ) ) | 
						
							| 439 | 434 436 438 | 3anbi123d | ⊢ ( 𝑥  =  ( ℎ  ∘  𝐻 )  →  ( ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 )  ∧  ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 )  ≤  1 )  ∧  ∀ 𝑡  ∈  ( 𝐷 ‘ 𝑗 ) ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 )  <  ( 𝐸  /  𝑁 )  ∧  ∀ 𝑡  ∈  ( 𝐵 ‘ 𝑗 ) ( 1  −  ( 𝐸  /  𝑁 ) )  <  ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) )  ↔  ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ( ( ℎ  ∘  𝐻 ) ‘ 𝑗 ) ‘ 𝑡 )  ∧  ( ( ( ℎ  ∘  𝐻 ) ‘ 𝑗 ) ‘ 𝑡 )  ≤  1 )  ∧  ∀ 𝑡  ∈  ( 𝐷 ‘ 𝑗 ) ( ( ( ℎ  ∘  𝐻 ) ‘ 𝑗 ) ‘ 𝑡 )  <  ( 𝐸  /  𝑁 )  ∧  ∀ 𝑡  ∈  ( 𝐵 ‘ 𝑗 ) ( 1  −  ( 𝐸  /  𝑁 ) )  <  ( ( ( ℎ  ∘  𝐻 ) ‘ 𝑗 ) ‘ 𝑡 ) ) ) ) | 
						
							| 440 | 426 439 | ralbid | ⊢ ( 𝑥  =  ( ℎ  ∘  𝐻 )  →  ( ∀ 𝑗  ∈  ( 0 ... 𝑁 ) ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 )  ∧  ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 )  ≤  1 )  ∧  ∀ 𝑡  ∈  ( 𝐷 ‘ 𝑗 ) ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 )  <  ( 𝐸  /  𝑁 )  ∧  ∀ 𝑡  ∈  ( 𝐵 ‘ 𝑗 ) ( 1  −  ( 𝐸  /  𝑁 ) )  <  ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) )  ↔  ∀ 𝑗  ∈  ( 0 ... 𝑁 ) ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ( ( ℎ  ∘  𝐻 ) ‘ 𝑗 ) ‘ 𝑡 )  ∧  ( ( ( ℎ  ∘  𝐻 ) ‘ 𝑗 ) ‘ 𝑡 )  ≤  1 )  ∧  ∀ 𝑡  ∈  ( 𝐷 ‘ 𝑗 ) ( ( ( ℎ  ∘  𝐻 ) ‘ 𝑗 ) ‘ 𝑡 )  <  ( 𝐸  /  𝑁 )  ∧  ∀ 𝑡  ∈  ( 𝐵 ‘ 𝑗 ) ( 1  −  ( 𝐸  /  𝑁 ) )  <  ( ( ( ℎ  ∘  𝐻 ) ‘ 𝑗 ) ‘ 𝑡 ) ) ) ) | 
						
							| 441 | 423 440 | anbi12d | ⊢ ( 𝑥  =  ( ℎ  ∘  𝐻 )  →  ( ( 𝑥 : ( 0 ... 𝑁 ) ⟶ 𝐴  ∧  ∀ 𝑗  ∈  ( 0 ... 𝑁 ) ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 )  ∧  ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 )  ≤  1 )  ∧  ∀ 𝑡  ∈  ( 𝐷 ‘ 𝑗 ) ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 )  <  ( 𝐸  /  𝑁 )  ∧  ∀ 𝑡  ∈  ( 𝐵 ‘ 𝑗 ) ( 1  −  ( 𝐸  /  𝑁 ) )  <  ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) ) )  ↔  ( ( ℎ  ∘  𝐻 ) : ( 0 ... 𝑁 ) ⟶ 𝐴  ∧  ∀ 𝑗  ∈  ( 0 ... 𝑁 ) ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ( ( ℎ  ∘  𝐻 ) ‘ 𝑗 ) ‘ 𝑡 )  ∧  ( ( ( ℎ  ∘  𝐻 ) ‘ 𝑗 ) ‘ 𝑡 )  ≤  1 )  ∧  ∀ 𝑡  ∈  ( 𝐷 ‘ 𝑗 ) ( ( ( ℎ  ∘  𝐻 ) ‘ 𝑗 ) ‘ 𝑡 )  <  ( 𝐸  /  𝑁 )  ∧  ∀ 𝑡  ∈  ( 𝐵 ‘ 𝑗 ) ( 1  −  ( 𝐸  /  𝑁 ) )  <  ( ( ( ℎ  ∘  𝐻 ) ‘ 𝑗 ) ‘ 𝑡 ) ) ) ) ) | 
						
							| 442 | 441 | spcegv | ⊢ ( ( ℎ  ∘  𝐻 )  ∈  V  →  ( ( ( ℎ  ∘  𝐻 ) : ( 0 ... 𝑁 ) ⟶ 𝐴  ∧  ∀ 𝑗  ∈  ( 0 ... 𝑁 ) ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ( ( ℎ  ∘  𝐻 ) ‘ 𝑗 ) ‘ 𝑡 )  ∧  ( ( ( ℎ  ∘  𝐻 ) ‘ 𝑗 ) ‘ 𝑡 )  ≤  1 )  ∧  ∀ 𝑡  ∈  ( 𝐷 ‘ 𝑗 ) ( ( ( ℎ  ∘  𝐻 ) ‘ 𝑗 ) ‘ 𝑡 )  <  ( 𝐸  /  𝑁 )  ∧  ∀ 𝑡  ∈  ( 𝐵 ‘ 𝑗 ) ( 1  −  ( 𝐸  /  𝑁 ) )  <  ( ( ( ℎ  ∘  𝐻 ) ‘ 𝑗 ) ‘ 𝑡 ) ) )  →  ∃ 𝑥 ( 𝑥 : ( 0 ... 𝑁 ) ⟶ 𝐴  ∧  ∀ 𝑗  ∈  ( 0 ... 𝑁 ) ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 )  ∧  ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 )  ≤  1 )  ∧  ∀ 𝑡  ∈  ( 𝐷 ‘ 𝑗 ) ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 )  <  ( 𝐸  /  𝑁 )  ∧  ∀ 𝑡  ∈  ( 𝐵 ‘ 𝑗 ) ( 1  −  ( 𝐸  /  𝑁 ) )  <  ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) ) ) ) ) | 
						
							| 443 | 55 422 442 | sylc | ⊢ ( ( 𝜑  ∧  ( ℎ  Fn  ran  𝐻  ∧  ∀ 𝑤  ∈  ran  𝐻 ( 𝑤  ≠  ∅  →  ( ℎ ‘ 𝑤 )  ∈  𝑤 ) ) )  →  ∃ 𝑥 ( 𝑥 : ( 0 ... 𝑁 ) ⟶ 𝐴  ∧  ∀ 𝑗  ∈  ( 0 ... 𝑁 ) ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 )  ∧  ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 )  ≤  1 )  ∧  ∀ 𝑡  ∈  ( 𝐷 ‘ 𝑗 ) ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 )  <  ( 𝐸  /  𝑁 )  ∧  ∀ 𝑡  ∈  ( 𝐵 ‘ 𝑗 ) ( 1  −  ( 𝐸  /  𝑁 ) )  <  ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) ) ) ) | 
						
							| 444 | 46 443 | exlimddv | ⊢ ( 𝜑  →  ∃ 𝑥 ( 𝑥 : ( 0 ... 𝑁 ) ⟶ 𝐴  ∧  ∀ 𝑗  ∈  ( 0 ... 𝑁 ) ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 )  ∧  ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 )  ≤  1 )  ∧  ∀ 𝑡  ∈  ( 𝐷 ‘ 𝑗 ) ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 )  <  ( 𝐸  /  𝑁 )  ∧  ∀ 𝑡  ∈  ( 𝐵 ‘ 𝑗 ) ( 1  −  ( 𝐸  /  𝑁 ) )  <  ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) ) ) ) |