| Step | Hyp | Ref | Expression | 
						
							| 1 |  | stoweidlem60.1 | ⊢ Ⅎ 𝑡 𝐹 | 
						
							| 2 |  | stoweidlem60.2 | ⊢ Ⅎ 𝑡 𝜑 | 
						
							| 3 |  | stoweidlem60.3 | ⊢ 𝐾  =  ( topGen ‘ ran  (,) ) | 
						
							| 4 |  | stoweidlem60.4 | ⊢ 𝑇  =  ∪  𝐽 | 
						
							| 5 |  | stoweidlem60.5 | ⊢ 𝐶  =  ( 𝐽  Cn  𝐾 ) | 
						
							| 6 |  | stoweidlem60.6 | ⊢ 𝐷  =  ( 𝑗  ∈  ( 0 ... 𝑛 )  ↦  { 𝑡  ∈  𝑇  ∣  ( 𝐹 ‘ 𝑡 )  ≤  ( ( 𝑗  −  ( 1  /  3 ) )  ·  𝐸 ) } ) | 
						
							| 7 |  | stoweidlem60.7 | ⊢ 𝐵  =  ( 𝑗  ∈  ( 0 ... 𝑛 )  ↦  { 𝑡  ∈  𝑇  ∣  ( ( 𝑗  +  ( 1  /  3 ) )  ·  𝐸 )  ≤  ( 𝐹 ‘ 𝑡 ) } ) | 
						
							| 8 |  | stoweidlem60.8 | ⊢ ( 𝜑  →  𝐽  ∈  Comp ) | 
						
							| 9 |  | stoweidlem60.9 | ⊢ ( 𝜑  →  𝑇  ≠  ∅ ) | 
						
							| 10 |  | stoweidlem60.10 | ⊢ ( 𝜑  →  𝐴  ⊆  𝐶 ) | 
						
							| 11 |  | stoweidlem60.11 | ⊢ ( ( 𝜑  ∧  𝑓  ∈  𝐴  ∧  𝑔  ∈  𝐴 )  →  ( 𝑡  ∈  𝑇  ↦  ( ( 𝑓 ‘ 𝑡 )  +  ( 𝑔 ‘ 𝑡 ) ) )  ∈  𝐴 ) | 
						
							| 12 |  | stoweidlem60.12 | ⊢ ( ( 𝜑  ∧  𝑓  ∈  𝐴  ∧  𝑔  ∈  𝐴 )  →  ( 𝑡  ∈  𝑇  ↦  ( ( 𝑓 ‘ 𝑡 )  ·  ( 𝑔 ‘ 𝑡 ) ) )  ∈  𝐴 ) | 
						
							| 13 |  | stoweidlem60.13 | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ℝ )  →  ( 𝑡  ∈  𝑇  ↦  𝑦 )  ∈  𝐴 ) | 
						
							| 14 |  | stoweidlem60.14 | ⊢ ( ( 𝜑  ∧  ( 𝑟  ∈  𝑇  ∧  𝑡  ∈  𝑇  ∧  𝑟  ≠  𝑡 ) )  →  ∃ 𝑞  ∈  𝐴 ( 𝑞 ‘ 𝑟 )  ≠  ( 𝑞 ‘ 𝑡 ) ) | 
						
							| 15 |  | stoweidlem60.15 | ⊢ ( 𝜑  →  𝐹  ∈  𝐶 ) | 
						
							| 16 |  | stoweidlem60.16 | ⊢ ( 𝜑  →  ∀ 𝑡  ∈  𝑇 0  ≤  ( 𝐹 ‘ 𝑡 ) ) | 
						
							| 17 |  | stoweidlem60.17 | ⊢ ( 𝜑  →  𝐸  ∈  ℝ+ ) | 
						
							| 18 |  | stoweidlem60.18 | ⊢ ( 𝜑  →  𝐸  <  ( 1  /  3 ) ) | 
						
							| 19 |  | nnre | ⊢ ( 𝑚  ∈  ℕ  →  𝑚  ∈  ℝ ) | 
						
							| 20 | 19 | adantl | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ )  →  𝑚  ∈  ℝ ) | 
						
							| 21 | 17 | rpred | ⊢ ( 𝜑  →  𝐸  ∈  ℝ ) | 
						
							| 22 | 21 | adantr | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ )  →  𝐸  ∈  ℝ ) | 
						
							| 23 | 17 | rpne0d | ⊢ ( 𝜑  →  𝐸  ≠  0 ) | 
						
							| 24 | 23 | adantr | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ )  →  𝐸  ≠  0 ) | 
						
							| 25 | 20 22 24 | redivcld | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ )  →  ( 𝑚  /  𝐸 )  ∈  ℝ ) | 
						
							| 26 |  | 1red | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ )  →  1  ∈  ℝ ) | 
						
							| 27 | 25 26 | readdcld | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ )  →  ( ( 𝑚  /  𝐸 )  +  1 )  ∈  ℝ ) | 
						
							| 28 | 27 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ℕ )  ∧  ∀ 𝑡  ∈  𝑇 ( 𝐹 ‘ 𝑡 )  <  𝑚 )  →  ( ( 𝑚  /  𝐸 )  +  1 )  ∈  ℝ ) | 
						
							| 29 |  | arch | ⊢ ( ( ( 𝑚  /  𝐸 )  +  1 )  ∈  ℝ  →  ∃ 𝑛  ∈  ℕ ( ( 𝑚  /  𝐸 )  +  1 )  <  𝑛 ) | 
						
							| 30 | 28 29 | syl | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ℕ )  ∧  ∀ 𝑡  ∈  𝑇 ( 𝐹 ‘ 𝑡 )  <  𝑚 )  →  ∃ 𝑛  ∈  ℕ ( ( 𝑚  /  𝐸 )  +  1 )  <  𝑛 ) | 
						
							| 31 |  | nfv | ⊢ Ⅎ 𝑡 𝑚  ∈  ℕ | 
						
							| 32 | 2 31 | nfan | ⊢ Ⅎ 𝑡 ( 𝜑  ∧  𝑚  ∈  ℕ ) | 
						
							| 33 |  | nfra1 | ⊢ Ⅎ 𝑡 ∀ 𝑡  ∈  𝑇 ( 𝐹 ‘ 𝑡 )  <  𝑚 | 
						
							| 34 | 32 33 | nfan | ⊢ Ⅎ 𝑡 ( ( 𝜑  ∧  𝑚  ∈  ℕ )  ∧  ∀ 𝑡  ∈  𝑇 ( 𝐹 ‘ 𝑡 )  <  𝑚 ) | 
						
							| 35 |  | nfv | ⊢ Ⅎ 𝑡 𝑛  ∈  ℕ | 
						
							| 36 | 34 35 | nfan | ⊢ Ⅎ 𝑡 ( ( ( 𝜑  ∧  𝑚  ∈  ℕ )  ∧  ∀ 𝑡  ∈  𝑇 ( 𝐹 ‘ 𝑡 )  <  𝑚 )  ∧  𝑛  ∈  ℕ ) | 
						
							| 37 |  | nfv | ⊢ Ⅎ 𝑡 ( ( 𝑚  /  𝐸 )  +  1 )  <  𝑛 | 
						
							| 38 | 36 37 | nfan | ⊢ Ⅎ 𝑡 ( ( ( ( 𝜑  ∧  𝑚  ∈  ℕ )  ∧  ∀ 𝑡  ∈  𝑇 ( 𝐹 ‘ 𝑡 )  <  𝑚 )  ∧  𝑛  ∈  ℕ )  ∧  ( ( 𝑚  /  𝐸 )  +  1 )  <  𝑛 ) | 
						
							| 39 |  | simp-5l | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑚  ∈  ℕ )  ∧  ∀ 𝑡  ∈  𝑇 ( 𝐹 ‘ 𝑡 )  <  𝑚 )  ∧  𝑛  ∈  ℕ )  ∧  ( ( 𝑚  /  𝐸 )  +  1 )  <  𝑛 )  ∧  𝑡  ∈  𝑇 )  →  𝜑 ) | 
						
							| 40 | 3 4 5 15 | fcnre | ⊢ ( 𝜑  →  𝐹 : 𝑇 ⟶ ℝ ) | 
						
							| 41 | 40 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  →  ( 𝐹 ‘ 𝑡 )  ∈  ℝ ) | 
						
							| 42 | 39 41 | sylancom | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑚  ∈  ℕ )  ∧  ∀ 𝑡  ∈  𝑇 ( 𝐹 ‘ 𝑡 )  <  𝑚 )  ∧  𝑛  ∈  ℕ )  ∧  ( ( 𝑚  /  𝐸 )  +  1 )  <  𝑛 )  ∧  𝑡  ∈  𝑇 )  →  ( 𝐹 ‘ 𝑡 )  ∈  ℝ ) | 
						
							| 43 |  | simp-5r | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑚  ∈  ℕ )  ∧  ∀ 𝑡  ∈  𝑇 ( 𝐹 ‘ 𝑡 )  <  𝑚 )  ∧  𝑛  ∈  ℕ )  ∧  ( ( 𝑚  /  𝐸 )  +  1 )  <  𝑛 )  ∧  𝑡  ∈  𝑇 )  →  𝑚  ∈  ℕ ) | 
						
							| 44 | 43 | nnred | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑚  ∈  ℕ )  ∧  ∀ 𝑡  ∈  𝑇 ( 𝐹 ‘ 𝑡 )  <  𝑚 )  ∧  𝑛  ∈  ℕ )  ∧  ( ( 𝑚  /  𝐸 )  +  1 )  <  𝑛 )  ∧  𝑡  ∈  𝑇 )  →  𝑚  ∈  ℝ ) | 
						
							| 45 |  | simpllr | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑚  ∈  ℕ )  ∧  ∀ 𝑡  ∈  𝑇 ( 𝐹 ‘ 𝑡 )  <  𝑚 )  ∧  𝑛  ∈  ℕ )  ∧  ( ( 𝑚  /  𝐸 )  +  1 )  <  𝑛 )  ∧  𝑡  ∈  𝑇 )  →  𝑛  ∈  ℕ ) | 
						
							| 46 | 45 | nnred | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑚  ∈  ℕ )  ∧  ∀ 𝑡  ∈  𝑇 ( 𝐹 ‘ 𝑡 )  <  𝑚 )  ∧  𝑛  ∈  ℕ )  ∧  ( ( 𝑚  /  𝐸 )  +  1 )  <  𝑛 )  ∧  𝑡  ∈  𝑇 )  →  𝑛  ∈  ℝ ) | 
						
							| 47 |  | 1red | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑚  ∈  ℕ )  ∧  ∀ 𝑡  ∈  𝑇 ( 𝐹 ‘ 𝑡 )  <  𝑚 )  ∧  𝑛  ∈  ℕ )  ∧  ( ( 𝑚  /  𝐸 )  +  1 )  <  𝑛 )  ∧  𝑡  ∈  𝑇 )  →  1  ∈  ℝ ) | 
						
							| 48 | 46 47 | resubcld | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑚  ∈  ℕ )  ∧  ∀ 𝑡  ∈  𝑇 ( 𝐹 ‘ 𝑡 )  <  𝑚 )  ∧  𝑛  ∈  ℕ )  ∧  ( ( 𝑚  /  𝐸 )  +  1 )  <  𝑛 )  ∧  𝑡  ∈  𝑇 )  →  ( 𝑛  −  1 )  ∈  ℝ ) | 
						
							| 49 | 39 21 | syl | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑚  ∈  ℕ )  ∧  ∀ 𝑡  ∈  𝑇 ( 𝐹 ‘ 𝑡 )  <  𝑚 )  ∧  𝑛  ∈  ℕ )  ∧  ( ( 𝑚  /  𝐸 )  +  1 )  <  𝑛 )  ∧  𝑡  ∈  𝑇 )  →  𝐸  ∈  ℝ ) | 
						
							| 50 | 48 49 | remulcld | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑚  ∈  ℕ )  ∧  ∀ 𝑡  ∈  𝑇 ( 𝐹 ‘ 𝑡 )  <  𝑚 )  ∧  𝑛  ∈  ℕ )  ∧  ( ( 𝑚  /  𝐸 )  +  1 )  <  𝑛 )  ∧  𝑡  ∈  𝑇 )  →  ( ( 𝑛  −  1 )  ·  𝐸 )  ∈  ℝ ) | 
						
							| 51 |  | simpllr | ⊢ ( ( ( ( ( 𝜑  ∧  𝑚  ∈  ℕ )  ∧  ∀ 𝑡  ∈  𝑇 ( 𝐹 ‘ 𝑡 )  <  𝑚 )  ∧  𝑛  ∈  ℕ )  ∧  ( ( 𝑚  /  𝐸 )  +  1 )  <  𝑛 )  →  ∀ 𝑡  ∈  𝑇 ( 𝐹 ‘ 𝑡 )  <  𝑚 ) | 
						
							| 52 | 51 | r19.21bi | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑚  ∈  ℕ )  ∧  ∀ 𝑡  ∈  𝑇 ( 𝐹 ‘ 𝑡 )  <  𝑚 )  ∧  𝑛  ∈  ℕ )  ∧  ( ( 𝑚  /  𝐸 )  +  1 )  <  𝑛 )  ∧  𝑡  ∈  𝑇 )  →  ( 𝐹 ‘ 𝑡 )  <  𝑚 ) | 
						
							| 53 |  | simplr | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑚  ∈  ℕ )  ∧  ∀ 𝑡  ∈  𝑇 ( 𝐹 ‘ 𝑡 )  <  𝑚 )  ∧  𝑛  ∈  ℕ )  ∧  ( ( 𝑚  /  𝐸 )  +  1 )  <  𝑛 )  ∧  𝑡  ∈  𝑇 )  →  ( ( 𝑚  /  𝐸 )  +  1 )  <  𝑛 ) | 
						
							| 54 |  | simpr | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ℕ  ∧  𝑛  ∈  ℕ )  ∧  ( ( 𝑚  /  𝐸 )  +  1 )  <  𝑛 )  →  ( ( 𝑚  /  𝐸 )  +  1 )  <  𝑛 ) | 
						
							| 55 |  | simpl1 | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ℕ  ∧  𝑛  ∈  ℕ )  ∧  ( ( 𝑚  /  𝐸 )  +  1 )  <  𝑛 )  →  𝜑 ) | 
						
							| 56 |  | simpl2 | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ℕ  ∧  𝑛  ∈  ℕ )  ∧  ( ( 𝑚  /  𝐸 )  +  1 )  <  𝑛 )  →  𝑚  ∈  ℕ ) | 
						
							| 57 | 55 56 25 | syl2anc | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ℕ  ∧  𝑛  ∈  ℕ )  ∧  ( ( 𝑚  /  𝐸 )  +  1 )  <  𝑛 )  →  ( 𝑚  /  𝐸 )  ∈  ℝ ) | 
						
							| 58 |  | 1red | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ℕ  ∧  𝑛  ∈  ℕ )  ∧  ( ( 𝑚  /  𝐸 )  +  1 )  <  𝑛 )  →  1  ∈  ℝ ) | 
						
							| 59 |  | simpl3 | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ℕ  ∧  𝑛  ∈  ℕ )  ∧  ( ( 𝑚  /  𝐸 )  +  1 )  <  𝑛 )  →  𝑛  ∈  ℕ ) | 
						
							| 60 | 59 | nnred | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ℕ  ∧  𝑛  ∈  ℕ )  ∧  ( ( 𝑚  /  𝐸 )  +  1 )  <  𝑛 )  →  𝑛  ∈  ℝ ) | 
						
							| 61 | 57 58 60 | ltaddsubd | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ℕ  ∧  𝑛  ∈  ℕ )  ∧  ( ( 𝑚  /  𝐸 )  +  1 )  <  𝑛 )  →  ( ( ( 𝑚  /  𝐸 )  +  1 )  <  𝑛  ↔  ( 𝑚  /  𝐸 )  <  ( 𝑛  −  1 ) ) ) | 
						
							| 62 | 54 61 | mpbid | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ℕ  ∧  𝑛  ∈  ℕ )  ∧  ( ( 𝑚  /  𝐸 )  +  1 )  <  𝑛 )  →  ( 𝑚  /  𝐸 )  <  ( 𝑛  −  1 ) ) | 
						
							| 63 | 19 | 3ad2ant2 | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ  ∧  𝑛  ∈  ℕ )  →  𝑚  ∈  ℝ ) | 
						
							| 64 | 63 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ℕ  ∧  𝑛  ∈  ℕ )  ∧  ( ( 𝑚  /  𝐸 )  +  1 )  <  𝑛 )  →  𝑚  ∈  ℝ ) | 
						
							| 65 | 60 58 | resubcld | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ℕ  ∧  𝑛  ∈  ℕ )  ∧  ( ( 𝑚  /  𝐸 )  +  1 )  <  𝑛 )  →  ( 𝑛  −  1 )  ∈  ℝ ) | 
						
							| 66 | 21 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ  ∧  𝑛  ∈  ℕ )  →  𝐸  ∈  ℝ ) | 
						
							| 67 | 66 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ℕ  ∧  𝑛  ∈  ℕ )  ∧  ( ( 𝑚  /  𝐸 )  +  1 )  <  𝑛 )  →  𝐸  ∈  ℝ ) | 
						
							| 68 | 17 | rpgt0d | ⊢ ( 𝜑  →  0  <  𝐸 ) | 
						
							| 69 | 55 68 | syl | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ℕ  ∧  𝑛  ∈  ℕ )  ∧  ( ( 𝑚  /  𝐸 )  +  1 )  <  𝑛 )  →  0  <  𝐸 ) | 
						
							| 70 |  | ltdivmul2 | ⊢ ( ( 𝑚  ∈  ℝ  ∧  ( 𝑛  −  1 )  ∈  ℝ  ∧  ( 𝐸  ∈  ℝ  ∧  0  <  𝐸 ) )  →  ( ( 𝑚  /  𝐸 )  <  ( 𝑛  −  1 )  ↔  𝑚  <  ( ( 𝑛  −  1 )  ·  𝐸 ) ) ) | 
						
							| 71 | 64 65 67 69 70 | syl112anc | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ℕ  ∧  𝑛  ∈  ℕ )  ∧  ( ( 𝑚  /  𝐸 )  +  1 )  <  𝑛 )  →  ( ( 𝑚  /  𝐸 )  <  ( 𝑛  −  1 )  ↔  𝑚  <  ( ( 𝑛  −  1 )  ·  𝐸 ) ) ) | 
						
							| 72 | 62 71 | mpbid | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ℕ  ∧  𝑛  ∈  ℕ )  ∧  ( ( 𝑚  /  𝐸 )  +  1 )  <  𝑛 )  →  𝑚  <  ( ( 𝑛  −  1 )  ·  𝐸 ) ) | 
						
							| 73 | 39 43 45 53 72 | syl31anc | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑚  ∈  ℕ )  ∧  ∀ 𝑡  ∈  𝑇 ( 𝐹 ‘ 𝑡 )  <  𝑚 )  ∧  𝑛  ∈  ℕ )  ∧  ( ( 𝑚  /  𝐸 )  +  1 )  <  𝑛 )  ∧  𝑡  ∈  𝑇 )  →  𝑚  <  ( ( 𝑛  −  1 )  ·  𝐸 ) ) | 
						
							| 74 | 42 44 50 52 73 | lttrd | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑚  ∈  ℕ )  ∧  ∀ 𝑡  ∈  𝑇 ( 𝐹 ‘ 𝑡 )  <  𝑚 )  ∧  𝑛  ∈  ℕ )  ∧  ( ( 𝑚  /  𝐸 )  +  1 )  <  𝑛 )  ∧  𝑡  ∈  𝑇 )  →  ( 𝐹 ‘ 𝑡 )  <  ( ( 𝑛  −  1 )  ·  𝐸 ) ) | 
						
							| 75 | 74 | ex | ⊢ ( ( ( ( ( 𝜑  ∧  𝑚  ∈  ℕ )  ∧  ∀ 𝑡  ∈  𝑇 ( 𝐹 ‘ 𝑡 )  <  𝑚 )  ∧  𝑛  ∈  ℕ )  ∧  ( ( 𝑚  /  𝐸 )  +  1 )  <  𝑛 )  →  ( 𝑡  ∈  𝑇  →  ( 𝐹 ‘ 𝑡 )  <  ( ( 𝑛  −  1 )  ·  𝐸 ) ) ) | 
						
							| 76 | 38 75 | ralrimi | ⊢ ( ( ( ( ( 𝜑  ∧  𝑚  ∈  ℕ )  ∧  ∀ 𝑡  ∈  𝑇 ( 𝐹 ‘ 𝑡 )  <  𝑚 )  ∧  𝑛  ∈  ℕ )  ∧  ( ( 𝑚  /  𝐸 )  +  1 )  <  𝑛 )  →  ∀ 𝑡  ∈  𝑇 ( 𝐹 ‘ 𝑡 )  <  ( ( 𝑛  −  1 )  ·  𝐸 ) ) | 
						
							| 77 | 76 | ex | ⊢ ( ( ( ( 𝜑  ∧  𝑚  ∈  ℕ )  ∧  ∀ 𝑡  ∈  𝑇 ( 𝐹 ‘ 𝑡 )  <  𝑚 )  ∧  𝑛  ∈  ℕ )  →  ( ( ( 𝑚  /  𝐸 )  +  1 )  <  𝑛  →  ∀ 𝑡  ∈  𝑇 ( 𝐹 ‘ 𝑡 )  <  ( ( 𝑛  −  1 )  ·  𝐸 ) ) ) | 
						
							| 78 | 77 | reximdva | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ℕ )  ∧  ∀ 𝑡  ∈  𝑇 ( 𝐹 ‘ 𝑡 )  <  𝑚 )  →  ( ∃ 𝑛  ∈  ℕ ( ( 𝑚  /  𝐸 )  +  1 )  <  𝑛  →  ∃ 𝑛  ∈  ℕ ∀ 𝑡  ∈  𝑇 ( 𝐹 ‘ 𝑡 )  <  ( ( 𝑛  −  1 )  ·  𝐸 ) ) ) | 
						
							| 79 | 30 78 | mpd | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ℕ )  ∧  ∀ 𝑡  ∈  𝑇 ( 𝐹 ‘ 𝑡 )  <  𝑚 )  →  ∃ 𝑛  ∈  ℕ ∀ 𝑡  ∈  𝑇 ( 𝐹 ‘ 𝑡 )  <  ( ( 𝑛  −  1 )  ·  𝐸 ) ) | 
						
							| 80 | 1 2 3 8 4 9 5 15 | rfcnnnub | ⊢ ( 𝜑  →  ∃ 𝑚  ∈  ℕ ∀ 𝑡  ∈  𝑇 ( 𝐹 ‘ 𝑡 )  <  𝑚 ) | 
						
							| 81 | 79 80 | r19.29a | ⊢ ( 𝜑  →  ∃ 𝑛  ∈  ℕ ∀ 𝑡  ∈  𝑇 ( 𝐹 ‘ 𝑡 )  <  ( ( 𝑛  −  1 )  ·  𝐸 ) ) | 
						
							| 82 |  | df-rex | ⊢ ( ∃ 𝑛  ∈  ℕ ∀ 𝑡  ∈  𝑇 ( 𝐹 ‘ 𝑡 )  <  ( ( 𝑛  −  1 )  ·  𝐸 )  ↔  ∃ 𝑛 ( 𝑛  ∈  ℕ  ∧  ∀ 𝑡  ∈  𝑇 ( 𝐹 ‘ 𝑡 )  <  ( ( 𝑛  −  1 )  ·  𝐸 ) ) ) | 
						
							| 83 | 81 82 | sylib | ⊢ ( 𝜑  →  ∃ 𝑛 ( 𝑛  ∈  ℕ  ∧  ∀ 𝑡  ∈  𝑇 ( 𝐹 ‘ 𝑡 )  <  ( ( 𝑛  −  1 )  ·  𝐸 ) ) ) | 
						
							| 84 |  | simpr | ⊢ ( ( 𝜑  ∧  ( 𝑛  ∈  ℕ  ∧  ∀ 𝑡  ∈  𝑇 ( 𝐹 ‘ 𝑡 )  <  ( ( 𝑛  −  1 )  ·  𝐸 ) ) )  →  ( 𝑛  ∈  ℕ  ∧  ∀ 𝑡  ∈  𝑇 ( 𝐹 ‘ 𝑡 )  <  ( ( 𝑛  −  1 )  ·  𝐸 ) ) ) | 
						
							| 85 | 2 35 | nfan | ⊢ Ⅎ 𝑡 ( 𝜑  ∧  𝑛  ∈  ℕ ) | 
						
							| 86 |  | eqid | ⊢ { 𝑦  ∈  𝐴  ∣  ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( 𝑦 ‘ 𝑡 )  ∧  ( 𝑦 ‘ 𝑡 )  ≤  1 ) }  =  { 𝑦  ∈  𝐴  ∣  ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( 𝑦 ‘ 𝑡 )  ∧  ( 𝑦 ‘ 𝑡 )  ≤  1 ) } | 
						
							| 87 |  | eqid | ⊢ ( 𝑗  ∈  ( 0 ... 𝑛 )  ↦  { 𝑦  ∈  { 𝑦  ∈  𝐴  ∣  ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( 𝑦 ‘ 𝑡 )  ∧  ( 𝑦 ‘ 𝑡 )  ≤  1 ) }  ∣  ( ∀ 𝑡  ∈  ( 𝐷 ‘ 𝑗 ) ( 𝑦 ‘ 𝑡 )  <  ( 𝐸  /  𝑛 )  ∧  ∀ 𝑡  ∈  ( 𝐵 ‘ 𝑗 ) ( 1  −  ( 𝐸  /  𝑛 ) )  <  ( 𝑦 ‘ 𝑡 ) ) } )  =  ( 𝑗  ∈  ( 0 ... 𝑛 )  ↦  { 𝑦  ∈  { 𝑦  ∈  𝐴  ∣  ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( 𝑦 ‘ 𝑡 )  ∧  ( 𝑦 ‘ 𝑡 )  ≤  1 ) }  ∣  ( ∀ 𝑡  ∈  ( 𝐷 ‘ 𝑗 ) ( 𝑦 ‘ 𝑡 )  <  ( 𝐸  /  𝑛 )  ∧  ∀ 𝑡  ∈  ( 𝐵 ‘ 𝑗 ) ( 1  −  ( 𝐸  /  𝑛 ) )  <  ( 𝑦 ‘ 𝑡 ) ) } ) | 
						
							| 88 | 8 | adantr | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  𝐽  ∈  Comp ) | 
						
							| 89 | 10 | adantr | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  𝐴  ⊆  𝐶 ) | 
						
							| 90 | 11 | 3adant1r | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑓  ∈  𝐴  ∧  𝑔  ∈  𝐴 )  →  ( 𝑡  ∈  𝑇  ↦  ( ( 𝑓 ‘ 𝑡 )  +  ( 𝑔 ‘ 𝑡 ) ) )  ∈  𝐴 ) | 
						
							| 91 | 12 | 3adant1r | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑓  ∈  𝐴  ∧  𝑔  ∈  𝐴 )  →  ( 𝑡  ∈  𝑇  ↦  ( ( 𝑓 ‘ 𝑡 )  ·  ( 𝑔 ‘ 𝑡 ) ) )  ∈  𝐴 ) | 
						
							| 92 | 13 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  𝑦  ∈  ℝ )  →  ( 𝑡  ∈  𝑇  ↦  𝑦 )  ∈  𝐴 ) | 
						
							| 93 | 14 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  ( 𝑟  ∈  𝑇  ∧  𝑡  ∈  𝑇  ∧  𝑟  ≠  𝑡 ) )  →  ∃ 𝑞  ∈  𝐴 ( 𝑞 ‘ 𝑟 )  ≠  ( 𝑞 ‘ 𝑡 ) ) | 
						
							| 94 | 15 | adantr | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  𝐹  ∈  𝐶 ) | 
						
							| 95 | 17 | adantr | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  𝐸  ∈  ℝ+ ) | 
						
							| 96 | 18 | adantr | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  𝐸  <  ( 1  /  3 ) ) | 
						
							| 97 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  𝑛  ∈  ℕ ) | 
						
							| 98 | 1 85 3 4 5 6 7 86 87 88 89 90 91 92 93 94 95 96 97 | stoweidlem59 | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ∃ 𝑥 ( 𝑥 : ( 0 ... 𝑛 ) ⟶ 𝐴  ∧  ∀ 𝑗  ∈  ( 0 ... 𝑛 ) ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 )  ∧  ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 )  ≤  1 )  ∧  ∀ 𝑡  ∈  ( 𝐷 ‘ 𝑗 ) ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 )  <  ( 𝐸  /  𝑛 )  ∧  ∀ 𝑡  ∈  ( 𝐵 ‘ 𝑗 ) ( 1  −  ( 𝐸  /  𝑛 ) )  <  ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) ) ) ) | 
						
							| 99 | 98 | adantrr | ⊢ ( ( 𝜑  ∧  ( 𝑛  ∈  ℕ  ∧  ∀ 𝑡  ∈  𝑇 ( 𝐹 ‘ 𝑡 )  <  ( ( 𝑛  −  1 )  ·  𝐸 ) ) )  →  ∃ 𝑥 ( 𝑥 : ( 0 ... 𝑛 ) ⟶ 𝐴  ∧  ∀ 𝑗  ∈  ( 0 ... 𝑛 ) ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 )  ∧  ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 )  ≤  1 )  ∧  ∀ 𝑡  ∈  ( 𝐷 ‘ 𝑗 ) ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 )  <  ( 𝐸  /  𝑛 )  ∧  ∀ 𝑡  ∈  ( 𝐵 ‘ 𝑗 ) ( 1  −  ( 𝐸  /  𝑛 ) )  <  ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) ) ) ) | 
						
							| 100 |  | 19.42v | ⊢ ( ∃ 𝑥 ( ( 𝑛  ∈  ℕ  ∧  ∀ 𝑡  ∈  𝑇 ( 𝐹 ‘ 𝑡 )  <  ( ( 𝑛  −  1 )  ·  𝐸 ) )  ∧  ( 𝑥 : ( 0 ... 𝑛 ) ⟶ 𝐴  ∧  ∀ 𝑗  ∈  ( 0 ... 𝑛 ) ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 )  ∧  ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 )  ≤  1 )  ∧  ∀ 𝑡  ∈  ( 𝐷 ‘ 𝑗 ) ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 )  <  ( 𝐸  /  𝑛 )  ∧  ∀ 𝑡  ∈  ( 𝐵 ‘ 𝑗 ) ( 1  −  ( 𝐸  /  𝑛 ) )  <  ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) ) ) )  ↔  ( ( 𝑛  ∈  ℕ  ∧  ∀ 𝑡  ∈  𝑇 ( 𝐹 ‘ 𝑡 )  <  ( ( 𝑛  −  1 )  ·  𝐸 ) )  ∧  ∃ 𝑥 ( 𝑥 : ( 0 ... 𝑛 ) ⟶ 𝐴  ∧  ∀ 𝑗  ∈  ( 0 ... 𝑛 ) ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 )  ∧  ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 )  ≤  1 )  ∧  ∀ 𝑡  ∈  ( 𝐷 ‘ 𝑗 ) ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 )  <  ( 𝐸  /  𝑛 )  ∧  ∀ 𝑡  ∈  ( 𝐵 ‘ 𝑗 ) ( 1  −  ( 𝐸  /  𝑛 ) )  <  ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) ) ) ) ) | 
						
							| 101 | 84 99 100 | sylanbrc | ⊢ ( ( 𝜑  ∧  ( 𝑛  ∈  ℕ  ∧  ∀ 𝑡  ∈  𝑇 ( 𝐹 ‘ 𝑡 )  <  ( ( 𝑛  −  1 )  ·  𝐸 ) ) )  →  ∃ 𝑥 ( ( 𝑛  ∈  ℕ  ∧  ∀ 𝑡  ∈  𝑇 ( 𝐹 ‘ 𝑡 )  <  ( ( 𝑛  −  1 )  ·  𝐸 ) )  ∧  ( 𝑥 : ( 0 ... 𝑛 ) ⟶ 𝐴  ∧  ∀ 𝑗  ∈  ( 0 ... 𝑛 ) ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 )  ∧  ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 )  ≤  1 )  ∧  ∀ 𝑡  ∈  ( 𝐷 ‘ 𝑗 ) ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 )  <  ( 𝐸  /  𝑛 )  ∧  ∀ 𝑡  ∈  ( 𝐵 ‘ 𝑗 ) ( 1  −  ( 𝐸  /  𝑛 ) )  <  ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) ) ) ) ) | 
						
							| 102 |  | 3anass | ⊢ ( ( ( 𝑛  ∈  ℕ  ∧  ∀ 𝑡  ∈  𝑇 ( 𝐹 ‘ 𝑡 )  <  ( ( 𝑛  −  1 )  ·  𝐸 ) )  ∧  𝑥 : ( 0 ... 𝑛 ) ⟶ 𝐴  ∧  ∀ 𝑗  ∈  ( 0 ... 𝑛 ) ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 )  ∧  ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 )  ≤  1 )  ∧  ∀ 𝑡  ∈  ( 𝐷 ‘ 𝑗 ) ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 )  <  ( 𝐸  /  𝑛 )  ∧  ∀ 𝑡  ∈  ( 𝐵 ‘ 𝑗 ) ( 1  −  ( 𝐸  /  𝑛 ) )  <  ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) ) )  ↔  ( ( 𝑛  ∈  ℕ  ∧  ∀ 𝑡  ∈  𝑇 ( 𝐹 ‘ 𝑡 )  <  ( ( 𝑛  −  1 )  ·  𝐸 ) )  ∧  ( 𝑥 : ( 0 ... 𝑛 ) ⟶ 𝐴  ∧  ∀ 𝑗  ∈  ( 0 ... 𝑛 ) ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 )  ∧  ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 )  ≤  1 )  ∧  ∀ 𝑡  ∈  ( 𝐷 ‘ 𝑗 ) ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 )  <  ( 𝐸  /  𝑛 )  ∧  ∀ 𝑡  ∈  ( 𝐵 ‘ 𝑗 ) ( 1  −  ( 𝐸  /  𝑛 ) )  <  ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) ) ) ) ) | 
						
							| 103 | 102 | exbii | ⊢ ( ∃ 𝑥 ( ( 𝑛  ∈  ℕ  ∧  ∀ 𝑡  ∈  𝑇 ( 𝐹 ‘ 𝑡 )  <  ( ( 𝑛  −  1 )  ·  𝐸 ) )  ∧  𝑥 : ( 0 ... 𝑛 ) ⟶ 𝐴  ∧  ∀ 𝑗  ∈  ( 0 ... 𝑛 ) ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 )  ∧  ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 )  ≤  1 )  ∧  ∀ 𝑡  ∈  ( 𝐷 ‘ 𝑗 ) ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 )  <  ( 𝐸  /  𝑛 )  ∧  ∀ 𝑡  ∈  ( 𝐵 ‘ 𝑗 ) ( 1  −  ( 𝐸  /  𝑛 ) )  <  ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) ) )  ↔  ∃ 𝑥 ( ( 𝑛  ∈  ℕ  ∧  ∀ 𝑡  ∈  𝑇 ( 𝐹 ‘ 𝑡 )  <  ( ( 𝑛  −  1 )  ·  𝐸 ) )  ∧  ( 𝑥 : ( 0 ... 𝑛 ) ⟶ 𝐴  ∧  ∀ 𝑗  ∈  ( 0 ... 𝑛 ) ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 )  ∧  ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 )  ≤  1 )  ∧  ∀ 𝑡  ∈  ( 𝐷 ‘ 𝑗 ) ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 )  <  ( 𝐸  /  𝑛 )  ∧  ∀ 𝑡  ∈  ( 𝐵 ‘ 𝑗 ) ( 1  −  ( 𝐸  /  𝑛 ) )  <  ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) ) ) ) ) | 
						
							| 104 | 101 103 | sylibr | ⊢ ( ( 𝜑  ∧  ( 𝑛  ∈  ℕ  ∧  ∀ 𝑡  ∈  𝑇 ( 𝐹 ‘ 𝑡 )  <  ( ( 𝑛  −  1 )  ·  𝐸 ) ) )  →  ∃ 𝑥 ( ( 𝑛  ∈  ℕ  ∧  ∀ 𝑡  ∈  𝑇 ( 𝐹 ‘ 𝑡 )  <  ( ( 𝑛  −  1 )  ·  𝐸 ) )  ∧  𝑥 : ( 0 ... 𝑛 ) ⟶ 𝐴  ∧  ∀ 𝑗  ∈  ( 0 ... 𝑛 ) ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 )  ∧  ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 )  ≤  1 )  ∧  ∀ 𝑡  ∈  ( 𝐷 ‘ 𝑗 ) ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 )  <  ( 𝐸  /  𝑛 )  ∧  ∀ 𝑡  ∈  ( 𝐵 ‘ 𝑗 ) ( 1  −  ( 𝐸  /  𝑛 ) )  <  ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) ) ) ) | 
						
							| 105 | 104 | ex | ⊢ ( 𝜑  →  ( ( 𝑛  ∈  ℕ  ∧  ∀ 𝑡  ∈  𝑇 ( 𝐹 ‘ 𝑡 )  <  ( ( 𝑛  −  1 )  ·  𝐸 ) )  →  ∃ 𝑥 ( ( 𝑛  ∈  ℕ  ∧  ∀ 𝑡  ∈  𝑇 ( 𝐹 ‘ 𝑡 )  <  ( ( 𝑛  −  1 )  ·  𝐸 ) )  ∧  𝑥 : ( 0 ... 𝑛 ) ⟶ 𝐴  ∧  ∀ 𝑗  ∈  ( 0 ... 𝑛 ) ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 )  ∧  ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 )  ≤  1 )  ∧  ∀ 𝑡  ∈  ( 𝐷 ‘ 𝑗 ) ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 )  <  ( 𝐸  /  𝑛 )  ∧  ∀ 𝑡  ∈  ( 𝐵 ‘ 𝑗 ) ( 1  −  ( 𝐸  /  𝑛 ) )  <  ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) ) ) ) ) | 
						
							| 106 | 105 | eximdv | ⊢ ( 𝜑  →  ( ∃ 𝑛 ( 𝑛  ∈  ℕ  ∧  ∀ 𝑡  ∈  𝑇 ( 𝐹 ‘ 𝑡 )  <  ( ( 𝑛  −  1 )  ·  𝐸 ) )  →  ∃ 𝑛 ∃ 𝑥 ( ( 𝑛  ∈  ℕ  ∧  ∀ 𝑡  ∈  𝑇 ( 𝐹 ‘ 𝑡 )  <  ( ( 𝑛  −  1 )  ·  𝐸 ) )  ∧  𝑥 : ( 0 ... 𝑛 ) ⟶ 𝐴  ∧  ∀ 𝑗  ∈  ( 0 ... 𝑛 ) ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 )  ∧  ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 )  ≤  1 )  ∧  ∀ 𝑡  ∈  ( 𝐷 ‘ 𝑗 ) ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 )  <  ( 𝐸  /  𝑛 )  ∧  ∀ 𝑡  ∈  ( 𝐵 ‘ 𝑗 ) ( 1  −  ( 𝐸  /  𝑛 ) )  <  ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) ) ) ) ) | 
						
							| 107 | 83 106 | mpd | ⊢ ( 𝜑  →  ∃ 𝑛 ∃ 𝑥 ( ( 𝑛  ∈  ℕ  ∧  ∀ 𝑡  ∈  𝑇 ( 𝐹 ‘ 𝑡 )  <  ( ( 𝑛  −  1 )  ·  𝐸 ) )  ∧  𝑥 : ( 0 ... 𝑛 ) ⟶ 𝐴  ∧  ∀ 𝑗  ∈  ( 0 ... 𝑛 ) ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 )  ∧  ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 )  ≤  1 )  ∧  ∀ 𝑡  ∈  ( 𝐷 ‘ 𝑗 ) ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 )  <  ( 𝐸  /  𝑛 )  ∧  ∀ 𝑡  ∈  ( 𝐵 ‘ 𝑗 ) ( 1  −  ( 𝐸  /  𝑛 ) )  <  ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) ) ) ) | 
						
							| 108 |  | simpl | ⊢ ( ( 𝜑  ∧  ( ( 𝑛  ∈  ℕ  ∧  ∀ 𝑡  ∈  𝑇 ( 𝐹 ‘ 𝑡 )  <  ( ( 𝑛  −  1 )  ·  𝐸 ) )  ∧  𝑥 : ( 0 ... 𝑛 ) ⟶ 𝐴  ∧  ∀ 𝑗  ∈  ( 0 ... 𝑛 ) ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 )  ∧  ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 )  ≤  1 )  ∧  ∀ 𝑡  ∈  ( 𝐷 ‘ 𝑗 ) ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 )  <  ( 𝐸  /  𝑛 )  ∧  ∀ 𝑡  ∈  ( 𝐵 ‘ 𝑗 ) ( 1  −  ( 𝐸  /  𝑛 ) )  <  ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) ) ) )  →  𝜑 ) | 
						
							| 109 |  | simpr1l | ⊢ ( ( 𝜑  ∧  ( ( 𝑛  ∈  ℕ  ∧  ∀ 𝑡  ∈  𝑇 ( 𝐹 ‘ 𝑡 )  <  ( ( 𝑛  −  1 )  ·  𝐸 ) )  ∧  𝑥 : ( 0 ... 𝑛 ) ⟶ 𝐴  ∧  ∀ 𝑗  ∈  ( 0 ... 𝑛 ) ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 )  ∧  ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 )  ≤  1 )  ∧  ∀ 𝑡  ∈  ( 𝐷 ‘ 𝑗 ) ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 )  <  ( 𝐸  /  𝑛 )  ∧  ∀ 𝑡  ∈  ( 𝐵 ‘ 𝑗 ) ( 1  −  ( 𝐸  /  𝑛 ) )  <  ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) ) ) )  →  𝑛  ∈  ℕ ) | 
						
							| 110 |  | simpr2 | ⊢ ( ( 𝜑  ∧  ( ( 𝑛  ∈  ℕ  ∧  ∀ 𝑡  ∈  𝑇 ( 𝐹 ‘ 𝑡 )  <  ( ( 𝑛  −  1 )  ·  𝐸 ) )  ∧  𝑥 : ( 0 ... 𝑛 ) ⟶ 𝐴  ∧  ∀ 𝑗  ∈  ( 0 ... 𝑛 ) ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 )  ∧  ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 )  ≤  1 )  ∧  ∀ 𝑡  ∈  ( 𝐷 ‘ 𝑗 ) ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 )  <  ( 𝐸  /  𝑛 )  ∧  ∀ 𝑡  ∈  ( 𝐵 ‘ 𝑗 ) ( 1  −  ( 𝐸  /  𝑛 ) )  <  ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) ) ) )  →  𝑥 : ( 0 ... 𝑛 ) ⟶ 𝐴 ) | 
						
							| 111 |  | nfv | ⊢ Ⅎ 𝑡 𝑥 : ( 0 ... 𝑛 ) ⟶ 𝐴 | 
						
							| 112 | 2 35 111 | nf3an | ⊢ Ⅎ 𝑡 ( 𝜑  ∧  𝑛  ∈  ℕ  ∧  𝑥 : ( 0 ... 𝑛 ) ⟶ 𝐴 ) | 
						
							| 113 |  | simp2 | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ  ∧  𝑥 : ( 0 ... 𝑛 ) ⟶ 𝐴 )  →  𝑛  ∈  ℕ ) | 
						
							| 114 |  | simp3 | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ  ∧  𝑥 : ( 0 ... 𝑛 ) ⟶ 𝐴 )  →  𝑥 : ( 0 ... 𝑛 ) ⟶ 𝐴 ) | 
						
							| 115 |  | simp1 | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ  ∧  𝑥 : ( 0 ... 𝑛 ) ⟶ 𝐴 )  →  𝜑 ) | 
						
							| 116 | 115 11 | syl3an1 | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ  ∧  𝑥 : ( 0 ... 𝑛 ) ⟶ 𝐴 )  ∧  𝑓  ∈  𝐴  ∧  𝑔  ∈  𝐴 )  →  ( 𝑡  ∈  𝑇  ↦  ( ( 𝑓 ‘ 𝑡 )  +  ( 𝑔 ‘ 𝑡 ) ) )  ∈  𝐴 ) | 
						
							| 117 | 115 12 | syl3an1 | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ  ∧  𝑥 : ( 0 ... 𝑛 ) ⟶ 𝐴 )  ∧  𝑓  ∈  𝐴  ∧  𝑔  ∈  𝐴 )  →  ( 𝑡  ∈  𝑇  ↦  ( ( 𝑓 ‘ 𝑡 )  ·  ( 𝑔 ‘ 𝑡 ) ) )  ∈  𝐴 ) | 
						
							| 118 | 13 | 3ad2antl1 | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ  ∧  𝑥 : ( 0 ... 𝑛 ) ⟶ 𝐴 )  ∧  𝑦  ∈  ℝ )  →  ( 𝑡  ∈  𝑇  ↦  𝑦 )  ∈  𝐴 ) | 
						
							| 119 | 17 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ  ∧  𝑥 : ( 0 ... 𝑛 ) ⟶ 𝐴 )  →  𝐸  ∈  ℝ+ ) | 
						
							| 120 | 119 | rpred | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ  ∧  𝑥 : ( 0 ... 𝑛 ) ⟶ 𝐴 )  →  𝐸  ∈  ℝ ) | 
						
							| 121 | 10 | sselda | ⊢ ( ( 𝜑  ∧  𝑓  ∈  𝐴 )  →  𝑓  ∈  𝐶 ) | 
						
							| 122 | 3 4 5 121 | fcnre | ⊢ ( ( 𝜑  ∧  𝑓  ∈  𝐴 )  →  𝑓 : 𝑇 ⟶ ℝ ) | 
						
							| 123 | 122 | 3ad2antl1 | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ  ∧  𝑥 : ( 0 ... 𝑛 ) ⟶ 𝐴 )  ∧  𝑓  ∈  𝐴 )  →  𝑓 : 𝑇 ⟶ ℝ ) | 
						
							| 124 | 112 113 114 116 117 118 120 123 | stoweidlem17 | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ  ∧  𝑥 : ( 0 ... 𝑛 ) ⟶ 𝐴 )  →  ( 𝑡  ∈  𝑇  ↦  Σ 𝑖  ∈  ( 0 ... 𝑛 ) ( 𝐸  ·  ( ( 𝑥 ‘ 𝑖 ) ‘ 𝑡 ) ) )  ∈  𝐴 ) | 
						
							| 125 | 108 109 110 124 | syl3anc | ⊢ ( ( 𝜑  ∧  ( ( 𝑛  ∈  ℕ  ∧  ∀ 𝑡  ∈  𝑇 ( 𝐹 ‘ 𝑡 )  <  ( ( 𝑛  −  1 )  ·  𝐸 ) )  ∧  𝑥 : ( 0 ... 𝑛 ) ⟶ 𝐴  ∧  ∀ 𝑗  ∈  ( 0 ... 𝑛 ) ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 )  ∧  ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 )  ≤  1 )  ∧  ∀ 𝑡  ∈  ( 𝐷 ‘ 𝑗 ) ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 )  <  ( 𝐸  /  𝑛 )  ∧  ∀ 𝑡  ∈  ( 𝐵 ‘ 𝑗 ) ( 1  −  ( 𝐸  /  𝑛 ) )  <  ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) ) ) )  →  ( 𝑡  ∈  𝑇  ↦  Σ 𝑖  ∈  ( 0 ... 𝑛 ) ( 𝐸  ·  ( ( 𝑥 ‘ 𝑖 ) ‘ 𝑡 ) ) )  ∈  𝐴 ) | 
						
							| 126 |  | nfv | ⊢ Ⅎ 𝑗 𝜑 | 
						
							| 127 |  | nfv | ⊢ Ⅎ 𝑗 ( 𝑛  ∈  ℕ  ∧  ∀ 𝑡  ∈  𝑇 ( 𝐹 ‘ 𝑡 )  <  ( ( 𝑛  −  1 )  ·  𝐸 ) ) | 
						
							| 128 |  | nfv | ⊢ Ⅎ 𝑗 𝑥 : ( 0 ... 𝑛 ) ⟶ 𝐴 | 
						
							| 129 |  | nfra1 | ⊢ Ⅎ 𝑗 ∀ 𝑗  ∈  ( 0 ... 𝑛 ) ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 )  ∧  ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 )  ≤  1 )  ∧  ∀ 𝑡  ∈  ( 𝐷 ‘ 𝑗 ) ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 )  <  ( 𝐸  /  𝑛 )  ∧  ∀ 𝑡  ∈  ( 𝐵 ‘ 𝑗 ) ( 1  −  ( 𝐸  /  𝑛 ) )  <  ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) ) | 
						
							| 130 | 127 128 129 | nf3an | ⊢ Ⅎ 𝑗 ( ( 𝑛  ∈  ℕ  ∧  ∀ 𝑡  ∈  𝑇 ( 𝐹 ‘ 𝑡 )  <  ( ( 𝑛  −  1 )  ·  𝐸 ) )  ∧  𝑥 : ( 0 ... 𝑛 ) ⟶ 𝐴  ∧  ∀ 𝑗  ∈  ( 0 ... 𝑛 ) ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 )  ∧  ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 )  ≤  1 )  ∧  ∀ 𝑡  ∈  ( 𝐷 ‘ 𝑗 ) ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 )  <  ( 𝐸  /  𝑛 )  ∧  ∀ 𝑡  ∈  ( 𝐵 ‘ 𝑗 ) ( 1  −  ( 𝐸  /  𝑛 ) )  <  ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) ) ) | 
						
							| 131 | 126 130 | nfan | ⊢ Ⅎ 𝑗 ( 𝜑  ∧  ( ( 𝑛  ∈  ℕ  ∧  ∀ 𝑡  ∈  𝑇 ( 𝐹 ‘ 𝑡 )  <  ( ( 𝑛  −  1 )  ·  𝐸 ) )  ∧  𝑥 : ( 0 ... 𝑛 ) ⟶ 𝐴  ∧  ∀ 𝑗  ∈  ( 0 ... 𝑛 ) ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 )  ∧  ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 )  ≤  1 )  ∧  ∀ 𝑡  ∈  ( 𝐷 ‘ 𝑗 ) ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 )  <  ( 𝐸  /  𝑛 )  ∧  ∀ 𝑡  ∈  ( 𝐵 ‘ 𝑗 ) ( 1  −  ( 𝐸  /  𝑛 ) )  <  ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) ) ) ) | 
						
							| 132 |  | nfra1 | ⊢ Ⅎ 𝑡 ∀ 𝑡  ∈  𝑇 ( 𝐹 ‘ 𝑡 )  <  ( ( 𝑛  −  1 )  ·  𝐸 ) | 
						
							| 133 | 35 132 | nfan | ⊢ Ⅎ 𝑡 ( 𝑛  ∈  ℕ  ∧  ∀ 𝑡  ∈  𝑇 ( 𝐹 ‘ 𝑡 )  <  ( ( 𝑛  −  1 )  ·  𝐸 ) ) | 
						
							| 134 |  | nfcv | ⊢ Ⅎ 𝑡 ( 0 ... 𝑛 ) | 
						
							| 135 |  | nfra1 | ⊢ Ⅎ 𝑡 ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 )  ∧  ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 )  ≤  1 ) | 
						
							| 136 |  | nfra1 | ⊢ Ⅎ 𝑡 ∀ 𝑡  ∈  ( 𝐷 ‘ 𝑗 ) ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 )  <  ( 𝐸  /  𝑛 ) | 
						
							| 137 |  | nfra1 | ⊢ Ⅎ 𝑡 ∀ 𝑡  ∈  ( 𝐵 ‘ 𝑗 ) ( 1  −  ( 𝐸  /  𝑛 ) )  <  ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) | 
						
							| 138 | 135 136 137 | nf3an | ⊢ Ⅎ 𝑡 ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 )  ∧  ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 )  ≤  1 )  ∧  ∀ 𝑡  ∈  ( 𝐷 ‘ 𝑗 ) ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 )  <  ( 𝐸  /  𝑛 )  ∧  ∀ 𝑡  ∈  ( 𝐵 ‘ 𝑗 ) ( 1  −  ( 𝐸  /  𝑛 ) )  <  ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) ) | 
						
							| 139 | 134 138 | nfralw | ⊢ Ⅎ 𝑡 ∀ 𝑗  ∈  ( 0 ... 𝑛 ) ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 )  ∧  ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 )  ≤  1 )  ∧  ∀ 𝑡  ∈  ( 𝐷 ‘ 𝑗 ) ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 )  <  ( 𝐸  /  𝑛 )  ∧  ∀ 𝑡  ∈  ( 𝐵 ‘ 𝑗 ) ( 1  −  ( 𝐸  /  𝑛 ) )  <  ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) ) | 
						
							| 140 | 133 111 139 | nf3an | ⊢ Ⅎ 𝑡 ( ( 𝑛  ∈  ℕ  ∧  ∀ 𝑡  ∈  𝑇 ( 𝐹 ‘ 𝑡 )  <  ( ( 𝑛  −  1 )  ·  𝐸 ) )  ∧  𝑥 : ( 0 ... 𝑛 ) ⟶ 𝐴  ∧  ∀ 𝑗  ∈  ( 0 ... 𝑛 ) ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 )  ∧  ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 )  ≤  1 )  ∧  ∀ 𝑡  ∈  ( 𝐷 ‘ 𝑗 ) ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 )  <  ( 𝐸  /  𝑛 )  ∧  ∀ 𝑡  ∈  ( 𝐵 ‘ 𝑗 ) ( 1  −  ( 𝐸  /  𝑛 ) )  <  ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) ) ) | 
						
							| 141 | 2 140 | nfan | ⊢ Ⅎ 𝑡 ( 𝜑  ∧  ( ( 𝑛  ∈  ℕ  ∧  ∀ 𝑡  ∈  𝑇 ( 𝐹 ‘ 𝑡 )  <  ( ( 𝑛  −  1 )  ·  𝐸 ) )  ∧  𝑥 : ( 0 ... 𝑛 ) ⟶ 𝐴  ∧  ∀ 𝑗  ∈  ( 0 ... 𝑛 ) ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 )  ∧  ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 )  ≤  1 )  ∧  ∀ 𝑡  ∈  ( 𝐷 ‘ 𝑗 ) ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 )  <  ( 𝐸  /  𝑛 )  ∧  ∀ 𝑡  ∈  ( 𝐵 ‘ 𝑗 ) ( 1  −  ( 𝐸  /  𝑛 ) )  <  ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) ) ) ) | 
						
							| 142 |  | eqid | ⊢ ( 𝑡  ∈  𝑇  ↦  { 𝑗  ∈  ( 1 ... 𝑛 )  ∣  𝑡  ∈  ( 𝐷 ‘ 𝑗 ) } )  =  ( 𝑡  ∈  𝑇  ↦  { 𝑗  ∈  ( 1 ... 𝑛 )  ∣  𝑡  ∈  ( 𝐷 ‘ 𝑗 ) } ) | 
						
							| 143 | 8 | uniexd | ⊢ ( 𝜑  →  ∪  𝐽  ∈  V ) | 
						
							| 144 | 4 143 | eqeltrid | ⊢ ( 𝜑  →  𝑇  ∈  V ) | 
						
							| 145 | 144 | adantr | ⊢ ( ( 𝜑  ∧  ( ( 𝑛  ∈  ℕ  ∧  ∀ 𝑡  ∈  𝑇 ( 𝐹 ‘ 𝑡 )  <  ( ( 𝑛  −  1 )  ·  𝐸 ) )  ∧  𝑥 : ( 0 ... 𝑛 ) ⟶ 𝐴  ∧  ∀ 𝑗  ∈  ( 0 ... 𝑛 ) ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 )  ∧  ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 )  ≤  1 )  ∧  ∀ 𝑡  ∈  ( 𝐷 ‘ 𝑗 ) ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 )  <  ( 𝐸  /  𝑛 )  ∧  ∀ 𝑡  ∈  ( 𝐵 ‘ 𝑗 ) ( 1  −  ( 𝐸  /  𝑛 ) )  <  ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) ) ) )  →  𝑇  ∈  V ) | 
						
							| 146 | 40 | adantr | ⊢ ( ( 𝜑  ∧  ( ( 𝑛  ∈  ℕ  ∧  ∀ 𝑡  ∈  𝑇 ( 𝐹 ‘ 𝑡 )  <  ( ( 𝑛  −  1 )  ·  𝐸 ) )  ∧  𝑥 : ( 0 ... 𝑛 ) ⟶ 𝐴  ∧  ∀ 𝑗  ∈  ( 0 ... 𝑛 ) ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 )  ∧  ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 )  ≤  1 )  ∧  ∀ 𝑡  ∈  ( 𝐷 ‘ 𝑗 ) ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 )  <  ( 𝐸  /  𝑛 )  ∧  ∀ 𝑡  ∈  ( 𝐵 ‘ 𝑗 ) ( 1  −  ( 𝐸  /  𝑛 ) )  <  ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) ) ) )  →  𝐹 : 𝑇 ⟶ ℝ ) | 
						
							| 147 | 16 | r19.21bi | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  →  0  ≤  ( 𝐹 ‘ 𝑡 ) ) | 
						
							| 148 | 147 | adantlr | ⊢ ( ( ( 𝜑  ∧  ( ( 𝑛  ∈  ℕ  ∧  ∀ 𝑡  ∈  𝑇 ( 𝐹 ‘ 𝑡 )  <  ( ( 𝑛  −  1 )  ·  𝐸 ) )  ∧  𝑥 : ( 0 ... 𝑛 ) ⟶ 𝐴  ∧  ∀ 𝑗  ∈  ( 0 ... 𝑛 ) ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 )  ∧  ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 )  ≤  1 )  ∧  ∀ 𝑡  ∈  ( 𝐷 ‘ 𝑗 ) ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 )  <  ( 𝐸  /  𝑛 )  ∧  ∀ 𝑡  ∈  ( 𝐵 ‘ 𝑗 ) ( 1  −  ( 𝐸  /  𝑛 ) )  <  ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) ) ) )  ∧  𝑡  ∈  𝑇 )  →  0  ≤  ( 𝐹 ‘ 𝑡 ) ) | 
						
							| 149 |  | simpr1r | ⊢ ( ( 𝜑  ∧  ( ( 𝑛  ∈  ℕ  ∧  ∀ 𝑡  ∈  𝑇 ( 𝐹 ‘ 𝑡 )  <  ( ( 𝑛  −  1 )  ·  𝐸 ) )  ∧  𝑥 : ( 0 ... 𝑛 ) ⟶ 𝐴  ∧  ∀ 𝑗  ∈  ( 0 ... 𝑛 ) ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 )  ∧  ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 )  ≤  1 )  ∧  ∀ 𝑡  ∈  ( 𝐷 ‘ 𝑗 ) ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 )  <  ( 𝐸  /  𝑛 )  ∧  ∀ 𝑡  ∈  ( 𝐵 ‘ 𝑗 ) ( 1  −  ( 𝐸  /  𝑛 ) )  <  ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) ) ) )  →  ∀ 𝑡  ∈  𝑇 ( 𝐹 ‘ 𝑡 )  <  ( ( 𝑛  −  1 )  ·  𝐸 ) ) | 
						
							| 150 | 149 | r19.21bi | ⊢ ( ( ( 𝜑  ∧  ( ( 𝑛  ∈  ℕ  ∧  ∀ 𝑡  ∈  𝑇 ( 𝐹 ‘ 𝑡 )  <  ( ( 𝑛  −  1 )  ·  𝐸 ) )  ∧  𝑥 : ( 0 ... 𝑛 ) ⟶ 𝐴  ∧  ∀ 𝑗  ∈  ( 0 ... 𝑛 ) ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 )  ∧  ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 )  ≤  1 )  ∧  ∀ 𝑡  ∈  ( 𝐷 ‘ 𝑗 ) ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 )  <  ( 𝐸  /  𝑛 )  ∧  ∀ 𝑡  ∈  ( 𝐵 ‘ 𝑗 ) ( 1  −  ( 𝐸  /  𝑛 ) )  <  ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) ) ) )  ∧  𝑡  ∈  𝑇 )  →  ( 𝐹 ‘ 𝑡 )  <  ( ( 𝑛  −  1 )  ·  𝐸 ) ) | 
						
							| 151 | 17 | adantr | ⊢ ( ( 𝜑  ∧  ( ( 𝑛  ∈  ℕ  ∧  ∀ 𝑡  ∈  𝑇 ( 𝐹 ‘ 𝑡 )  <  ( ( 𝑛  −  1 )  ·  𝐸 ) )  ∧  𝑥 : ( 0 ... 𝑛 ) ⟶ 𝐴  ∧  ∀ 𝑗  ∈  ( 0 ... 𝑛 ) ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 )  ∧  ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 )  ≤  1 )  ∧  ∀ 𝑡  ∈  ( 𝐷 ‘ 𝑗 ) ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 )  <  ( 𝐸  /  𝑛 )  ∧  ∀ 𝑡  ∈  ( 𝐵 ‘ 𝑗 ) ( 1  −  ( 𝐸  /  𝑛 ) )  <  ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) ) ) )  →  𝐸  ∈  ℝ+ ) | 
						
							| 152 | 18 | adantr | ⊢ ( ( 𝜑  ∧  ( ( 𝑛  ∈  ℕ  ∧  ∀ 𝑡  ∈  𝑇 ( 𝐹 ‘ 𝑡 )  <  ( ( 𝑛  −  1 )  ·  𝐸 ) )  ∧  𝑥 : ( 0 ... 𝑛 ) ⟶ 𝐴  ∧  ∀ 𝑗  ∈  ( 0 ... 𝑛 ) ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 )  ∧  ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 )  ≤  1 )  ∧  ∀ 𝑡  ∈  ( 𝐷 ‘ 𝑗 ) ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 )  <  ( 𝐸  /  𝑛 )  ∧  ∀ 𝑡  ∈  ( 𝐵 ‘ 𝑗 ) ( 1  −  ( 𝐸  /  𝑛 ) )  <  ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) ) ) )  →  𝐸  <  ( 1  /  3 ) ) | 
						
							| 153 |  | simpll | ⊢ ( ( ( 𝜑  ∧  ( ( 𝑛  ∈  ℕ  ∧  ∀ 𝑡  ∈  𝑇 ( 𝐹 ‘ 𝑡 )  <  ( ( 𝑛  −  1 )  ·  𝐸 ) )  ∧  𝑥 : ( 0 ... 𝑛 ) ⟶ 𝐴  ∧  ∀ 𝑗  ∈  ( 0 ... 𝑛 ) ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 )  ∧  ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 )  ≤  1 )  ∧  ∀ 𝑡  ∈  ( 𝐷 ‘ 𝑗 ) ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 )  <  ( 𝐸  /  𝑛 )  ∧  ∀ 𝑡  ∈  ( 𝐵 ‘ 𝑗 ) ( 1  −  ( 𝐸  /  𝑛 ) )  <  ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) ) ) )  ∧  𝑗  ∈  ( 0 ... 𝑛 ) )  →  𝜑 ) | 
						
							| 154 |  | simplr2 | ⊢ ( ( ( 𝜑  ∧  ( ( 𝑛  ∈  ℕ  ∧  ∀ 𝑡  ∈  𝑇 ( 𝐹 ‘ 𝑡 )  <  ( ( 𝑛  −  1 )  ·  𝐸 ) )  ∧  𝑥 : ( 0 ... 𝑛 ) ⟶ 𝐴  ∧  ∀ 𝑗  ∈  ( 0 ... 𝑛 ) ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 )  ∧  ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 )  ≤  1 )  ∧  ∀ 𝑡  ∈  ( 𝐷 ‘ 𝑗 ) ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 )  <  ( 𝐸  /  𝑛 )  ∧  ∀ 𝑡  ∈  ( 𝐵 ‘ 𝑗 ) ( 1  −  ( 𝐸  /  𝑛 ) )  <  ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) ) ) )  ∧  𝑗  ∈  ( 0 ... 𝑛 ) )  →  𝑥 : ( 0 ... 𝑛 ) ⟶ 𝐴 ) | 
						
							| 155 |  | simpr | ⊢ ( ( ( 𝜑  ∧  ( ( 𝑛  ∈  ℕ  ∧  ∀ 𝑡  ∈  𝑇 ( 𝐹 ‘ 𝑡 )  <  ( ( 𝑛  −  1 )  ·  𝐸 ) )  ∧  𝑥 : ( 0 ... 𝑛 ) ⟶ 𝐴  ∧  ∀ 𝑗  ∈  ( 0 ... 𝑛 ) ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 )  ∧  ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 )  ≤  1 )  ∧  ∀ 𝑡  ∈  ( 𝐷 ‘ 𝑗 ) ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 )  <  ( 𝐸  /  𝑛 )  ∧  ∀ 𝑡  ∈  ( 𝐵 ‘ 𝑗 ) ( 1  −  ( 𝐸  /  𝑛 ) )  <  ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) ) ) )  ∧  𝑗  ∈  ( 0 ... 𝑛 ) )  →  𝑗  ∈  ( 0 ... 𝑛 ) ) | 
						
							| 156 |  | simp1 | ⊢ ( ( 𝜑  ∧  𝑥 : ( 0 ... 𝑛 ) ⟶ 𝐴  ∧  𝑗  ∈  ( 0 ... 𝑛 ) )  →  𝜑 ) | 
						
							| 157 |  | ffvelcdm | ⊢ ( ( 𝑥 : ( 0 ... 𝑛 ) ⟶ 𝐴  ∧  𝑗  ∈  ( 0 ... 𝑛 ) )  →  ( 𝑥 ‘ 𝑗 )  ∈  𝐴 ) | 
						
							| 158 | 157 | 3adant1 | ⊢ ( ( 𝜑  ∧  𝑥 : ( 0 ... 𝑛 ) ⟶ 𝐴  ∧  𝑗  ∈  ( 0 ... 𝑛 ) )  →  ( 𝑥 ‘ 𝑗 )  ∈  𝐴 ) | 
						
							| 159 | 10 | sselda | ⊢ ( ( 𝜑  ∧  ( 𝑥 ‘ 𝑗 )  ∈  𝐴 )  →  ( 𝑥 ‘ 𝑗 )  ∈  𝐶 ) | 
						
							| 160 | 3 4 5 159 | fcnre | ⊢ ( ( 𝜑  ∧  ( 𝑥 ‘ 𝑗 )  ∈  𝐴 )  →  ( 𝑥 ‘ 𝑗 ) : 𝑇 ⟶ ℝ ) | 
						
							| 161 | 156 158 160 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑥 : ( 0 ... 𝑛 ) ⟶ 𝐴  ∧  𝑗  ∈  ( 0 ... 𝑛 ) )  →  ( 𝑥 ‘ 𝑗 ) : 𝑇 ⟶ ℝ ) | 
						
							| 162 | 153 154 155 161 | syl3anc | ⊢ ( ( ( 𝜑  ∧  ( ( 𝑛  ∈  ℕ  ∧  ∀ 𝑡  ∈  𝑇 ( 𝐹 ‘ 𝑡 )  <  ( ( 𝑛  −  1 )  ·  𝐸 ) )  ∧  𝑥 : ( 0 ... 𝑛 ) ⟶ 𝐴  ∧  ∀ 𝑗  ∈  ( 0 ... 𝑛 ) ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 )  ∧  ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 )  ≤  1 )  ∧  ∀ 𝑡  ∈  ( 𝐷 ‘ 𝑗 ) ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 )  <  ( 𝐸  /  𝑛 )  ∧  ∀ 𝑡  ∈  ( 𝐵 ‘ 𝑗 ) ( 1  −  ( 𝐸  /  𝑛 ) )  <  ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) ) ) )  ∧  𝑗  ∈  ( 0 ... 𝑛 ) )  →  ( 𝑥 ‘ 𝑗 ) : 𝑇 ⟶ ℝ ) | 
						
							| 163 |  | simp1r3 | ⊢ ( ( ( 𝜑  ∧  ( ( 𝑛  ∈  ℕ  ∧  ∀ 𝑡  ∈  𝑇 ( 𝐹 ‘ 𝑡 )  <  ( ( 𝑛  −  1 )  ·  𝐸 ) )  ∧  𝑥 : ( 0 ... 𝑛 ) ⟶ 𝐴  ∧  ∀ 𝑗  ∈  ( 0 ... 𝑛 ) ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 )  ∧  ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 )  ≤  1 )  ∧  ∀ 𝑡  ∈  ( 𝐷 ‘ 𝑗 ) ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 )  <  ( 𝐸  /  𝑛 )  ∧  ∀ 𝑡  ∈  ( 𝐵 ‘ 𝑗 ) ( 1  −  ( 𝐸  /  𝑛 ) )  <  ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) ) ) )  ∧  𝑗  ∈  ( 0 ... 𝑛 )  ∧  𝑡  ∈  𝑇 )  →  ∀ 𝑗  ∈  ( 0 ... 𝑛 ) ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 )  ∧  ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 )  ≤  1 )  ∧  ∀ 𝑡  ∈  ( 𝐷 ‘ 𝑗 ) ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 )  <  ( 𝐸  /  𝑛 )  ∧  ∀ 𝑡  ∈  ( 𝐵 ‘ 𝑗 ) ( 1  −  ( 𝐸  /  𝑛 ) )  <  ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) ) ) | 
						
							| 164 |  | r19.26-3 | ⊢ ( ∀ 𝑗  ∈  ( 0 ... 𝑛 ) ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 )  ∧  ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 )  ≤  1 )  ∧  ∀ 𝑡  ∈  ( 𝐷 ‘ 𝑗 ) ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 )  <  ( 𝐸  /  𝑛 )  ∧  ∀ 𝑡  ∈  ( 𝐵 ‘ 𝑗 ) ( 1  −  ( 𝐸  /  𝑛 ) )  <  ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) )  ↔  ( ∀ 𝑗  ∈  ( 0 ... 𝑛 ) ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 )  ∧  ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 )  ≤  1 )  ∧  ∀ 𝑗  ∈  ( 0 ... 𝑛 ) ∀ 𝑡  ∈  ( 𝐷 ‘ 𝑗 ) ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 )  <  ( 𝐸  /  𝑛 )  ∧  ∀ 𝑗  ∈  ( 0 ... 𝑛 ) ∀ 𝑡  ∈  ( 𝐵 ‘ 𝑗 ) ( 1  −  ( 𝐸  /  𝑛 ) )  <  ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) ) ) | 
						
							| 165 | 164 | simp1bi | ⊢ ( ∀ 𝑗  ∈  ( 0 ... 𝑛 ) ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 )  ∧  ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 )  ≤  1 )  ∧  ∀ 𝑡  ∈  ( 𝐷 ‘ 𝑗 ) ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 )  <  ( 𝐸  /  𝑛 )  ∧  ∀ 𝑡  ∈  ( 𝐵 ‘ 𝑗 ) ( 1  −  ( 𝐸  /  𝑛 ) )  <  ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) )  →  ∀ 𝑗  ∈  ( 0 ... 𝑛 ) ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 )  ∧  ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 )  ≤  1 ) ) | 
						
							| 166 |  | simpl | ⊢ ( ( 0  ≤  ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 )  ∧  ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 )  ≤  1 )  →  0  ≤  ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) ) | 
						
							| 167 | 166 | 2ralimi | ⊢ ( ∀ 𝑗  ∈  ( 0 ... 𝑛 ) ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 )  ∧  ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 )  ≤  1 )  →  ∀ 𝑗  ∈  ( 0 ... 𝑛 ) ∀ 𝑡  ∈  𝑇 0  ≤  ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) ) | 
						
							| 168 | 163 165 167 | 3syl | ⊢ ( ( ( 𝜑  ∧  ( ( 𝑛  ∈  ℕ  ∧  ∀ 𝑡  ∈  𝑇 ( 𝐹 ‘ 𝑡 )  <  ( ( 𝑛  −  1 )  ·  𝐸 ) )  ∧  𝑥 : ( 0 ... 𝑛 ) ⟶ 𝐴  ∧  ∀ 𝑗  ∈  ( 0 ... 𝑛 ) ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 )  ∧  ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 )  ≤  1 )  ∧  ∀ 𝑡  ∈  ( 𝐷 ‘ 𝑗 ) ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 )  <  ( 𝐸  /  𝑛 )  ∧  ∀ 𝑡  ∈  ( 𝐵 ‘ 𝑗 ) ( 1  −  ( 𝐸  /  𝑛 ) )  <  ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) ) ) )  ∧  𝑗  ∈  ( 0 ... 𝑛 )  ∧  𝑡  ∈  𝑇 )  →  ∀ 𝑗  ∈  ( 0 ... 𝑛 ) ∀ 𝑡  ∈  𝑇 0  ≤  ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) ) | 
						
							| 169 |  | simp2 | ⊢ ( ( ( 𝜑  ∧  ( ( 𝑛  ∈  ℕ  ∧  ∀ 𝑡  ∈  𝑇 ( 𝐹 ‘ 𝑡 )  <  ( ( 𝑛  −  1 )  ·  𝐸 ) )  ∧  𝑥 : ( 0 ... 𝑛 ) ⟶ 𝐴  ∧  ∀ 𝑗  ∈  ( 0 ... 𝑛 ) ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 )  ∧  ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 )  ≤  1 )  ∧  ∀ 𝑡  ∈  ( 𝐷 ‘ 𝑗 ) ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 )  <  ( 𝐸  /  𝑛 )  ∧  ∀ 𝑡  ∈  ( 𝐵 ‘ 𝑗 ) ( 1  −  ( 𝐸  /  𝑛 ) )  <  ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) ) ) )  ∧  𝑗  ∈  ( 0 ... 𝑛 )  ∧  𝑡  ∈  𝑇 )  →  𝑗  ∈  ( 0 ... 𝑛 ) ) | 
						
							| 170 |  | simp3 | ⊢ ( ( ( 𝜑  ∧  ( ( 𝑛  ∈  ℕ  ∧  ∀ 𝑡  ∈  𝑇 ( 𝐹 ‘ 𝑡 )  <  ( ( 𝑛  −  1 )  ·  𝐸 ) )  ∧  𝑥 : ( 0 ... 𝑛 ) ⟶ 𝐴  ∧  ∀ 𝑗  ∈  ( 0 ... 𝑛 ) ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 )  ∧  ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 )  ≤  1 )  ∧  ∀ 𝑡  ∈  ( 𝐷 ‘ 𝑗 ) ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 )  <  ( 𝐸  /  𝑛 )  ∧  ∀ 𝑡  ∈  ( 𝐵 ‘ 𝑗 ) ( 1  −  ( 𝐸  /  𝑛 ) )  <  ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) ) ) )  ∧  𝑗  ∈  ( 0 ... 𝑛 )  ∧  𝑡  ∈  𝑇 )  →  𝑡  ∈  𝑇 ) | 
						
							| 171 |  | rspa | ⊢ ( ( ∀ 𝑗  ∈  ( 0 ... 𝑛 ) ∀ 𝑡  ∈  𝑇 0  ≤  ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 )  ∧  𝑗  ∈  ( 0 ... 𝑛 ) )  →  ∀ 𝑡  ∈  𝑇 0  ≤  ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) ) | 
						
							| 172 | 171 | r19.21bi | ⊢ ( ( ( ∀ 𝑗  ∈  ( 0 ... 𝑛 ) ∀ 𝑡  ∈  𝑇 0  ≤  ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 )  ∧  𝑗  ∈  ( 0 ... 𝑛 ) )  ∧  𝑡  ∈  𝑇 )  →  0  ≤  ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) ) | 
						
							| 173 | 168 169 170 172 | syl21anc | ⊢ ( ( ( 𝜑  ∧  ( ( 𝑛  ∈  ℕ  ∧  ∀ 𝑡  ∈  𝑇 ( 𝐹 ‘ 𝑡 )  <  ( ( 𝑛  −  1 )  ·  𝐸 ) )  ∧  𝑥 : ( 0 ... 𝑛 ) ⟶ 𝐴  ∧  ∀ 𝑗  ∈  ( 0 ... 𝑛 ) ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 )  ∧  ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 )  ≤  1 )  ∧  ∀ 𝑡  ∈  ( 𝐷 ‘ 𝑗 ) ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 )  <  ( 𝐸  /  𝑛 )  ∧  ∀ 𝑡  ∈  ( 𝐵 ‘ 𝑗 ) ( 1  −  ( 𝐸  /  𝑛 ) )  <  ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) ) ) )  ∧  𝑗  ∈  ( 0 ... 𝑛 )  ∧  𝑡  ∈  𝑇 )  →  0  ≤  ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) ) | 
						
							| 174 |  | simpr | ⊢ ( ( 0  ≤  ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 )  ∧  ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 )  ≤  1 )  →  ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 )  ≤  1 ) | 
						
							| 175 | 174 | 2ralimi | ⊢ ( ∀ 𝑗  ∈  ( 0 ... 𝑛 ) ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 )  ∧  ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 )  ≤  1 )  →  ∀ 𝑗  ∈  ( 0 ... 𝑛 ) ∀ 𝑡  ∈  𝑇 ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 )  ≤  1 ) | 
						
							| 176 | 163 165 175 | 3syl | ⊢ ( ( ( 𝜑  ∧  ( ( 𝑛  ∈  ℕ  ∧  ∀ 𝑡  ∈  𝑇 ( 𝐹 ‘ 𝑡 )  <  ( ( 𝑛  −  1 )  ·  𝐸 ) )  ∧  𝑥 : ( 0 ... 𝑛 ) ⟶ 𝐴  ∧  ∀ 𝑗  ∈  ( 0 ... 𝑛 ) ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 )  ∧  ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 )  ≤  1 )  ∧  ∀ 𝑡  ∈  ( 𝐷 ‘ 𝑗 ) ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 )  <  ( 𝐸  /  𝑛 )  ∧  ∀ 𝑡  ∈  ( 𝐵 ‘ 𝑗 ) ( 1  −  ( 𝐸  /  𝑛 ) )  <  ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) ) ) )  ∧  𝑗  ∈  ( 0 ... 𝑛 )  ∧  𝑡  ∈  𝑇 )  →  ∀ 𝑗  ∈  ( 0 ... 𝑛 ) ∀ 𝑡  ∈  𝑇 ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 )  ≤  1 ) | 
						
							| 177 |  | rspa | ⊢ ( ( ∀ 𝑗  ∈  ( 0 ... 𝑛 ) ∀ 𝑡  ∈  𝑇 ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 )  ≤  1  ∧  𝑗  ∈  ( 0 ... 𝑛 ) )  →  ∀ 𝑡  ∈  𝑇 ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 )  ≤  1 ) | 
						
							| 178 | 177 | r19.21bi | ⊢ ( ( ( ∀ 𝑗  ∈  ( 0 ... 𝑛 ) ∀ 𝑡  ∈  𝑇 ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 )  ≤  1  ∧  𝑗  ∈  ( 0 ... 𝑛 ) )  ∧  𝑡  ∈  𝑇 )  →  ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 )  ≤  1 ) | 
						
							| 179 | 176 169 170 178 | syl21anc | ⊢ ( ( ( 𝜑  ∧  ( ( 𝑛  ∈  ℕ  ∧  ∀ 𝑡  ∈  𝑇 ( 𝐹 ‘ 𝑡 )  <  ( ( 𝑛  −  1 )  ·  𝐸 ) )  ∧  𝑥 : ( 0 ... 𝑛 ) ⟶ 𝐴  ∧  ∀ 𝑗  ∈  ( 0 ... 𝑛 ) ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 )  ∧  ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 )  ≤  1 )  ∧  ∀ 𝑡  ∈  ( 𝐷 ‘ 𝑗 ) ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 )  <  ( 𝐸  /  𝑛 )  ∧  ∀ 𝑡  ∈  ( 𝐵 ‘ 𝑗 ) ( 1  −  ( 𝐸  /  𝑛 ) )  <  ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) ) ) )  ∧  𝑗  ∈  ( 0 ... 𝑛 )  ∧  𝑡  ∈  𝑇 )  →  ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 )  ≤  1 ) | 
						
							| 180 |  | simp1r3 | ⊢ ( ( ( 𝜑  ∧  ( ( 𝑛  ∈  ℕ  ∧  ∀ 𝑡  ∈  𝑇 ( 𝐹 ‘ 𝑡 )  <  ( ( 𝑛  −  1 )  ·  𝐸 ) )  ∧  𝑥 : ( 0 ... 𝑛 ) ⟶ 𝐴  ∧  ∀ 𝑗  ∈  ( 0 ... 𝑛 ) ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 )  ∧  ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 )  ≤  1 )  ∧  ∀ 𝑡  ∈  ( 𝐷 ‘ 𝑗 ) ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 )  <  ( 𝐸  /  𝑛 )  ∧  ∀ 𝑡  ∈  ( 𝐵 ‘ 𝑗 ) ( 1  −  ( 𝐸  /  𝑛 ) )  <  ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) ) ) )  ∧  𝑗  ∈  ( 0 ... 𝑛 )  ∧  𝑡  ∈  ( 𝐷 ‘ 𝑗 ) )  →  ∀ 𝑗  ∈  ( 0 ... 𝑛 ) ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 )  ∧  ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 )  ≤  1 )  ∧  ∀ 𝑡  ∈  ( 𝐷 ‘ 𝑗 ) ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 )  <  ( 𝐸  /  𝑛 )  ∧  ∀ 𝑡  ∈  ( 𝐵 ‘ 𝑗 ) ( 1  −  ( 𝐸  /  𝑛 ) )  <  ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) ) ) | 
						
							| 181 | 164 | simp2bi | ⊢ ( ∀ 𝑗  ∈  ( 0 ... 𝑛 ) ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 )  ∧  ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 )  ≤  1 )  ∧  ∀ 𝑡  ∈  ( 𝐷 ‘ 𝑗 ) ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 )  <  ( 𝐸  /  𝑛 )  ∧  ∀ 𝑡  ∈  ( 𝐵 ‘ 𝑗 ) ( 1  −  ( 𝐸  /  𝑛 ) )  <  ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) )  →  ∀ 𝑗  ∈  ( 0 ... 𝑛 ) ∀ 𝑡  ∈  ( 𝐷 ‘ 𝑗 ) ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 )  <  ( 𝐸  /  𝑛 ) ) | 
						
							| 182 | 180 181 | syl | ⊢ ( ( ( 𝜑  ∧  ( ( 𝑛  ∈  ℕ  ∧  ∀ 𝑡  ∈  𝑇 ( 𝐹 ‘ 𝑡 )  <  ( ( 𝑛  −  1 )  ·  𝐸 ) )  ∧  𝑥 : ( 0 ... 𝑛 ) ⟶ 𝐴  ∧  ∀ 𝑗  ∈  ( 0 ... 𝑛 ) ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 )  ∧  ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 )  ≤  1 )  ∧  ∀ 𝑡  ∈  ( 𝐷 ‘ 𝑗 ) ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 )  <  ( 𝐸  /  𝑛 )  ∧  ∀ 𝑡  ∈  ( 𝐵 ‘ 𝑗 ) ( 1  −  ( 𝐸  /  𝑛 ) )  <  ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) ) ) )  ∧  𝑗  ∈  ( 0 ... 𝑛 )  ∧  𝑡  ∈  ( 𝐷 ‘ 𝑗 ) )  →  ∀ 𝑗  ∈  ( 0 ... 𝑛 ) ∀ 𝑡  ∈  ( 𝐷 ‘ 𝑗 ) ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 )  <  ( 𝐸  /  𝑛 ) ) | 
						
							| 183 |  | simp2 | ⊢ ( ( ( 𝜑  ∧  ( ( 𝑛  ∈  ℕ  ∧  ∀ 𝑡  ∈  𝑇 ( 𝐹 ‘ 𝑡 )  <  ( ( 𝑛  −  1 )  ·  𝐸 ) )  ∧  𝑥 : ( 0 ... 𝑛 ) ⟶ 𝐴  ∧  ∀ 𝑗  ∈  ( 0 ... 𝑛 ) ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 )  ∧  ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 )  ≤  1 )  ∧  ∀ 𝑡  ∈  ( 𝐷 ‘ 𝑗 ) ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 )  <  ( 𝐸  /  𝑛 )  ∧  ∀ 𝑡  ∈  ( 𝐵 ‘ 𝑗 ) ( 1  −  ( 𝐸  /  𝑛 ) )  <  ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) ) ) )  ∧  𝑗  ∈  ( 0 ... 𝑛 )  ∧  𝑡  ∈  ( 𝐷 ‘ 𝑗 ) )  →  𝑗  ∈  ( 0 ... 𝑛 ) ) | 
						
							| 184 |  | simp3 | ⊢ ( ( ( 𝜑  ∧  ( ( 𝑛  ∈  ℕ  ∧  ∀ 𝑡  ∈  𝑇 ( 𝐹 ‘ 𝑡 )  <  ( ( 𝑛  −  1 )  ·  𝐸 ) )  ∧  𝑥 : ( 0 ... 𝑛 ) ⟶ 𝐴  ∧  ∀ 𝑗  ∈  ( 0 ... 𝑛 ) ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 )  ∧  ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 )  ≤  1 )  ∧  ∀ 𝑡  ∈  ( 𝐷 ‘ 𝑗 ) ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 )  <  ( 𝐸  /  𝑛 )  ∧  ∀ 𝑡  ∈  ( 𝐵 ‘ 𝑗 ) ( 1  −  ( 𝐸  /  𝑛 ) )  <  ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) ) ) )  ∧  𝑗  ∈  ( 0 ... 𝑛 )  ∧  𝑡  ∈  ( 𝐷 ‘ 𝑗 ) )  →  𝑡  ∈  ( 𝐷 ‘ 𝑗 ) ) | 
						
							| 185 |  | rspa | ⊢ ( ( ∀ 𝑗  ∈  ( 0 ... 𝑛 ) ∀ 𝑡  ∈  ( 𝐷 ‘ 𝑗 ) ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 )  <  ( 𝐸  /  𝑛 )  ∧  𝑗  ∈  ( 0 ... 𝑛 ) )  →  ∀ 𝑡  ∈  ( 𝐷 ‘ 𝑗 ) ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 )  <  ( 𝐸  /  𝑛 ) ) | 
						
							| 186 | 185 | r19.21bi | ⊢ ( ( ( ∀ 𝑗  ∈  ( 0 ... 𝑛 ) ∀ 𝑡  ∈  ( 𝐷 ‘ 𝑗 ) ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 )  <  ( 𝐸  /  𝑛 )  ∧  𝑗  ∈  ( 0 ... 𝑛 ) )  ∧  𝑡  ∈  ( 𝐷 ‘ 𝑗 ) )  →  ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 )  <  ( 𝐸  /  𝑛 ) ) | 
						
							| 187 | 182 183 184 186 | syl21anc | ⊢ ( ( ( 𝜑  ∧  ( ( 𝑛  ∈  ℕ  ∧  ∀ 𝑡  ∈  𝑇 ( 𝐹 ‘ 𝑡 )  <  ( ( 𝑛  −  1 )  ·  𝐸 ) )  ∧  𝑥 : ( 0 ... 𝑛 ) ⟶ 𝐴  ∧  ∀ 𝑗  ∈  ( 0 ... 𝑛 ) ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 )  ∧  ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 )  ≤  1 )  ∧  ∀ 𝑡  ∈  ( 𝐷 ‘ 𝑗 ) ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 )  <  ( 𝐸  /  𝑛 )  ∧  ∀ 𝑡  ∈  ( 𝐵 ‘ 𝑗 ) ( 1  −  ( 𝐸  /  𝑛 ) )  <  ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) ) ) )  ∧  𝑗  ∈  ( 0 ... 𝑛 )  ∧  𝑡  ∈  ( 𝐷 ‘ 𝑗 ) )  →  ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 )  <  ( 𝐸  /  𝑛 ) ) | 
						
							| 188 |  | simp1r3 | ⊢ ( ( ( 𝜑  ∧  ( ( 𝑛  ∈  ℕ  ∧  ∀ 𝑡  ∈  𝑇 ( 𝐹 ‘ 𝑡 )  <  ( ( 𝑛  −  1 )  ·  𝐸 ) )  ∧  𝑥 : ( 0 ... 𝑛 ) ⟶ 𝐴  ∧  ∀ 𝑗  ∈  ( 0 ... 𝑛 ) ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 )  ∧  ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 )  ≤  1 )  ∧  ∀ 𝑡  ∈  ( 𝐷 ‘ 𝑗 ) ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 )  <  ( 𝐸  /  𝑛 )  ∧  ∀ 𝑡  ∈  ( 𝐵 ‘ 𝑗 ) ( 1  −  ( 𝐸  /  𝑛 ) )  <  ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) ) ) )  ∧  𝑗  ∈  ( 0 ... 𝑛 )  ∧  𝑡  ∈  ( 𝐵 ‘ 𝑗 ) )  →  ∀ 𝑗  ∈  ( 0 ... 𝑛 ) ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 )  ∧  ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 )  ≤  1 )  ∧  ∀ 𝑡  ∈  ( 𝐷 ‘ 𝑗 ) ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 )  <  ( 𝐸  /  𝑛 )  ∧  ∀ 𝑡  ∈  ( 𝐵 ‘ 𝑗 ) ( 1  −  ( 𝐸  /  𝑛 ) )  <  ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) ) ) | 
						
							| 189 | 164 | simp3bi | ⊢ ( ∀ 𝑗  ∈  ( 0 ... 𝑛 ) ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 )  ∧  ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 )  ≤  1 )  ∧  ∀ 𝑡  ∈  ( 𝐷 ‘ 𝑗 ) ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 )  <  ( 𝐸  /  𝑛 )  ∧  ∀ 𝑡  ∈  ( 𝐵 ‘ 𝑗 ) ( 1  −  ( 𝐸  /  𝑛 ) )  <  ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) )  →  ∀ 𝑗  ∈  ( 0 ... 𝑛 ) ∀ 𝑡  ∈  ( 𝐵 ‘ 𝑗 ) ( 1  −  ( 𝐸  /  𝑛 ) )  <  ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) ) | 
						
							| 190 | 188 189 | syl | ⊢ ( ( ( 𝜑  ∧  ( ( 𝑛  ∈  ℕ  ∧  ∀ 𝑡  ∈  𝑇 ( 𝐹 ‘ 𝑡 )  <  ( ( 𝑛  −  1 )  ·  𝐸 ) )  ∧  𝑥 : ( 0 ... 𝑛 ) ⟶ 𝐴  ∧  ∀ 𝑗  ∈  ( 0 ... 𝑛 ) ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 )  ∧  ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 )  ≤  1 )  ∧  ∀ 𝑡  ∈  ( 𝐷 ‘ 𝑗 ) ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 )  <  ( 𝐸  /  𝑛 )  ∧  ∀ 𝑡  ∈  ( 𝐵 ‘ 𝑗 ) ( 1  −  ( 𝐸  /  𝑛 ) )  <  ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) ) ) )  ∧  𝑗  ∈  ( 0 ... 𝑛 )  ∧  𝑡  ∈  ( 𝐵 ‘ 𝑗 ) )  →  ∀ 𝑗  ∈  ( 0 ... 𝑛 ) ∀ 𝑡  ∈  ( 𝐵 ‘ 𝑗 ) ( 1  −  ( 𝐸  /  𝑛 ) )  <  ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) ) | 
						
							| 191 |  | simp2 | ⊢ ( ( ( 𝜑  ∧  ( ( 𝑛  ∈  ℕ  ∧  ∀ 𝑡  ∈  𝑇 ( 𝐹 ‘ 𝑡 )  <  ( ( 𝑛  −  1 )  ·  𝐸 ) )  ∧  𝑥 : ( 0 ... 𝑛 ) ⟶ 𝐴  ∧  ∀ 𝑗  ∈  ( 0 ... 𝑛 ) ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 )  ∧  ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 )  ≤  1 )  ∧  ∀ 𝑡  ∈  ( 𝐷 ‘ 𝑗 ) ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 )  <  ( 𝐸  /  𝑛 )  ∧  ∀ 𝑡  ∈  ( 𝐵 ‘ 𝑗 ) ( 1  −  ( 𝐸  /  𝑛 ) )  <  ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) ) ) )  ∧  𝑗  ∈  ( 0 ... 𝑛 )  ∧  𝑡  ∈  ( 𝐵 ‘ 𝑗 ) )  →  𝑗  ∈  ( 0 ... 𝑛 ) ) | 
						
							| 192 |  | simp3 | ⊢ ( ( ( 𝜑  ∧  ( ( 𝑛  ∈  ℕ  ∧  ∀ 𝑡  ∈  𝑇 ( 𝐹 ‘ 𝑡 )  <  ( ( 𝑛  −  1 )  ·  𝐸 ) )  ∧  𝑥 : ( 0 ... 𝑛 ) ⟶ 𝐴  ∧  ∀ 𝑗  ∈  ( 0 ... 𝑛 ) ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 )  ∧  ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 )  ≤  1 )  ∧  ∀ 𝑡  ∈  ( 𝐷 ‘ 𝑗 ) ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 )  <  ( 𝐸  /  𝑛 )  ∧  ∀ 𝑡  ∈  ( 𝐵 ‘ 𝑗 ) ( 1  −  ( 𝐸  /  𝑛 ) )  <  ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) ) ) )  ∧  𝑗  ∈  ( 0 ... 𝑛 )  ∧  𝑡  ∈  ( 𝐵 ‘ 𝑗 ) )  →  𝑡  ∈  ( 𝐵 ‘ 𝑗 ) ) | 
						
							| 193 |  | rspa | ⊢ ( ( ∀ 𝑗  ∈  ( 0 ... 𝑛 ) ∀ 𝑡  ∈  ( 𝐵 ‘ 𝑗 ) ( 1  −  ( 𝐸  /  𝑛 ) )  <  ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 )  ∧  𝑗  ∈  ( 0 ... 𝑛 ) )  →  ∀ 𝑡  ∈  ( 𝐵 ‘ 𝑗 ) ( 1  −  ( 𝐸  /  𝑛 ) )  <  ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) ) | 
						
							| 194 | 193 | r19.21bi | ⊢ ( ( ( ∀ 𝑗  ∈  ( 0 ... 𝑛 ) ∀ 𝑡  ∈  ( 𝐵 ‘ 𝑗 ) ( 1  −  ( 𝐸  /  𝑛 ) )  <  ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 )  ∧  𝑗  ∈  ( 0 ... 𝑛 ) )  ∧  𝑡  ∈  ( 𝐵 ‘ 𝑗 ) )  →  ( 1  −  ( 𝐸  /  𝑛 ) )  <  ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) ) | 
						
							| 195 | 190 191 192 194 | syl21anc | ⊢ ( ( ( 𝜑  ∧  ( ( 𝑛  ∈  ℕ  ∧  ∀ 𝑡  ∈  𝑇 ( 𝐹 ‘ 𝑡 )  <  ( ( 𝑛  −  1 )  ·  𝐸 ) )  ∧  𝑥 : ( 0 ... 𝑛 ) ⟶ 𝐴  ∧  ∀ 𝑗  ∈  ( 0 ... 𝑛 ) ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 )  ∧  ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 )  ≤  1 )  ∧  ∀ 𝑡  ∈  ( 𝐷 ‘ 𝑗 ) ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 )  <  ( 𝐸  /  𝑛 )  ∧  ∀ 𝑡  ∈  ( 𝐵 ‘ 𝑗 ) ( 1  −  ( 𝐸  /  𝑛 ) )  <  ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) ) ) )  ∧  𝑗  ∈  ( 0 ... 𝑛 )  ∧  𝑡  ∈  ( 𝐵 ‘ 𝑗 ) )  →  ( 1  −  ( 𝐸  /  𝑛 ) )  <  ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) ) | 
						
							| 196 | 1 131 141 6 7 142 109 145 146 148 150 151 152 162 173 179 187 195 | stoweidlem34 | ⊢ ( ( 𝜑  ∧  ( ( 𝑛  ∈  ℕ  ∧  ∀ 𝑡  ∈  𝑇 ( 𝐹 ‘ 𝑡 )  <  ( ( 𝑛  −  1 )  ·  𝐸 ) )  ∧  𝑥 : ( 0 ... 𝑛 ) ⟶ 𝐴  ∧  ∀ 𝑗  ∈  ( 0 ... 𝑛 ) ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 )  ∧  ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 )  ≤  1 )  ∧  ∀ 𝑡  ∈  ( 𝐷 ‘ 𝑗 ) ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 )  <  ( 𝐸  /  𝑛 )  ∧  ∀ 𝑡  ∈  ( 𝐵 ‘ 𝑗 ) ( 1  −  ( 𝐸  /  𝑛 ) )  <  ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) ) ) )  →  ∀ 𝑡  ∈  𝑇 ∃ 𝑗  ∈  ℝ ( ( ( ( 𝑗  −  ( 4  /  3 ) )  ·  𝐸 )  <  ( 𝐹 ‘ 𝑡 )  ∧  ( 𝐹 ‘ 𝑡 )  ≤  ( ( 𝑗  −  ( 1  /  3 ) )  ·  𝐸 ) )  ∧  ( ( ( 𝑡  ∈  𝑇  ↦  Σ 𝑖  ∈  ( 0 ... 𝑛 ) ( 𝐸  ·  ( ( 𝑥 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ‘ 𝑡 )  <  ( ( 𝑗  +  ( 1  /  3 ) )  ·  𝐸 )  ∧  ( ( 𝑗  −  ( 4  /  3 ) )  ·  𝐸 )  <  ( ( 𝑡  ∈  𝑇  ↦  Σ 𝑖  ∈  ( 0 ... 𝑛 ) ( 𝐸  ·  ( ( 𝑥 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ‘ 𝑡 ) ) ) ) | 
						
							| 197 |  | nfmpt1 | ⊢ Ⅎ 𝑡 ( 𝑡  ∈  𝑇  ↦  Σ 𝑖  ∈  ( 0 ... 𝑛 ) ( 𝐸  ·  ( ( 𝑥 ‘ 𝑖 ) ‘ 𝑡 ) ) ) | 
						
							| 198 | 197 | nfeq2 | ⊢ Ⅎ 𝑡 𝑔  =  ( 𝑡  ∈  𝑇  ↦  Σ 𝑖  ∈  ( 0 ... 𝑛 ) ( 𝐸  ·  ( ( 𝑥 ‘ 𝑖 ) ‘ 𝑡 ) ) ) | 
						
							| 199 |  | fveq1 | ⊢ ( 𝑔  =  ( 𝑡  ∈  𝑇  ↦  Σ 𝑖  ∈  ( 0 ... 𝑛 ) ( 𝐸  ·  ( ( 𝑥 ‘ 𝑖 ) ‘ 𝑡 ) ) )  →  ( 𝑔 ‘ 𝑡 )  =  ( ( 𝑡  ∈  𝑇  ↦  Σ 𝑖  ∈  ( 0 ... 𝑛 ) ( 𝐸  ·  ( ( 𝑥 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ‘ 𝑡 ) ) | 
						
							| 200 | 199 | breq1d | ⊢ ( 𝑔  =  ( 𝑡  ∈  𝑇  ↦  Σ 𝑖  ∈  ( 0 ... 𝑛 ) ( 𝐸  ·  ( ( 𝑥 ‘ 𝑖 ) ‘ 𝑡 ) ) )  →  ( ( 𝑔 ‘ 𝑡 )  <  ( ( 𝑗  +  ( 1  /  3 ) )  ·  𝐸 )  ↔  ( ( 𝑡  ∈  𝑇  ↦  Σ 𝑖  ∈  ( 0 ... 𝑛 ) ( 𝐸  ·  ( ( 𝑥 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ‘ 𝑡 )  <  ( ( 𝑗  +  ( 1  /  3 ) )  ·  𝐸 ) ) ) | 
						
							| 201 | 199 | breq2d | ⊢ ( 𝑔  =  ( 𝑡  ∈  𝑇  ↦  Σ 𝑖  ∈  ( 0 ... 𝑛 ) ( 𝐸  ·  ( ( 𝑥 ‘ 𝑖 ) ‘ 𝑡 ) ) )  →  ( ( ( 𝑗  −  ( 4  /  3 ) )  ·  𝐸 )  <  ( 𝑔 ‘ 𝑡 )  ↔  ( ( 𝑗  −  ( 4  /  3 ) )  ·  𝐸 )  <  ( ( 𝑡  ∈  𝑇  ↦  Σ 𝑖  ∈  ( 0 ... 𝑛 ) ( 𝐸  ·  ( ( 𝑥 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ‘ 𝑡 ) ) ) | 
						
							| 202 | 200 201 | anbi12d | ⊢ ( 𝑔  =  ( 𝑡  ∈  𝑇  ↦  Σ 𝑖  ∈  ( 0 ... 𝑛 ) ( 𝐸  ·  ( ( 𝑥 ‘ 𝑖 ) ‘ 𝑡 ) ) )  →  ( ( ( 𝑔 ‘ 𝑡 )  <  ( ( 𝑗  +  ( 1  /  3 ) )  ·  𝐸 )  ∧  ( ( 𝑗  −  ( 4  /  3 ) )  ·  𝐸 )  <  ( 𝑔 ‘ 𝑡 ) )  ↔  ( ( ( 𝑡  ∈  𝑇  ↦  Σ 𝑖  ∈  ( 0 ... 𝑛 ) ( 𝐸  ·  ( ( 𝑥 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ‘ 𝑡 )  <  ( ( 𝑗  +  ( 1  /  3 ) )  ·  𝐸 )  ∧  ( ( 𝑗  −  ( 4  /  3 ) )  ·  𝐸 )  <  ( ( 𝑡  ∈  𝑇  ↦  Σ 𝑖  ∈  ( 0 ... 𝑛 ) ( 𝐸  ·  ( ( 𝑥 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ‘ 𝑡 ) ) ) ) | 
						
							| 203 | 202 | anbi2d | ⊢ ( 𝑔  =  ( 𝑡  ∈  𝑇  ↦  Σ 𝑖  ∈  ( 0 ... 𝑛 ) ( 𝐸  ·  ( ( 𝑥 ‘ 𝑖 ) ‘ 𝑡 ) ) )  →  ( ( ( ( ( 𝑗  −  ( 4  /  3 ) )  ·  𝐸 )  <  ( 𝐹 ‘ 𝑡 )  ∧  ( 𝐹 ‘ 𝑡 )  ≤  ( ( 𝑗  −  ( 1  /  3 ) )  ·  𝐸 ) )  ∧  ( ( 𝑔 ‘ 𝑡 )  <  ( ( 𝑗  +  ( 1  /  3 ) )  ·  𝐸 )  ∧  ( ( 𝑗  −  ( 4  /  3 ) )  ·  𝐸 )  <  ( 𝑔 ‘ 𝑡 ) ) )  ↔  ( ( ( ( 𝑗  −  ( 4  /  3 ) )  ·  𝐸 )  <  ( 𝐹 ‘ 𝑡 )  ∧  ( 𝐹 ‘ 𝑡 )  ≤  ( ( 𝑗  −  ( 1  /  3 ) )  ·  𝐸 ) )  ∧  ( ( ( 𝑡  ∈  𝑇  ↦  Σ 𝑖  ∈  ( 0 ... 𝑛 ) ( 𝐸  ·  ( ( 𝑥 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ‘ 𝑡 )  <  ( ( 𝑗  +  ( 1  /  3 ) )  ·  𝐸 )  ∧  ( ( 𝑗  −  ( 4  /  3 ) )  ·  𝐸 )  <  ( ( 𝑡  ∈  𝑇  ↦  Σ 𝑖  ∈  ( 0 ... 𝑛 ) ( 𝐸  ·  ( ( 𝑥 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ‘ 𝑡 ) ) ) ) ) | 
						
							| 204 | 203 | rexbidv | ⊢ ( 𝑔  =  ( 𝑡  ∈  𝑇  ↦  Σ 𝑖  ∈  ( 0 ... 𝑛 ) ( 𝐸  ·  ( ( 𝑥 ‘ 𝑖 ) ‘ 𝑡 ) ) )  →  ( ∃ 𝑗  ∈  ℝ ( ( ( ( 𝑗  −  ( 4  /  3 ) )  ·  𝐸 )  <  ( 𝐹 ‘ 𝑡 )  ∧  ( 𝐹 ‘ 𝑡 )  ≤  ( ( 𝑗  −  ( 1  /  3 ) )  ·  𝐸 ) )  ∧  ( ( 𝑔 ‘ 𝑡 )  <  ( ( 𝑗  +  ( 1  /  3 ) )  ·  𝐸 )  ∧  ( ( 𝑗  −  ( 4  /  3 ) )  ·  𝐸 )  <  ( 𝑔 ‘ 𝑡 ) ) )  ↔  ∃ 𝑗  ∈  ℝ ( ( ( ( 𝑗  −  ( 4  /  3 ) )  ·  𝐸 )  <  ( 𝐹 ‘ 𝑡 )  ∧  ( 𝐹 ‘ 𝑡 )  ≤  ( ( 𝑗  −  ( 1  /  3 ) )  ·  𝐸 ) )  ∧  ( ( ( 𝑡  ∈  𝑇  ↦  Σ 𝑖  ∈  ( 0 ... 𝑛 ) ( 𝐸  ·  ( ( 𝑥 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ‘ 𝑡 )  <  ( ( 𝑗  +  ( 1  /  3 ) )  ·  𝐸 )  ∧  ( ( 𝑗  −  ( 4  /  3 ) )  ·  𝐸 )  <  ( ( 𝑡  ∈  𝑇  ↦  Σ 𝑖  ∈  ( 0 ... 𝑛 ) ( 𝐸  ·  ( ( 𝑥 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ‘ 𝑡 ) ) ) ) ) | 
						
							| 205 | 198 204 | ralbid | ⊢ ( 𝑔  =  ( 𝑡  ∈  𝑇  ↦  Σ 𝑖  ∈  ( 0 ... 𝑛 ) ( 𝐸  ·  ( ( 𝑥 ‘ 𝑖 ) ‘ 𝑡 ) ) )  →  ( ∀ 𝑡  ∈  𝑇 ∃ 𝑗  ∈  ℝ ( ( ( ( 𝑗  −  ( 4  /  3 ) )  ·  𝐸 )  <  ( 𝐹 ‘ 𝑡 )  ∧  ( 𝐹 ‘ 𝑡 )  ≤  ( ( 𝑗  −  ( 1  /  3 ) )  ·  𝐸 ) )  ∧  ( ( 𝑔 ‘ 𝑡 )  <  ( ( 𝑗  +  ( 1  /  3 ) )  ·  𝐸 )  ∧  ( ( 𝑗  −  ( 4  /  3 ) )  ·  𝐸 )  <  ( 𝑔 ‘ 𝑡 ) ) )  ↔  ∀ 𝑡  ∈  𝑇 ∃ 𝑗  ∈  ℝ ( ( ( ( 𝑗  −  ( 4  /  3 ) )  ·  𝐸 )  <  ( 𝐹 ‘ 𝑡 )  ∧  ( 𝐹 ‘ 𝑡 )  ≤  ( ( 𝑗  −  ( 1  /  3 ) )  ·  𝐸 ) )  ∧  ( ( ( 𝑡  ∈  𝑇  ↦  Σ 𝑖  ∈  ( 0 ... 𝑛 ) ( 𝐸  ·  ( ( 𝑥 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ‘ 𝑡 )  <  ( ( 𝑗  +  ( 1  /  3 ) )  ·  𝐸 )  ∧  ( ( 𝑗  −  ( 4  /  3 ) )  ·  𝐸 )  <  ( ( 𝑡  ∈  𝑇  ↦  Σ 𝑖  ∈  ( 0 ... 𝑛 ) ( 𝐸  ·  ( ( 𝑥 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ‘ 𝑡 ) ) ) ) ) | 
						
							| 206 | 205 | rspcev | ⊢ ( ( ( 𝑡  ∈  𝑇  ↦  Σ 𝑖  ∈  ( 0 ... 𝑛 ) ( 𝐸  ·  ( ( 𝑥 ‘ 𝑖 ) ‘ 𝑡 ) ) )  ∈  𝐴  ∧  ∀ 𝑡  ∈  𝑇 ∃ 𝑗  ∈  ℝ ( ( ( ( 𝑗  −  ( 4  /  3 ) )  ·  𝐸 )  <  ( 𝐹 ‘ 𝑡 )  ∧  ( 𝐹 ‘ 𝑡 )  ≤  ( ( 𝑗  −  ( 1  /  3 ) )  ·  𝐸 ) )  ∧  ( ( ( 𝑡  ∈  𝑇  ↦  Σ 𝑖  ∈  ( 0 ... 𝑛 ) ( 𝐸  ·  ( ( 𝑥 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ‘ 𝑡 )  <  ( ( 𝑗  +  ( 1  /  3 ) )  ·  𝐸 )  ∧  ( ( 𝑗  −  ( 4  /  3 ) )  ·  𝐸 )  <  ( ( 𝑡  ∈  𝑇  ↦  Σ 𝑖  ∈  ( 0 ... 𝑛 ) ( 𝐸  ·  ( ( 𝑥 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ‘ 𝑡 ) ) ) )  →  ∃ 𝑔  ∈  𝐴 ∀ 𝑡  ∈  𝑇 ∃ 𝑗  ∈  ℝ ( ( ( ( 𝑗  −  ( 4  /  3 ) )  ·  𝐸 )  <  ( 𝐹 ‘ 𝑡 )  ∧  ( 𝐹 ‘ 𝑡 )  ≤  ( ( 𝑗  −  ( 1  /  3 ) )  ·  𝐸 ) )  ∧  ( ( 𝑔 ‘ 𝑡 )  <  ( ( 𝑗  +  ( 1  /  3 ) )  ·  𝐸 )  ∧  ( ( 𝑗  −  ( 4  /  3 ) )  ·  𝐸 )  <  ( 𝑔 ‘ 𝑡 ) ) ) ) | 
						
							| 207 | 125 196 206 | syl2anc | ⊢ ( ( 𝜑  ∧  ( ( 𝑛  ∈  ℕ  ∧  ∀ 𝑡  ∈  𝑇 ( 𝐹 ‘ 𝑡 )  <  ( ( 𝑛  −  1 )  ·  𝐸 ) )  ∧  𝑥 : ( 0 ... 𝑛 ) ⟶ 𝐴  ∧  ∀ 𝑗  ∈  ( 0 ... 𝑛 ) ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 )  ∧  ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 )  ≤  1 )  ∧  ∀ 𝑡  ∈  ( 𝐷 ‘ 𝑗 ) ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 )  <  ( 𝐸  /  𝑛 )  ∧  ∀ 𝑡  ∈  ( 𝐵 ‘ 𝑗 ) ( 1  −  ( 𝐸  /  𝑛 ) )  <  ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) ) ) )  →  ∃ 𝑔  ∈  𝐴 ∀ 𝑡  ∈  𝑇 ∃ 𝑗  ∈  ℝ ( ( ( ( 𝑗  −  ( 4  /  3 ) )  ·  𝐸 )  <  ( 𝐹 ‘ 𝑡 )  ∧  ( 𝐹 ‘ 𝑡 )  ≤  ( ( 𝑗  −  ( 1  /  3 ) )  ·  𝐸 ) )  ∧  ( ( 𝑔 ‘ 𝑡 )  <  ( ( 𝑗  +  ( 1  /  3 ) )  ·  𝐸 )  ∧  ( ( 𝑗  −  ( 4  /  3 ) )  ·  𝐸 )  <  ( 𝑔 ‘ 𝑡 ) ) ) ) | 
						
							| 208 | 207 | ex | ⊢ ( 𝜑  →  ( ( ( 𝑛  ∈  ℕ  ∧  ∀ 𝑡  ∈  𝑇 ( 𝐹 ‘ 𝑡 )  <  ( ( 𝑛  −  1 )  ·  𝐸 ) )  ∧  𝑥 : ( 0 ... 𝑛 ) ⟶ 𝐴  ∧  ∀ 𝑗  ∈  ( 0 ... 𝑛 ) ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 )  ∧  ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 )  ≤  1 )  ∧  ∀ 𝑡  ∈  ( 𝐷 ‘ 𝑗 ) ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 )  <  ( 𝐸  /  𝑛 )  ∧  ∀ 𝑡  ∈  ( 𝐵 ‘ 𝑗 ) ( 1  −  ( 𝐸  /  𝑛 ) )  <  ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) ) )  →  ∃ 𝑔  ∈  𝐴 ∀ 𝑡  ∈  𝑇 ∃ 𝑗  ∈  ℝ ( ( ( ( 𝑗  −  ( 4  /  3 ) )  ·  𝐸 )  <  ( 𝐹 ‘ 𝑡 )  ∧  ( 𝐹 ‘ 𝑡 )  ≤  ( ( 𝑗  −  ( 1  /  3 ) )  ·  𝐸 ) )  ∧  ( ( 𝑔 ‘ 𝑡 )  <  ( ( 𝑗  +  ( 1  /  3 ) )  ·  𝐸 )  ∧  ( ( 𝑗  −  ( 4  /  3 ) )  ·  𝐸 )  <  ( 𝑔 ‘ 𝑡 ) ) ) ) ) | 
						
							| 209 | 208 | 2eximdv | ⊢ ( 𝜑  →  ( ∃ 𝑛 ∃ 𝑥 ( ( 𝑛  ∈  ℕ  ∧  ∀ 𝑡  ∈  𝑇 ( 𝐹 ‘ 𝑡 )  <  ( ( 𝑛  −  1 )  ·  𝐸 ) )  ∧  𝑥 : ( 0 ... 𝑛 ) ⟶ 𝐴  ∧  ∀ 𝑗  ∈  ( 0 ... 𝑛 ) ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 )  ∧  ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 )  ≤  1 )  ∧  ∀ 𝑡  ∈  ( 𝐷 ‘ 𝑗 ) ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 )  <  ( 𝐸  /  𝑛 )  ∧  ∀ 𝑡  ∈  ( 𝐵 ‘ 𝑗 ) ( 1  −  ( 𝐸  /  𝑛 ) )  <  ( ( 𝑥 ‘ 𝑗 ) ‘ 𝑡 ) ) )  →  ∃ 𝑛 ∃ 𝑥 ∃ 𝑔  ∈  𝐴 ∀ 𝑡  ∈  𝑇 ∃ 𝑗  ∈  ℝ ( ( ( ( 𝑗  −  ( 4  /  3 ) )  ·  𝐸 )  <  ( 𝐹 ‘ 𝑡 )  ∧  ( 𝐹 ‘ 𝑡 )  ≤  ( ( 𝑗  −  ( 1  /  3 ) )  ·  𝐸 ) )  ∧  ( ( 𝑔 ‘ 𝑡 )  <  ( ( 𝑗  +  ( 1  /  3 ) )  ·  𝐸 )  ∧  ( ( 𝑗  −  ( 4  /  3 ) )  ·  𝐸 )  <  ( 𝑔 ‘ 𝑡 ) ) ) ) ) | 
						
							| 210 | 107 209 | mpd | ⊢ ( 𝜑  →  ∃ 𝑛 ∃ 𝑥 ∃ 𝑔  ∈  𝐴 ∀ 𝑡  ∈  𝑇 ∃ 𝑗  ∈  ℝ ( ( ( ( 𝑗  −  ( 4  /  3 ) )  ·  𝐸 )  <  ( 𝐹 ‘ 𝑡 )  ∧  ( 𝐹 ‘ 𝑡 )  ≤  ( ( 𝑗  −  ( 1  /  3 ) )  ·  𝐸 ) )  ∧  ( ( 𝑔 ‘ 𝑡 )  <  ( ( 𝑗  +  ( 1  /  3 ) )  ·  𝐸 )  ∧  ( ( 𝑗  −  ( 4  /  3 ) )  ·  𝐸 )  <  ( 𝑔 ‘ 𝑡 ) ) ) ) | 
						
							| 211 |  | idd | ⊢ ( 𝜑  →  ( ∃ 𝑥 ∃ 𝑔  ∈  𝐴 ∀ 𝑡  ∈  𝑇 ∃ 𝑗  ∈  ℝ ( ( ( ( 𝑗  −  ( 4  /  3 ) )  ·  𝐸 )  <  ( 𝐹 ‘ 𝑡 )  ∧  ( 𝐹 ‘ 𝑡 )  ≤  ( ( 𝑗  −  ( 1  /  3 ) )  ·  𝐸 ) )  ∧  ( ( 𝑔 ‘ 𝑡 )  <  ( ( 𝑗  +  ( 1  /  3 ) )  ·  𝐸 )  ∧  ( ( 𝑗  −  ( 4  /  3 ) )  ·  𝐸 )  <  ( 𝑔 ‘ 𝑡 ) ) )  →  ∃ 𝑥 ∃ 𝑔  ∈  𝐴 ∀ 𝑡  ∈  𝑇 ∃ 𝑗  ∈  ℝ ( ( ( ( 𝑗  −  ( 4  /  3 ) )  ·  𝐸 )  <  ( 𝐹 ‘ 𝑡 )  ∧  ( 𝐹 ‘ 𝑡 )  ≤  ( ( 𝑗  −  ( 1  /  3 ) )  ·  𝐸 ) )  ∧  ( ( 𝑔 ‘ 𝑡 )  <  ( ( 𝑗  +  ( 1  /  3 ) )  ·  𝐸 )  ∧  ( ( 𝑗  −  ( 4  /  3 ) )  ·  𝐸 )  <  ( 𝑔 ‘ 𝑡 ) ) ) ) ) | 
						
							| 212 | 211 | exlimdv | ⊢ ( 𝜑  →  ( ∃ 𝑛 ∃ 𝑥 ∃ 𝑔  ∈  𝐴 ∀ 𝑡  ∈  𝑇 ∃ 𝑗  ∈  ℝ ( ( ( ( 𝑗  −  ( 4  /  3 ) )  ·  𝐸 )  <  ( 𝐹 ‘ 𝑡 )  ∧  ( 𝐹 ‘ 𝑡 )  ≤  ( ( 𝑗  −  ( 1  /  3 ) )  ·  𝐸 ) )  ∧  ( ( 𝑔 ‘ 𝑡 )  <  ( ( 𝑗  +  ( 1  /  3 ) )  ·  𝐸 )  ∧  ( ( 𝑗  −  ( 4  /  3 ) )  ·  𝐸 )  <  ( 𝑔 ‘ 𝑡 ) ) )  →  ∃ 𝑥 ∃ 𝑔  ∈  𝐴 ∀ 𝑡  ∈  𝑇 ∃ 𝑗  ∈  ℝ ( ( ( ( 𝑗  −  ( 4  /  3 ) )  ·  𝐸 )  <  ( 𝐹 ‘ 𝑡 )  ∧  ( 𝐹 ‘ 𝑡 )  ≤  ( ( 𝑗  −  ( 1  /  3 ) )  ·  𝐸 ) )  ∧  ( ( 𝑔 ‘ 𝑡 )  <  ( ( 𝑗  +  ( 1  /  3 ) )  ·  𝐸 )  ∧  ( ( 𝑗  −  ( 4  /  3 ) )  ·  𝐸 )  <  ( 𝑔 ‘ 𝑡 ) ) ) ) ) | 
						
							| 213 | 210 212 | mpd | ⊢ ( 𝜑  →  ∃ 𝑥 ∃ 𝑔  ∈  𝐴 ∀ 𝑡  ∈  𝑇 ∃ 𝑗  ∈  ℝ ( ( ( ( 𝑗  −  ( 4  /  3 ) )  ·  𝐸 )  <  ( 𝐹 ‘ 𝑡 )  ∧  ( 𝐹 ‘ 𝑡 )  ≤  ( ( 𝑗  −  ( 1  /  3 ) )  ·  𝐸 ) )  ∧  ( ( 𝑔 ‘ 𝑡 )  <  ( ( 𝑗  +  ( 1  /  3 ) )  ·  𝐸 )  ∧  ( ( 𝑗  −  ( 4  /  3 ) )  ·  𝐸 )  <  ( 𝑔 ‘ 𝑡 ) ) ) ) | 
						
							| 214 |  | idd | ⊢ ( 𝜑  →  ( ∃ 𝑔  ∈  𝐴 ∀ 𝑡  ∈  𝑇 ∃ 𝑗  ∈  ℝ ( ( ( ( 𝑗  −  ( 4  /  3 ) )  ·  𝐸 )  <  ( 𝐹 ‘ 𝑡 )  ∧  ( 𝐹 ‘ 𝑡 )  ≤  ( ( 𝑗  −  ( 1  /  3 ) )  ·  𝐸 ) )  ∧  ( ( 𝑔 ‘ 𝑡 )  <  ( ( 𝑗  +  ( 1  /  3 ) )  ·  𝐸 )  ∧  ( ( 𝑗  −  ( 4  /  3 ) )  ·  𝐸 )  <  ( 𝑔 ‘ 𝑡 ) ) )  →  ∃ 𝑔  ∈  𝐴 ∀ 𝑡  ∈  𝑇 ∃ 𝑗  ∈  ℝ ( ( ( ( 𝑗  −  ( 4  /  3 ) )  ·  𝐸 )  <  ( 𝐹 ‘ 𝑡 )  ∧  ( 𝐹 ‘ 𝑡 )  ≤  ( ( 𝑗  −  ( 1  /  3 ) )  ·  𝐸 ) )  ∧  ( ( 𝑔 ‘ 𝑡 )  <  ( ( 𝑗  +  ( 1  /  3 ) )  ·  𝐸 )  ∧  ( ( 𝑗  −  ( 4  /  3 ) )  ·  𝐸 )  <  ( 𝑔 ‘ 𝑡 ) ) ) ) ) | 
						
							| 215 | 214 | exlimdv | ⊢ ( 𝜑  →  ( ∃ 𝑥 ∃ 𝑔  ∈  𝐴 ∀ 𝑡  ∈  𝑇 ∃ 𝑗  ∈  ℝ ( ( ( ( 𝑗  −  ( 4  /  3 ) )  ·  𝐸 )  <  ( 𝐹 ‘ 𝑡 )  ∧  ( 𝐹 ‘ 𝑡 )  ≤  ( ( 𝑗  −  ( 1  /  3 ) )  ·  𝐸 ) )  ∧  ( ( 𝑔 ‘ 𝑡 )  <  ( ( 𝑗  +  ( 1  /  3 ) )  ·  𝐸 )  ∧  ( ( 𝑗  −  ( 4  /  3 ) )  ·  𝐸 )  <  ( 𝑔 ‘ 𝑡 ) ) )  →  ∃ 𝑔  ∈  𝐴 ∀ 𝑡  ∈  𝑇 ∃ 𝑗  ∈  ℝ ( ( ( ( 𝑗  −  ( 4  /  3 ) )  ·  𝐸 )  <  ( 𝐹 ‘ 𝑡 )  ∧  ( 𝐹 ‘ 𝑡 )  ≤  ( ( 𝑗  −  ( 1  /  3 ) )  ·  𝐸 ) )  ∧  ( ( 𝑔 ‘ 𝑡 )  <  ( ( 𝑗  +  ( 1  /  3 ) )  ·  𝐸 )  ∧  ( ( 𝑗  −  ( 4  /  3 ) )  ·  𝐸 )  <  ( 𝑔 ‘ 𝑡 ) ) ) ) ) | 
						
							| 216 | 213 215 | mpd | ⊢ ( 𝜑  →  ∃ 𝑔  ∈  𝐴 ∀ 𝑡  ∈  𝑇 ∃ 𝑗  ∈  ℝ ( ( ( ( 𝑗  −  ( 4  /  3 ) )  ·  𝐸 )  <  ( 𝐹 ‘ 𝑡 )  ∧  ( 𝐹 ‘ 𝑡 )  ≤  ( ( 𝑗  −  ( 1  /  3 ) )  ·  𝐸 ) )  ∧  ( ( 𝑔 ‘ 𝑡 )  <  ( ( 𝑗  +  ( 1  /  3 ) )  ·  𝐸 )  ∧  ( ( 𝑗  −  ( 4  /  3 ) )  ·  𝐸 )  <  ( 𝑔 ‘ 𝑡 ) ) ) ) |