| Step | Hyp | Ref | Expression | 
						
							| 1 |  | stoweidlem17.1 | ⊢ Ⅎ 𝑡 𝜑 | 
						
							| 2 |  | stoweidlem17.2 | ⊢ ( 𝜑  →  𝑁  ∈  ℕ ) | 
						
							| 3 |  | stoweidlem17.3 | ⊢ ( 𝜑  →  𝑋 : ( 0 ... 𝑁 ) ⟶ 𝐴 ) | 
						
							| 4 |  | stoweidlem17.4 | ⊢ ( ( 𝜑  ∧  𝑓  ∈  𝐴  ∧  𝑔  ∈  𝐴 )  →  ( 𝑡  ∈  𝑇  ↦  ( ( 𝑓 ‘ 𝑡 )  +  ( 𝑔 ‘ 𝑡 ) ) )  ∈  𝐴 ) | 
						
							| 5 |  | stoweidlem17.5 | ⊢ ( ( 𝜑  ∧  𝑓  ∈  𝐴  ∧  𝑔  ∈  𝐴 )  →  ( 𝑡  ∈  𝑇  ↦  ( ( 𝑓 ‘ 𝑡 )  ·  ( 𝑔 ‘ 𝑡 ) ) )  ∈  𝐴 ) | 
						
							| 6 |  | stoweidlem17.6 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ )  →  ( 𝑡  ∈  𝑇  ↦  𝑥 )  ∈  𝐴 ) | 
						
							| 7 |  | stoweidlem17.7 | ⊢ ( 𝜑  →  𝐸  ∈  ℝ ) | 
						
							| 8 |  | stoweidlem17.8 | ⊢ ( ( 𝜑  ∧  𝑓  ∈  𝐴 )  →  𝑓 : 𝑇 ⟶ ℝ ) | 
						
							| 9 | 2 | nnnn0d | ⊢ ( 𝜑  →  𝑁  ∈  ℕ0 ) | 
						
							| 10 |  | nn0uz | ⊢ ℕ0  =  ( ℤ≥ ‘ 0 ) | 
						
							| 11 | 9 10 | eleqtrdi | ⊢ ( 𝜑  →  𝑁  ∈  ( ℤ≥ ‘ 0 ) ) | 
						
							| 12 |  | eluzfz2 | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 0 )  →  𝑁  ∈  ( 0 ... 𝑁 ) ) | 
						
							| 13 | 11 12 | syl | ⊢ ( 𝜑  →  𝑁  ∈  ( 0 ... 𝑁 ) ) | 
						
							| 14 | 13 | ancli | ⊢ ( 𝜑  →  ( 𝜑  ∧  𝑁  ∈  ( 0 ... 𝑁 ) ) ) | 
						
							| 15 |  | eleq1 | ⊢ ( 𝑛  =  0  →  ( 𝑛  ∈  ( 0 ... 𝑁 )  ↔  0  ∈  ( 0 ... 𝑁 ) ) ) | 
						
							| 16 | 15 | anbi2d | ⊢ ( 𝑛  =  0  →  ( ( 𝜑  ∧  𝑛  ∈  ( 0 ... 𝑁 ) )  ↔  ( 𝜑  ∧  0  ∈  ( 0 ... 𝑁 ) ) ) ) | 
						
							| 17 |  | oveq2 | ⊢ ( 𝑛  =  0  →  ( 0 ... 𝑛 )  =  ( 0 ... 0 ) ) | 
						
							| 18 | 17 | sumeq1d | ⊢ ( 𝑛  =  0  →  Σ 𝑖  ∈  ( 0 ... 𝑛 ) ( 𝐸  ·  ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) )  =  Σ 𝑖  ∈  ( 0 ... 0 ) ( 𝐸  ·  ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) | 
						
							| 19 | 18 | mpteq2dv | ⊢ ( 𝑛  =  0  →  ( 𝑡  ∈  𝑇  ↦  Σ 𝑖  ∈  ( 0 ... 𝑛 ) ( 𝐸  ·  ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) )  =  ( 𝑡  ∈  𝑇  ↦  Σ 𝑖  ∈  ( 0 ... 0 ) ( 𝐸  ·  ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ) | 
						
							| 20 | 19 | eleq1d | ⊢ ( 𝑛  =  0  →  ( ( 𝑡  ∈  𝑇  ↦  Σ 𝑖  ∈  ( 0 ... 𝑛 ) ( 𝐸  ·  ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) )  ∈  𝐴  ↔  ( 𝑡  ∈  𝑇  ↦  Σ 𝑖  ∈  ( 0 ... 0 ) ( 𝐸  ·  ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) )  ∈  𝐴 ) ) | 
						
							| 21 | 16 20 | imbi12d | ⊢ ( 𝑛  =  0  →  ( ( ( 𝜑  ∧  𝑛  ∈  ( 0 ... 𝑁 ) )  →  ( 𝑡  ∈  𝑇  ↦  Σ 𝑖  ∈  ( 0 ... 𝑛 ) ( 𝐸  ·  ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) )  ∈  𝐴 )  ↔  ( ( 𝜑  ∧  0  ∈  ( 0 ... 𝑁 ) )  →  ( 𝑡  ∈  𝑇  ↦  Σ 𝑖  ∈  ( 0 ... 0 ) ( 𝐸  ·  ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) )  ∈  𝐴 ) ) ) | 
						
							| 22 |  | eleq1 | ⊢ ( 𝑛  =  𝑚  →  ( 𝑛  ∈  ( 0 ... 𝑁 )  ↔  𝑚  ∈  ( 0 ... 𝑁 ) ) ) | 
						
							| 23 | 22 | anbi2d | ⊢ ( 𝑛  =  𝑚  →  ( ( 𝜑  ∧  𝑛  ∈  ( 0 ... 𝑁 ) )  ↔  ( 𝜑  ∧  𝑚  ∈  ( 0 ... 𝑁 ) ) ) ) | 
						
							| 24 |  | oveq2 | ⊢ ( 𝑛  =  𝑚  →  ( 0 ... 𝑛 )  =  ( 0 ... 𝑚 ) ) | 
						
							| 25 | 24 | sumeq1d | ⊢ ( 𝑛  =  𝑚  →  Σ 𝑖  ∈  ( 0 ... 𝑛 ) ( 𝐸  ·  ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) )  =  Σ 𝑖  ∈  ( 0 ... 𝑚 ) ( 𝐸  ·  ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) | 
						
							| 26 | 25 | mpteq2dv | ⊢ ( 𝑛  =  𝑚  →  ( 𝑡  ∈  𝑇  ↦  Σ 𝑖  ∈  ( 0 ... 𝑛 ) ( 𝐸  ·  ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) )  =  ( 𝑡  ∈  𝑇  ↦  Σ 𝑖  ∈  ( 0 ... 𝑚 ) ( 𝐸  ·  ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ) | 
						
							| 27 | 26 | eleq1d | ⊢ ( 𝑛  =  𝑚  →  ( ( 𝑡  ∈  𝑇  ↦  Σ 𝑖  ∈  ( 0 ... 𝑛 ) ( 𝐸  ·  ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) )  ∈  𝐴  ↔  ( 𝑡  ∈  𝑇  ↦  Σ 𝑖  ∈  ( 0 ... 𝑚 ) ( 𝐸  ·  ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) )  ∈  𝐴 ) ) | 
						
							| 28 | 23 27 | imbi12d | ⊢ ( 𝑛  =  𝑚  →  ( ( ( 𝜑  ∧  𝑛  ∈  ( 0 ... 𝑁 ) )  →  ( 𝑡  ∈  𝑇  ↦  Σ 𝑖  ∈  ( 0 ... 𝑛 ) ( 𝐸  ·  ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) )  ∈  𝐴 )  ↔  ( ( 𝜑  ∧  𝑚  ∈  ( 0 ... 𝑁 ) )  →  ( 𝑡  ∈  𝑇  ↦  Σ 𝑖  ∈  ( 0 ... 𝑚 ) ( 𝐸  ·  ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) )  ∈  𝐴 ) ) ) | 
						
							| 29 |  | eleq1 | ⊢ ( 𝑛  =  ( 𝑚  +  1 )  →  ( 𝑛  ∈  ( 0 ... 𝑁 )  ↔  ( 𝑚  +  1 )  ∈  ( 0 ... 𝑁 ) ) ) | 
						
							| 30 | 29 | anbi2d | ⊢ ( 𝑛  =  ( 𝑚  +  1 )  →  ( ( 𝜑  ∧  𝑛  ∈  ( 0 ... 𝑁 ) )  ↔  ( 𝜑  ∧  ( 𝑚  +  1 )  ∈  ( 0 ... 𝑁 ) ) ) ) | 
						
							| 31 |  | oveq2 | ⊢ ( 𝑛  =  ( 𝑚  +  1 )  →  ( 0 ... 𝑛 )  =  ( 0 ... ( 𝑚  +  1 ) ) ) | 
						
							| 32 | 31 | sumeq1d | ⊢ ( 𝑛  =  ( 𝑚  +  1 )  →  Σ 𝑖  ∈  ( 0 ... 𝑛 ) ( 𝐸  ·  ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) )  =  Σ 𝑖  ∈  ( 0 ... ( 𝑚  +  1 ) ) ( 𝐸  ·  ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) | 
						
							| 33 | 32 | mpteq2dv | ⊢ ( 𝑛  =  ( 𝑚  +  1 )  →  ( 𝑡  ∈  𝑇  ↦  Σ 𝑖  ∈  ( 0 ... 𝑛 ) ( 𝐸  ·  ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) )  =  ( 𝑡  ∈  𝑇  ↦  Σ 𝑖  ∈  ( 0 ... ( 𝑚  +  1 ) ) ( 𝐸  ·  ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ) | 
						
							| 34 | 33 | eleq1d | ⊢ ( 𝑛  =  ( 𝑚  +  1 )  →  ( ( 𝑡  ∈  𝑇  ↦  Σ 𝑖  ∈  ( 0 ... 𝑛 ) ( 𝐸  ·  ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) )  ∈  𝐴  ↔  ( 𝑡  ∈  𝑇  ↦  Σ 𝑖  ∈  ( 0 ... ( 𝑚  +  1 ) ) ( 𝐸  ·  ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) )  ∈  𝐴 ) ) | 
						
							| 35 | 30 34 | imbi12d | ⊢ ( 𝑛  =  ( 𝑚  +  1 )  →  ( ( ( 𝜑  ∧  𝑛  ∈  ( 0 ... 𝑁 ) )  →  ( 𝑡  ∈  𝑇  ↦  Σ 𝑖  ∈  ( 0 ... 𝑛 ) ( 𝐸  ·  ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) )  ∈  𝐴 )  ↔  ( ( 𝜑  ∧  ( 𝑚  +  1 )  ∈  ( 0 ... 𝑁 ) )  →  ( 𝑡  ∈  𝑇  ↦  Σ 𝑖  ∈  ( 0 ... ( 𝑚  +  1 ) ) ( 𝐸  ·  ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) )  ∈  𝐴 ) ) ) | 
						
							| 36 |  | eleq1 | ⊢ ( 𝑛  =  𝑁  →  ( 𝑛  ∈  ( 0 ... 𝑁 )  ↔  𝑁  ∈  ( 0 ... 𝑁 ) ) ) | 
						
							| 37 | 36 | anbi2d | ⊢ ( 𝑛  =  𝑁  →  ( ( 𝜑  ∧  𝑛  ∈  ( 0 ... 𝑁 ) )  ↔  ( 𝜑  ∧  𝑁  ∈  ( 0 ... 𝑁 ) ) ) ) | 
						
							| 38 |  | oveq2 | ⊢ ( 𝑛  =  𝑁  →  ( 0 ... 𝑛 )  =  ( 0 ... 𝑁 ) ) | 
						
							| 39 | 38 | sumeq1d | ⊢ ( 𝑛  =  𝑁  →  Σ 𝑖  ∈  ( 0 ... 𝑛 ) ( 𝐸  ·  ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) )  =  Σ 𝑖  ∈  ( 0 ... 𝑁 ) ( 𝐸  ·  ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) | 
						
							| 40 | 39 | mpteq2dv | ⊢ ( 𝑛  =  𝑁  →  ( 𝑡  ∈  𝑇  ↦  Σ 𝑖  ∈  ( 0 ... 𝑛 ) ( 𝐸  ·  ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) )  =  ( 𝑡  ∈  𝑇  ↦  Σ 𝑖  ∈  ( 0 ... 𝑁 ) ( 𝐸  ·  ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ) | 
						
							| 41 | 40 | eleq1d | ⊢ ( 𝑛  =  𝑁  →  ( ( 𝑡  ∈  𝑇  ↦  Σ 𝑖  ∈  ( 0 ... 𝑛 ) ( 𝐸  ·  ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) )  ∈  𝐴  ↔  ( 𝑡  ∈  𝑇  ↦  Σ 𝑖  ∈  ( 0 ... 𝑁 ) ( 𝐸  ·  ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) )  ∈  𝐴 ) ) | 
						
							| 42 | 37 41 | imbi12d | ⊢ ( 𝑛  =  𝑁  →  ( ( ( 𝜑  ∧  𝑛  ∈  ( 0 ... 𝑁 ) )  →  ( 𝑡  ∈  𝑇  ↦  Σ 𝑖  ∈  ( 0 ... 𝑛 ) ( 𝐸  ·  ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) )  ∈  𝐴 )  ↔  ( ( 𝜑  ∧  𝑁  ∈  ( 0 ... 𝑁 ) )  →  ( 𝑡  ∈  𝑇  ↦  Σ 𝑖  ∈  ( 0 ... 𝑁 ) ( 𝐸  ·  ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) )  ∈  𝐴 ) ) ) | 
						
							| 43 |  | 0z | ⊢ 0  ∈  ℤ | 
						
							| 44 |  | fzsn | ⊢ ( 0  ∈  ℤ  →  ( 0 ... 0 )  =  { 0 } ) | 
						
							| 45 | 43 44 | ax-mp | ⊢ ( 0 ... 0 )  =  { 0 } | 
						
							| 46 | 45 | sumeq1i | ⊢ Σ 𝑖  ∈  ( 0 ... 0 ) ( 𝐸  ·  ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) )  =  Σ 𝑖  ∈  { 0 } ( 𝐸  ·  ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) | 
						
							| 47 | 46 | mpteq2i | ⊢ ( 𝑡  ∈  𝑇  ↦  Σ 𝑖  ∈  ( 0 ... 0 ) ( 𝐸  ·  ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) )  =  ( 𝑡  ∈  𝑇  ↦  Σ 𝑖  ∈  { 0 } ( 𝐸  ·  ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) | 
						
							| 48 | 7 | adantr | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  →  𝐸  ∈  ℝ ) | 
						
							| 49 | 48 | recnd | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  →  𝐸  ∈  ℂ ) | 
						
							| 50 |  | nnz | ⊢ ( 𝑁  ∈  ℕ  →  𝑁  ∈  ℤ ) | 
						
							| 51 |  | nngt0 | ⊢ ( 𝑁  ∈  ℕ  →  0  <  𝑁 ) | 
						
							| 52 |  | 0re | ⊢ 0  ∈  ℝ | 
						
							| 53 |  | nnre | ⊢ ( 𝑁  ∈  ℕ  →  𝑁  ∈  ℝ ) | 
						
							| 54 |  | ltle | ⊢ ( ( 0  ∈  ℝ  ∧  𝑁  ∈  ℝ )  →  ( 0  <  𝑁  →  0  ≤  𝑁 ) ) | 
						
							| 55 | 52 53 54 | sylancr | ⊢ ( 𝑁  ∈  ℕ  →  ( 0  <  𝑁  →  0  ≤  𝑁 ) ) | 
						
							| 56 | 51 55 | mpd | ⊢ ( 𝑁  ∈  ℕ  →  0  ≤  𝑁 ) | 
						
							| 57 | 50 56 | jca | ⊢ ( 𝑁  ∈  ℕ  →  ( 𝑁  ∈  ℤ  ∧  0  ≤  𝑁 ) ) | 
						
							| 58 | 2 57 | syl | ⊢ ( 𝜑  →  ( 𝑁  ∈  ℤ  ∧  0  ≤  𝑁 ) ) | 
						
							| 59 | 43 | eluz1i | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 0 )  ↔  ( 𝑁  ∈  ℤ  ∧  0  ≤  𝑁 ) ) | 
						
							| 60 | 58 59 | sylibr | ⊢ ( 𝜑  →  𝑁  ∈  ( ℤ≥ ‘ 0 ) ) | 
						
							| 61 |  | eluzfz1 | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 0 )  →  0  ∈  ( 0 ... 𝑁 ) ) | 
						
							| 62 | 60 61 | syl | ⊢ ( 𝜑  →  0  ∈  ( 0 ... 𝑁 ) ) | 
						
							| 63 | 3 62 | ffvelcdmd | ⊢ ( 𝜑  →  ( 𝑋 ‘ 0 )  ∈  𝐴 ) | 
						
							| 64 |  | feq1 | ⊢ ( 𝑓  =  ( 𝑋 ‘ 0 )  →  ( 𝑓 : 𝑇 ⟶ ℝ  ↔  ( 𝑋 ‘ 0 ) : 𝑇 ⟶ ℝ ) ) | 
						
							| 65 | 64 | imbi2d | ⊢ ( 𝑓  =  ( 𝑋 ‘ 0 )  →  ( ( 𝜑  →  𝑓 : 𝑇 ⟶ ℝ )  ↔  ( 𝜑  →  ( 𝑋 ‘ 0 ) : 𝑇 ⟶ ℝ ) ) ) | 
						
							| 66 | 8 | expcom | ⊢ ( 𝑓  ∈  𝐴  →  ( 𝜑  →  𝑓 : 𝑇 ⟶ ℝ ) ) | 
						
							| 67 | 65 66 | vtoclga | ⊢ ( ( 𝑋 ‘ 0 )  ∈  𝐴  →  ( 𝜑  →  ( 𝑋 ‘ 0 ) : 𝑇 ⟶ ℝ ) ) | 
						
							| 68 | 63 67 | mpcom | ⊢ ( 𝜑  →  ( 𝑋 ‘ 0 ) : 𝑇 ⟶ ℝ ) | 
						
							| 69 | 68 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  →  ( ( 𝑋 ‘ 0 ) ‘ 𝑡 )  ∈  ℝ ) | 
						
							| 70 | 69 | recnd | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  →  ( ( 𝑋 ‘ 0 ) ‘ 𝑡 )  ∈  ℂ ) | 
						
							| 71 | 49 70 | mulcld | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  →  ( 𝐸  ·  ( ( 𝑋 ‘ 0 ) ‘ 𝑡 ) )  ∈  ℂ ) | 
						
							| 72 |  | fveq2 | ⊢ ( 𝑖  =  0  →  ( 𝑋 ‘ 𝑖 )  =  ( 𝑋 ‘ 0 ) ) | 
						
							| 73 | 72 | fveq1d | ⊢ ( 𝑖  =  0  →  ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 )  =  ( ( 𝑋 ‘ 0 ) ‘ 𝑡 ) ) | 
						
							| 74 | 73 | oveq2d | ⊢ ( 𝑖  =  0  →  ( 𝐸  ·  ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) )  =  ( 𝐸  ·  ( ( 𝑋 ‘ 0 ) ‘ 𝑡 ) ) ) | 
						
							| 75 | 74 | sumsn | ⊢ ( ( 0  ∈  ℤ  ∧  ( 𝐸  ·  ( ( 𝑋 ‘ 0 ) ‘ 𝑡 ) )  ∈  ℂ )  →  Σ 𝑖  ∈  { 0 } ( 𝐸  ·  ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) )  =  ( 𝐸  ·  ( ( 𝑋 ‘ 0 ) ‘ 𝑡 ) ) ) | 
						
							| 76 | 43 71 75 | sylancr | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  →  Σ 𝑖  ∈  { 0 } ( 𝐸  ·  ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) )  =  ( 𝐸  ·  ( ( 𝑋 ‘ 0 ) ‘ 𝑡 ) ) ) | 
						
							| 77 | 1 76 | mpteq2da | ⊢ ( 𝜑  →  ( 𝑡  ∈  𝑇  ↦  Σ 𝑖  ∈  { 0 } ( 𝐸  ·  ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) )  =  ( 𝑡  ∈  𝑇  ↦  ( 𝐸  ·  ( ( 𝑋 ‘ 0 ) ‘ 𝑡 ) ) ) ) | 
						
							| 78 | 47 77 | eqtrid | ⊢ ( 𝜑  →  ( 𝑡  ∈  𝑇  ↦  Σ 𝑖  ∈  ( 0 ... 0 ) ( 𝐸  ·  ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) )  =  ( 𝑡  ∈  𝑇  ↦  ( 𝐸  ·  ( ( 𝑋 ‘ 0 ) ‘ 𝑡 ) ) ) ) | 
						
							| 79 | 1 5 6 8 7 63 | stoweidlem2 | ⊢ ( 𝜑  →  ( 𝑡  ∈  𝑇  ↦  ( 𝐸  ·  ( ( 𝑋 ‘ 0 ) ‘ 𝑡 ) ) )  ∈  𝐴 ) | 
						
							| 80 | 78 79 | eqeltrd | ⊢ ( 𝜑  →  ( 𝑡  ∈  𝑇  ↦  Σ 𝑖  ∈  ( 0 ... 0 ) ( 𝐸  ·  ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) )  ∈  𝐴 ) | 
						
							| 81 | 80 | adantr | ⊢ ( ( 𝜑  ∧  0  ∈  ( 0 ... 𝑁 ) )  →  ( 𝑡  ∈  𝑇  ↦  Σ 𝑖  ∈  ( 0 ... 0 ) ( 𝐸  ·  ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) )  ∈  𝐴 ) | 
						
							| 82 |  | eqidd | ⊢ ( 𝑟  =  𝑡  →  𝐸  =  𝐸 ) | 
						
							| 83 | 82 | cbvmptv | ⊢ ( 𝑟  ∈  𝑇  ↦  𝐸 )  =  ( 𝑡  ∈  𝑇  ↦  𝐸 ) | 
						
							| 84 | 83 | eqcomi | ⊢ ( 𝑡  ∈  𝑇  ↦  𝐸 )  =  ( 𝑟  ∈  𝑇  ↦  𝐸 ) | 
						
							| 85 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  →  𝑡  ∈  𝑇 ) | 
						
							| 86 | 84 82 85 48 | fvmptd3 | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  →  ( ( 𝑡  ∈  𝑇  ↦  𝐸 ) ‘ 𝑡 )  =  𝐸 ) | 
						
							| 87 | 86 | oveq1d | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  →  ( ( ( 𝑡  ∈  𝑇  ↦  𝐸 ) ‘ 𝑡 )  ·  ( ( 𝑋 ‘ ( 𝑚  +  1 ) ) ‘ 𝑡 ) )  =  ( 𝐸  ·  ( ( 𝑋 ‘ ( 𝑚  +  1 ) ) ‘ 𝑡 ) ) ) | 
						
							| 88 | 1 87 | mpteq2da | ⊢ ( 𝜑  →  ( 𝑡  ∈  𝑇  ↦  ( ( ( 𝑡  ∈  𝑇  ↦  𝐸 ) ‘ 𝑡 )  ·  ( ( 𝑋 ‘ ( 𝑚  +  1 ) ) ‘ 𝑡 ) ) )  =  ( 𝑡  ∈  𝑇  ↦  ( 𝐸  ·  ( ( 𝑋 ‘ ( 𝑚  +  1 ) ) ‘ 𝑡 ) ) ) ) | 
						
							| 89 | 88 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑚  +  1 )  ∈  ( 0 ... 𝑁 ) )  →  ( 𝑡  ∈  𝑇  ↦  ( ( ( 𝑡  ∈  𝑇  ↦  𝐸 ) ‘ 𝑡 )  ·  ( ( 𝑋 ‘ ( 𝑚  +  1 ) ) ‘ 𝑡 ) ) )  =  ( 𝑡  ∈  𝑇  ↦  ( 𝐸  ·  ( ( 𝑋 ‘ ( 𝑚  +  1 ) ) ‘ 𝑡 ) ) ) ) | 
						
							| 90 | 3 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  ( 𝑚  +  1 )  ∈  ( 0 ... 𝑁 ) )  →  ( 𝑋 ‘ ( 𝑚  +  1 ) )  ∈  𝐴 ) | 
						
							| 91 |  | simpl | ⊢ ( ( 𝜑  ∧  ( 𝑚  +  1 )  ∈  ( 0 ... 𝑁 ) )  →  𝜑 ) | 
						
							| 92 |  | id | ⊢ ( 𝑥  =  𝐸  →  𝑥  =  𝐸 ) | 
						
							| 93 | 92 | mpteq2dv | ⊢ ( 𝑥  =  𝐸  →  ( 𝑡  ∈  𝑇  ↦  𝑥 )  =  ( 𝑡  ∈  𝑇  ↦  𝐸 ) ) | 
						
							| 94 | 93 | eleq1d | ⊢ ( 𝑥  =  𝐸  →  ( ( 𝑡  ∈  𝑇  ↦  𝑥 )  ∈  𝐴  ↔  ( 𝑡  ∈  𝑇  ↦  𝐸 )  ∈  𝐴 ) ) | 
						
							| 95 | 94 | imbi2d | ⊢ ( 𝑥  =  𝐸  →  ( ( 𝜑  →  ( 𝑡  ∈  𝑇  ↦  𝑥 )  ∈  𝐴 )  ↔  ( 𝜑  →  ( 𝑡  ∈  𝑇  ↦  𝐸 )  ∈  𝐴 ) ) ) | 
						
							| 96 | 6 | expcom | ⊢ ( 𝑥  ∈  ℝ  →  ( 𝜑  →  ( 𝑡  ∈  𝑇  ↦  𝑥 )  ∈  𝐴 ) ) | 
						
							| 97 | 95 96 | vtoclga | ⊢ ( 𝐸  ∈  ℝ  →  ( 𝜑  →  ( 𝑡  ∈  𝑇  ↦  𝐸 )  ∈  𝐴 ) ) | 
						
							| 98 | 7 97 | mpcom | ⊢ ( 𝜑  →  ( 𝑡  ∈  𝑇  ↦  𝐸 )  ∈  𝐴 ) | 
						
							| 99 | 98 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑚  +  1 )  ∈  ( 0 ... 𝑁 ) )  →  ( 𝑡  ∈  𝑇  ↦  𝐸 )  ∈  𝐴 ) | 
						
							| 100 |  | fveq1 | ⊢ ( 𝑔  =  ( 𝑋 ‘ ( 𝑚  +  1 ) )  →  ( 𝑔 ‘ 𝑡 )  =  ( ( 𝑋 ‘ ( 𝑚  +  1 ) ) ‘ 𝑡 ) ) | 
						
							| 101 | 100 | oveq2d | ⊢ ( 𝑔  =  ( 𝑋 ‘ ( 𝑚  +  1 ) )  →  ( ( ( 𝑡  ∈  𝑇  ↦  𝐸 ) ‘ 𝑡 )  ·  ( 𝑔 ‘ 𝑡 ) )  =  ( ( ( 𝑡  ∈  𝑇  ↦  𝐸 ) ‘ 𝑡 )  ·  ( ( 𝑋 ‘ ( 𝑚  +  1 ) ) ‘ 𝑡 ) ) ) | 
						
							| 102 | 101 | mpteq2dv | ⊢ ( 𝑔  =  ( 𝑋 ‘ ( 𝑚  +  1 ) )  →  ( 𝑡  ∈  𝑇  ↦  ( ( ( 𝑡  ∈  𝑇  ↦  𝐸 ) ‘ 𝑡 )  ·  ( 𝑔 ‘ 𝑡 ) ) )  =  ( 𝑡  ∈  𝑇  ↦  ( ( ( 𝑡  ∈  𝑇  ↦  𝐸 ) ‘ 𝑡 )  ·  ( ( 𝑋 ‘ ( 𝑚  +  1 ) ) ‘ 𝑡 ) ) ) ) | 
						
							| 103 | 102 | eleq1d | ⊢ ( 𝑔  =  ( 𝑋 ‘ ( 𝑚  +  1 ) )  →  ( ( 𝑡  ∈  𝑇  ↦  ( ( ( 𝑡  ∈  𝑇  ↦  𝐸 ) ‘ 𝑡 )  ·  ( 𝑔 ‘ 𝑡 ) ) )  ∈  𝐴  ↔  ( 𝑡  ∈  𝑇  ↦  ( ( ( 𝑡  ∈  𝑇  ↦  𝐸 ) ‘ 𝑡 )  ·  ( ( 𝑋 ‘ ( 𝑚  +  1 ) ) ‘ 𝑡 ) ) )  ∈  𝐴 ) ) | 
						
							| 104 | 103 | imbi2d | ⊢ ( 𝑔  =  ( 𝑋 ‘ ( 𝑚  +  1 ) )  →  ( ( ( 𝜑  ∧  ( 𝑡  ∈  𝑇  ↦  𝐸 )  ∈  𝐴 )  →  ( 𝑡  ∈  𝑇  ↦  ( ( ( 𝑡  ∈  𝑇  ↦  𝐸 ) ‘ 𝑡 )  ·  ( 𝑔 ‘ 𝑡 ) ) )  ∈  𝐴 )  ↔  ( ( 𝜑  ∧  ( 𝑡  ∈  𝑇  ↦  𝐸 )  ∈  𝐴 )  →  ( 𝑡  ∈  𝑇  ↦  ( ( ( 𝑡  ∈  𝑇  ↦  𝐸 ) ‘ 𝑡 )  ·  ( ( 𝑋 ‘ ( 𝑚  +  1 ) ) ‘ 𝑡 ) ) )  ∈  𝐴 ) ) ) | 
						
							| 105 | 83 | eleq1i | ⊢ ( ( 𝑟  ∈  𝑇  ↦  𝐸 )  ∈  𝐴  ↔  ( 𝑡  ∈  𝑇  ↦  𝐸 )  ∈  𝐴 ) | 
						
							| 106 |  | fveq1 | ⊢ ( 𝑓  =  ( 𝑟  ∈  𝑇  ↦  𝐸 )  →  ( 𝑓 ‘ 𝑡 )  =  ( ( 𝑟  ∈  𝑇  ↦  𝐸 ) ‘ 𝑡 ) ) | 
						
							| 107 | 83 | fveq1i | ⊢ ( ( 𝑟  ∈  𝑇  ↦  𝐸 ) ‘ 𝑡 )  =  ( ( 𝑡  ∈  𝑇  ↦  𝐸 ) ‘ 𝑡 ) | 
						
							| 108 | 106 107 | eqtrdi | ⊢ ( 𝑓  =  ( 𝑟  ∈  𝑇  ↦  𝐸 )  →  ( 𝑓 ‘ 𝑡 )  =  ( ( 𝑡  ∈  𝑇  ↦  𝐸 ) ‘ 𝑡 ) ) | 
						
							| 109 | 108 | oveq1d | ⊢ ( 𝑓  =  ( 𝑟  ∈  𝑇  ↦  𝐸 )  →  ( ( 𝑓 ‘ 𝑡 )  ·  ( 𝑔 ‘ 𝑡 ) )  =  ( ( ( 𝑡  ∈  𝑇  ↦  𝐸 ) ‘ 𝑡 )  ·  ( 𝑔 ‘ 𝑡 ) ) ) | 
						
							| 110 | 109 | mpteq2dv | ⊢ ( 𝑓  =  ( 𝑟  ∈  𝑇  ↦  𝐸 )  →  ( 𝑡  ∈  𝑇  ↦  ( ( 𝑓 ‘ 𝑡 )  ·  ( 𝑔 ‘ 𝑡 ) ) )  =  ( 𝑡  ∈  𝑇  ↦  ( ( ( 𝑡  ∈  𝑇  ↦  𝐸 ) ‘ 𝑡 )  ·  ( 𝑔 ‘ 𝑡 ) ) ) ) | 
						
							| 111 | 110 | eleq1d | ⊢ ( 𝑓  =  ( 𝑟  ∈  𝑇  ↦  𝐸 )  →  ( ( 𝑡  ∈  𝑇  ↦  ( ( 𝑓 ‘ 𝑡 )  ·  ( 𝑔 ‘ 𝑡 ) ) )  ∈  𝐴  ↔  ( 𝑡  ∈  𝑇  ↦  ( ( ( 𝑡  ∈  𝑇  ↦  𝐸 ) ‘ 𝑡 )  ·  ( 𝑔 ‘ 𝑡 ) ) )  ∈  𝐴 ) ) | 
						
							| 112 | 111 | imbi2d | ⊢ ( 𝑓  =  ( 𝑟  ∈  𝑇  ↦  𝐸 )  →  ( ( ( 𝜑  ∧  𝑔  ∈  𝐴 )  →  ( 𝑡  ∈  𝑇  ↦  ( ( 𝑓 ‘ 𝑡 )  ·  ( 𝑔 ‘ 𝑡 ) ) )  ∈  𝐴 )  ↔  ( ( 𝜑  ∧  𝑔  ∈  𝐴 )  →  ( 𝑡  ∈  𝑇  ↦  ( ( ( 𝑡  ∈  𝑇  ↦  𝐸 ) ‘ 𝑡 )  ·  ( 𝑔 ‘ 𝑡 ) ) )  ∈  𝐴 ) ) ) | 
						
							| 113 | 5 | 3com12 | ⊢ ( ( 𝑓  ∈  𝐴  ∧  𝜑  ∧  𝑔  ∈  𝐴 )  →  ( 𝑡  ∈  𝑇  ↦  ( ( 𝑓 ‘ 𝑡 )  ·  ( 𝑔 ‘ 𝑡 ) ) )  ∈  𝐴 ) | 
						
							| 114 | 113 | 3expib | ⊢ ( 𝑓  ∈  𝐴  →  ( ( 𝜑  ∧  𝑔  ∈  𝐴 )  →  ( 𝑡  ∈  𝑇  ↦  ( ( 𝑓 ‘ 𝑡 )  ·  ( 𝑔 ‘ 𝑡 ) ) )  ∈  𝐴 ) ) | 
						
							| 115 | 112 114 | vtoclga | ⊢ ( ( 𝑟  ∈  𝑇  ↦  𝐸 )  ∈  𝐴  →  ( ( 𝜑  ∧  𝑔  ∈  𝐴 )  →  ( 𝑡  ∈  𝑇  ↦  ( ( ( 𝑡  ∈  𝑇  ↦  𝐸 ) ‘ 𝑡 )  ·  ( 𝑔 ‘ 𝑡 ) ) )  ∈  𝐴 ) ) | 
						
							| 116 | 105 115 | sylbir | ⊢ ( ( 𝑡  ∈  𝑇  ↦  𝐸 )  ∈  𝐴  →  ( ( 𝜑  ∧  𝑔  ∈  𝐴 )  →  ( 𝑡  ∈  𝑇  ↦  ( ( ( 𝑡  ∈  𝑇  ↦  𝐸 ) ‘ 𝑡 )  ·  ( 𝑔 ‘ 𝑡 ) ) )  ∈  𝐴 ) ) | 
						
							| 117 | 116 | 3impib | ⊢ ( ( ( 𝑡  ∈  𝑇  ↦  𝐸 )  ∈  𝐴  ∧  𝜑  ∧  𝑔  ∈  𝐴 )  →  ( 𝑡  ∈  𝑇  ↦  ( ( ( 𝑡  ∈  𝑇  ↦  𝐸 ) ‘ 𝑡 )  ·  ( 𝑔 ‘ 𝑡 ) ) )  ∈  𝐴 ) | 
						
							| 118 | 117 | 3com13 | ⊢ ( ( 𝑔  ∈  𝐴  ∧  𝜑  ∧  ( 𝑡  ∈  𝑇  ↦  𝐸 )  ∈  𝐴 )  →  ( 𝑡  ∈  𝑇  ↦  ( ( ( 𝑡  ∈  𝑇  ↦  𝐸 ) ‘ 𝑡 )  ·  ( 𝑔 ‘ 𝑡 ) ) )  ∈  𝐴 ) | 
						
							| 119 | 118 | 3expib | ⊢ ( 𝑔  ∈  𝐴  →  ( ( 𝜑  ∧  ( 𝑡  ∈  𝑇  ↦  𝐸 )  ∈  𝐴 )  →  ( 𝑡  ∈  𝑇  ↦  ( ( ( 𝑡  ∈  𝑇  ↦  𝐸 ) ‘ 𝑡 )  ·  ( 𝑔 ‘ 𝑡 ) ) )  ∈  𝐴 ) ) | 
						
							| 120 | 104 119 | vtoclga | ⊢ ( ( 𝑋 ‘ ( 𝑚  +  1 ) )  ∈  𝐴  →  ( ( 𝜑  ∧  ( 𝑡  ∈  𝑇  ↦  𝐸 )  ∈  𝐴 )  →  ( 𝑡  ∈  𝑇  ↦  ( ( ( 𝑡  ∈  𝑇  ↦  𝐸 ) ‘ 𝑡 )  ·  ( ( 𝑋 ‘ ( 𝑚  +  1 ) ) ‘ 𝑡 ) ) )  ∈  𝐴 ) ) | 
						
							| 121 | 120 | 3impib | ⊢ ( ( ( 𝑋 ‘ ( 𝑚  +  1 ) )  ∈  𝐴  ∧  𝜑  ∧  ( 𝑡  ∈  𝑇  ↦  𝐸 )  ∈  𝐴 )  →  ( 𝑡  ∈  𝑇  ↦  ( ( ( 𝑡  ∈  𝑇  ↦  𝐸 ) ‘ 𝑡 )  ·  ( ( 𝑋 ‘ ( 𝑚  +  1 ) ) ‘ 𝑡 ) ) )  ∈  𝐴 ) | 
						
							| 122 | 90 91 99 121 | syl3anc | ⊢ ( ( 𝜑  ∧  ( 𝑚  +  1 )  ∈  ( 0 ... 𝑁 ) )  →  ( 𝑡  ∈  𝑇  ↦  ( ( ( 𝑡  ∈  𝑇  ↦  𝐸 ) ‘ 𝑡 )  ·  ( ( 𝑋 ‘ ( 𝑚  +  1 ) ) ‘ 𝑡 ) ) )  ∈  𝐴 ) | 
						
							| 123 | 89 122 | eqeltrrd | ⊢ ( ( 𝜑  ∧  ( 𝑚  +  1 )  ∈  ( 0 ... 𝑁 ) )  →  ( 𝑡  ∈  𝑇  ↦  ( 𝐸  ·  ( ( 𝑋 ‘ ( 𝑚  +  1 ) ) ‘ 𝑡 ) ) )  ∈  𝐴 ) | 
						
							| 124 | 123 | ad2antll | ⊢ ( ( ( 𝑚  ∈  ℕ0  →  ( ( 𝜑  ∧  𝑚  ∈  ( 0 ... 𝑁 ) )  →  ( 𝑡  ∈  𝑇  ↦  Σ 𝑖  ∈  ( 0 ... 𝑚 ) ( 𝐸  ·  ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) )  ∈  𝐴 ) )  ∧  ( 𝑚  ∈  ℕ0  ∧  ( 𝜑  ∧  ( 𝑚  +  1 )  ∈  ( 0 ... 𝑁 ) ) ) )  →  ( 𝑡  ∈  𝑇  ↦  ( 𝐸  ·  ( ( 𝑋 ‘ ( 𝑚  +  1 ) ) ‘ 𝑡 ) ) )  ∈  𝐴 ) | 
						
							| 125 |  | simprrl | ⊢ ( ( ( 𝑚  ∈  ℕ0  →  ( ( 𝜑  ∧  𝑚  ∈  ( 0 ... 𝑁 ) )  →  ( 𝑡  ∈  𝑇  ↦  Σ 𝑖  ∈  ( 0 ... 𝑚 ) ( 𝐸  ·  ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) )  ∈  𝐴 ) )  ∧  ( 𝑚  ∈  ℕ0  ∧  ( 𝜑  ∧  ( 𝑚  +  1 )  ∈  ( 0 ... 𝑁 ) ) ) )  →  𝜑 ) | 
						
							| 126 |  | simpl | ⊢ ( ( 𝑚  ∈  ℕ0  ∧  ( 𝜑  ∧  ( 𝑚  +  1 )  ∈  ( 0 ... 𝑁 ) ) )  →  𝑚  ∈  ℕ0 ) | 
						
							| 127 |  | simprl | ⊢ ( ( 𝑚  ∈  ℕ0  ∧  ( 𝜑  ∧  ( 𝑚  +  1 )  ∈  ( 0 ... 𝑁 ) ) )  →  𝜑 ) | 
						
							| 128 | 2 | ad2antrl | ⊢ ( ( 𝑚  ∈  ℕ0  ∧  ( 𝜑  ∧  ( 𝑚  +  1 )  ∈  ( 0 ... 𝑁 ) ) )  →  𝑁  ∈  ℕ ) | 
						
							| 129 | 128 | nnnn0d | ⊢ ( ( 𝑚  ∈  ℕ0  ∧  ( 𝜑  ∧  ( 𝑚  +  1 )  ∈  ( 0 ... 𝑁 ) ) )  →  𝑁  ∈  ℕ0 ) | 
						
							| 130 |  | nn0re | ⊢ ( 𝑚  ∈  ℕ0  →  𝑚  ∈  ℝ ) | 
						
							| 131 | 130 | adantr | ⊢ ( ( 𝑚  ∈  ℕ0  ∧  ( 𝜑  ∧  ( 𝑚  +  1 )  ∈  ( 0 ... 𝑁 ) ) )  →  𝑚  ∈  ℝ ) | 
						
							| 132 |  | peano2nn0 | ⊢ ( 𝑚  ∈  ℕ0  →  ( 𝑚  +  1 )  ∈  ℕ0 ) | 
						
							| 133 | 132 | nn0red | ⊢ ( 𝑚  ∈  ℕ0  →  ( 𝑚  +  1 )  ∈  ℝ ) | 
						
							| 134 | 133 | adantr | ⊢ ( ( 𝑚  ∈  ℕ0  ∧  ( 𝜑  ∧  ( 𝑚  +  1 )  ∈  ( 0 ... 𝑁 ) ) )  →  ( 𝑚  +  1 )  ∈  ℝ ) | 
						
							| 135 | 2 | nnred | ⊢ ( 𝜑  →  𝑁  ∈  ℝ ) | 
						
							| 136 | 135 | ad2antrl | ⊢ ( ( 𝑚  ∈  ℕ0  ∧  ( 𝜑  ∧  ( 𝑚  +  1 )  ∈  ( 0 ... 𝑁 ) ) )  →  𝑁  ∈  ℝ ) | 
						
							| 137 |  | lep1 | ⊢ ( 𝑚  ∈  ℝ  →  𝑚  ≤  ( 𝑚  +  1 ) ) | 
						
							| 138 | 126 130 137 | 3syl | ⊢ ( ( 𝑚  ∈  ℕ0  ∧  ( 𝜑  ∧  ( 𝑚  +  1 )  ∈  ( 0 ... 𝑁 ) ) )  →  𝑚  ≤  ( 𝑚  +  1 ) ) | 
						
							| 139 |  | elfzle2 | ⊢ ( ( 𝑚  +  1 )  ∈  ( 0 ... 𝑁 )  →  ( 𝑚  +  1 )  ≤  𝑁 ) | 
						
							| 140 | 139 | ad2antll | ⊢ ( ( 𝑚  ∈  ℕ0  ∧  ( 𝜑  ∧  ( 𝑚  +  1 )  ∈  ( 0 ... 𝑁 ) ) )  →  ( 𝑚  +  1 )  ≤  𝑁 ) | 
						
							| 141 | 131 134 136 138 140 | letrd | ⊢ ( ( 𝑚  ∈  ℕ0  ∧  ( 𝜑  ∧  ( 𝑚  +  1 )  ∈  ( 0 ... 𝑁 ) ) )  →  𝑚  ≤  𝑁 ) | 
						
							| 142 |  | elfz2nn0 | ⊢ ( 𝑚  ∈  ( 0 ... 𝑁 )  ↔  ( 𝑚  ∈  ℕ0  ∧  𝑁  ∈  ℕ0  ∧  𝑚  ≤  𝑁 ) ) | 
						
							| 143 | 126 129 141 142 | syl3anbrc | ⊢ ( ( 𝑚  ∈  ℕ0  ∧  ( 𝜑  ∧  ( 𝑚  +  1 )  ∈  ( 0 ... 𝑁 ) ) )  →  𝑚  ∈  ( 0 ... 𝑁 ) ) | 
						
							| 144 | 126 127 143 | jca32 | ⊢ ( ( 𝑚  ∈  ℕ0  ∧  ( 𝜑  ∧  ( 𝑚  +  1 )  ∈  ( 0 ... 𝑁 ) ) )  →  ( 𝑚  ∈  ℕ0  ∧  ( 𝜑  ∧  𝑚  ∈  ( 0 ... 𝑁 ) ) ) ) | 
						
							| 145 | 144 | adantl | ⊢ ( ( ( 𝑚  ∈  ℕ0  →  ( ( 𝜑  ∧  𝑚  ∈  ( 0 ... 𝑁 ) )  →  ( 𝑡  ∈  𝑇  ↦  Σ 𝑖  ∈  ( 0 ... 𝑚 ) ( 𝐸  ·  ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) )  ∈  𝐴 ) )  ∧  ( 𝑚  ∈  ℕ0  ∧  ( 𝜑  ∧  ( 𝑚  +  1 )  ∈  ( 0 ... 𝑁 ) ) ) )  →  ( 𝑚  ∈  ℕ0  ∧  ( 𝜑  ∧  𝑚  ∈  ( 0 ... 𝑁 ) ) ) ) | 
						
							| 146 |  | pm3.31 | ⊢ ( ( 𝑚  ∈  ℕ0  →  ( ( 𝜑  ∧  𝑚  ∈  ( 0 ... 𝑁 ) )  →  ( 𝑡  ∈  𝑇  ↦  Σ 𝑖  ∈  ( 0 ... 𝑚 ) ( 𝐸  ·  ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) )  ∈  𝐴 ) )  →  ( ( 𝑚  ∈  ℕ0  ∧  ( 𝜑  ∧  𝑚  ∈  ( 0 ... 𝑁 ) ) )  →  ( 𝑡  ∈  𝑇  ↦  Σ 𝑖  ∈  ( 0 ... 𝑚 ) ( 𝐸  ·  ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) )  ∈  𝐴 ) ) | 
						
							| 147 | 146 | adantr | ⊢ ( ( ( 𝑚  ∈  ℕ0  →  ( ( 𝜑  ∧  𝑚  ∈  ( 0 ... 𝑁 ) )  →  ( 𝑡  ∈  𝑇  ↦  Σ 𝑖  ∈  ( 0 ... 𝑚 ) ( 𝐸  ·  ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) )  ∈  𝐴 ) )  ∧  ( 𝑚  ∈  ℕ0  ∧  ( 𝜑  ∧  ( 𝑚  +  1 )  ∈  ( 0 ... 𝑁 ) ) ) )  →  ( ( 𝑚  ∈  ℕ0  ∧  ( 𝜑  ∧  𝑚  ∈  ( 0 ... 𝑁 ) ) )  →  ( 𝑡  ∈  𝑇  ↦  Σ 𝑖  ∈  ( 0 ... 𝑚 ) ( 𝐸  ·  ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) )  ∈  𝐴 ) ) | 
						
							| 148 | 145 147 | mpd | ⊢ ( ( ( 𝑚  ∈  ℕ0  →  ( ( 𝜑  ∧  𝑚  ∈  ( 0 ... 𝑁 ) )  →  ( 𝑡  ∈  𝑇  ↦  Σ 𝑖  ∈  ( 0 ... 𝑚 ) ( 𝐸  ·  ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) )  ∈  𝐴 ) )  ∧  ( 𝑚  ∈  ℕ0  ∧  ( 𝜑  ∧  ( 𝑚  +  1 )  ∈  ( 0 ... 𝑁 ) ) ) )  →  ( 𝑡  ∈  𝑇  ↦  Σ 𝑖  ∈  ( 0 ... 𝑚 ) ( 𝐸  ·  ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) )  ∈  𝐴 ) | 
						
							| 149 |  | fveq2 | ⊢ ( 𝑟  =  𝑡  →  ( ( 𝑋 ‘ ( 𝑚  +  1 ) ) ‘ 𝑟 )  =  ( ( 𝑋 ‘ ( 𝑚  +  1 ) ) ‘ 𝑡 ) ) | 
						
							| 150 | 149 | oveq2d | ⊢ ( 𝑟  =  𝑡  →  ( 𝐸  ·  ( ( 𝑋 ‘ ( 𝑚  +  1 ) ) ‘ 𝑟 ) )  =  ( 𝐸  ·  ( ( 𝑋 ‘ ( 𝑚  +  1 ) ) ‘ 𝑡 ) ) ) | 
						
							| 151 | 150 | cbvmptv | ⊢ ( 𝑟  ∈  𝑇  ↦  ( 𝐸  ·  ( ( 𝑋 ‘ ( 𝑚  +  1 ) ) ‘ 𝑟 ) ) )  =  ( 𝑡  ∈  𝑇  ↦  ( 𝐸  ·  ( ( 𝑋 ‘ ( 𝑚  +  1 ) ) ‘ 𝑡 ) ) ) | 
						
							| 152 | 151 | eleq1i | ⊢ ( ( 𝑟  ∈  𝑇  ↦  ( 𝐸  ·  ( ( 𝑋 ‘ ( 𝑚  +  1 ) ) ‘ 𝑟 ) ) )  ∈  𝐴  ↔  ( 𝑡  ∈  𝑇  ↦  ( 𝐸  ·  ( ( 𝑋 ‘ ( 𝑚  +  1 ) ) ‘ 𝑡 ) ) )  ∈  𝐴 ) | 
						
							| 153 |  | fveq1 | ⊢ ( 𝑔  =  ( 𝑟  ∈  𝑇  ↦  ( 𝐸  ·  ( ( 𝑋 ‘ ( 𝑚  +  1 ) ) ‘ 𝑟 ) ) )  →  ( 𝑔 ‘ 𝑡 )  =  ( ( 𝑟  ∈  𝑇  ↦  ( 𝐸  ·  ( ( 𝑋 ‘ ( 𝑚  +  1 ) ) ‘ 𝑟 ) ) ) ‘ 𝑡 ) ) | 
						
							| 154 | 151 | fveq1i | ⊢ ( ( 𝑟  ∈  𝑇  ↦  ( 𝐸  ·  ( ( 𝑋 ‘ ( 𝑚  +  1 ) ) ‘ 𝑟 ) ) ) ‘ 𝑡 )  =  ( ( 𝑡  ∈  𝑇  ↦  ( 𝐸  ·  ( ( 𝑋 ‘ ( 𝑚  +  1 ) ) ‘ 𝑡 ) ) ) ‘ 𝑡 ) | 
						
							| 155 | 153 154 | eqtrdi | ⊢ ( 𝑔  =  ( 𝑟  ∈  𝑇  ↦  ( 𝐸  ·  ( ( 𝑋 ‘ ( 𝑚  +  1 ) ) ‘ 𝑟 ) ) )  →  ( 𝑔 ‘ 𝑡 )  =  ( ( 𝑡  ∈  𝑇  ↦  ( 𝐸  ·  ( ( 𝑋 ‘ ( 𝑚  +  1 ) ) ‘ 𝑡 ) ) ) ‘ 𝑡 ) ) | 
						
							| 156 | 155 | oveq2d | ⊢ ( 𝑔  =  ( 𝑟  ∈  𝑇  ↦  ( 𝐸  ·  ( ( 𝑋 ‘ ( 𝑚  +  1 ) ) ‘ 𝑟 ) ) )  →  ( ( ( 𝑡  ∈  𝑇  ↦  Σ 𝑖  ∈  ( 0 ... 𝑚 ) ( 𝐸  ·  ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ‘ 𝑡 )  +  ( 𝑔 ‘ 𝑡 ) )  =  ( ( ( 𝑡  ∈  𝑇  ↦  Σ 𝑖  ∈  ( 0 ... 𝑚 ) ( 𝐸  ·  ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ‘ 𝑡 )  +  ( ( 𝑡  ∈  𝑇  ↦  ( 𝐸  ·  ( ( 𝑋 ‘ ( 𝑚  +  1 ) ) ‘ 𝑡 ) ) ) ‘ 𝑡 ) ) ) | 
						
							| 157 | 156 | mpteq2dv | ⊢ ( 𝑔  =  ( 𝑟  ∈  𝑇  ↦  ( 𝐸  ·  ( ( 𝑋 ‘ ( 𝑚  +  1 ) ) ‘ 𝑟 ) ) )  →  ( 𝑡  ∈  𝑇  ↦  ( ( ( 𝑡  ∈  𝑇  ↦  Σ 𝑖  ∈  ( 0 ... 𝑚 ) ( 𝐸  ·  ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ‘ 𝑡 )  +  ( 𝑔 ‘ 𝑡 ) ) )  =  ( 𝑡  ∈  𝑇  ↦  ( ( ( 𝑡  ∈  𝑇  ↦  Σ 𝑖  ∈  ( 0 ... 𝑚 ) ( 𝐸  ·  ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ‘ 𝑡 )  +  ( ( 𝑡  ∈  𝑇  ↦  ( 𝐸  ·  ( ( 𝑋 ‘ ( 𝑚  +  1 ) ) ‘ 𝑡 ) ) ) ‘ 𝑡 ) ) ) ) | 
						
							| 158 | 157 | eleq1d | ⊢ ( 𝑔  =  ( 𝑟  ∈  𝑇  ↦  ( 𝐸  ·  ( ( 𝑋 ‘ ( 𝑚  +  1 ) ) ‘ 𝑟 ) ) )  →  ( ( 𝑡  ∈  𝑇  ↦  ( ( ( 𝑡  ∈  𝑇  ↦  Σ 𝑖  ∈  ( 0 ... 𝑚 ) ( 𝐸  ·  ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ‘ 𝑡 )  +  ( 𝑔 ‘ 𝑡 ) ) )  ∈  𝐴  ↔  ( 𝑡  ∈  𝑇  ↦  ( ( ( 𝑡  ∈  𝑇  ↦  Σ 𝑖  ∈  ( 0 ... 𝑚 ) ( 𝐸  ·  ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ‘ 𝑡 )  +  ( ( 𝑡  ∈  𝑇  ↦  ( 𝐸  ·  ( ( 𝑋 ‘ ( 𝑚  +  1 ) ) ‘ 𝑡 ) ) ) ‘ 𝑡 ) ) )  ∈  𝐴 ) ) | 
						
							| 159 | 158 | imbi2d | ⊢ ( 𝑔  =  ( 𝑟  ∈  𝑇  ↦  ( 𝐸  ·  ( ( 𝑋 ‘ ( 𝑚  +  1 ) ) ‘ 𝑟 ) ) )  →  ( ( ( 𝜑  ∧  ( 𝑡  ∈  𝑇  ↦  Σ 𝑖  ∈  ( 0 ... 𝑚 ) ( 𝐸  ·  ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) )  ∈  𝐴 )  →  ( 𝑡  ∈  𝑇  ↦  ( ( ( 𝑡  ∈  𝑇  ↦  Σ 𝑖  ∈  ( 0 ... 𝑚 ) ( 𝐸  ·  ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ‘ 𝑡 )  +  ( 𝑔 ‘ 𝑡 ) ) )  ∈  𝐴 )  ↔  ( ( 𝜑  ∧  ( 𝑡  ∈  𝑇  ↦  Σ 𝑖  ∈  ( 0 ... 𝑚 ) ( 𝐸  ·  ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) )  ∈  𝐴 )  →  ( 𝑡  ∈  𝑇  ↦  ( ( ( 𝑡  ∈  𝑇  ↦  Σ 𝑖  ∈  ( 0 ... 𝑚 ) ( 𝐸  ·  ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ‘ 𝑡 )  +  ( ( 𝑡  ∈  𝑇  ↦  ( 𝐸  ·  ( ( 𝑋 ‘ ( 𝑚  +  1 ) ) ‘ 𝑡 ) ) ) ‘ 𝑡 ) ) )  ∈  𝐴 ) ) ) | 
						
							| 160 |  | fveq2 | ⊢ ( 𝑟  =  𝑡  →  ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑟 )  =  ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) | 
						
							| 161 | 160 | oveq2d | ⊢ ( 𝑟  =  𝑡  →  ( 𝐸  ·  ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑟 ) )  =  ( 𝐸  ·  ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) | 
						
							| 162 | 161 | sumeq2sdv | ⊢ ( 𝑟  =  𝑡  →  Σ 𝑖  ∈  ( 0 ... 𝑚 ) ( 𝐸  ·  ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑟 ) )  =  Σ 𝑖  ∈  ( 0 ... 𝑚 ) ( 𝐸  ·  ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) | 
						
							| 163 | 162 | cbvmptv | ⊢ ( 𝑟  ∈  𝑇  ↦  Σ 𝑖  ∈  ( 0 ... 𝑚 ) ( 𝐸  ·  ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑟 ) ) )  =  ( 𝑡  ∈  𝑇  ↦  Σ 𝑖  ∈  ( 0 ... 𝑚 ) ( 𝐸  ·  ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) | 
						
							| 164 | 163 | eleq1i | ⊢ ( ( 𝑟  ∈  𝑇  ↦  Σ 𝑖  ∈  ( 0 ... 𝑚 ) ( 𝐸  ·  ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑟 ) ) )  ∈  𝐴  ↔  ( 𝑡  ∈  𝑇  ↦  Σ 𝑖  ∈  ( 0 ... 𝑚 ) ( 𝐸  ·  ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) )  ∈  𝐴 ) | 
						
							| 165 |  | fveq1 | ⊢ ( 𝑓  =  ( 𝑟  ∈  𝑇  ↦  Σ 𝑖  ∈  ( 0 ... 𝑚 ) ( 𝐸  ·  ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑟 ) ) )  →  ( 𝑓 ‘ 𝑡 )  =  ( ( 𝑟  ∈  𝑇  ↦  Σ 𝑖  ∈  ( 0 ... 𝑚 ) ( 𝐸  ·  ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑟 ) ) ) ‘ 𝑡 ) ) | 
						
							| 166 | 163 | fveq1i | ⊢ ( ( 𝑟  ∈  𝑇  ↦  Σ 𝑖  ∈  ( 0 ... 𝑚 ) ( 𝐸  ·  ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑟 ) ) ) ‘ 𝑡 )  =  ( ( 𝑡  ∈  𝑇  ↦  Σ 𝑖  ∈  ( 0 ... 𝑚 ) ( 𝐸  ·  ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ‘ 𝑡 ) | 
						
							| 167 | 165 166 | eqtrdi | ⊢ ( 𝑓  =  ( 𝑟  ∈  𝑇  ↦  Σ 𝑖  ∈  ( 0 ... 𝑚 ) ( 𝐸  ·  ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑟 ) ) )  →  ( 𝑓 ‘ 𝑡 )  =  ( ( 𝑡  ∈  𝑇  ↦  Σ 𝑖  ∈  ( 0 ... 𝑚 ) ( 𝐸  ·  ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ‘ 𝑡 ) ) | 
						
							| 168 | 167 | oveq1d | ⊢ ( 𝑓  =  ( 𝑟  ∈  𝑇  ↦  Σ 𝑖  ∈  ( 0 ... 𝑚 ) ( 𝐸  ·  ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑟 ) ) )  →  ( ( 𝑓 ‘ 𝑡 )  +  ( 𝑔 ‘ 𝑡 ) )  =  ( ( ( 𝑡  ∈  𝑇  ↦  Σ 𝑖  ∈  ( 0 ... 𝑚 ) ( 𝐸  ·  ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ‘ 𝑡 )  +  ( 𝑔 ‘ 𝑡 ) ) ) | 
						
							| 169 | 168 | mpteq2dv | ⊢ ( 𝑓  =  ( 𝑟  ∈  𝑇  ↦  Σ 𝑖  ∈  ( 0 ... 𝑚 ) ( 𝐸  ·  ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑟 ) ) )  →  ( 𝑡  ∈  𝑇  ↦  ( ( 𝑓 ‘ 𝑡 )  +  ( 𝑔 ‘ 𝑡 ) ) )  =  ( 𝑡  ∈  𝑇  ↦  ( ( ( 𝑡  ∈  𝑇  ↦  Σ 𝑖  ∈  ( 0 ... 𝑚 ) ( 𝐸  ·  ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ‘ 𝑡 )  +  ( 𝑔 ‘ 𝑡 ) ) ) ) | 
						
							| 170 | 169 | eleq1d | ⊢ ( 𝑓  =  ( 𝑟  ∈  𝑇  ↦  Σ 𝑖  ∈  ( 0 ... 𝑚 ) ( 𝐸  ·  ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑟 ) ) )  →  ( ( 𝑡  ∈  𝑇  ↦  ( ( 𝑓 ‘ 𝑡 )  +  ( 𝑔 ‘ 𝑡 ) ) )  ∈  𝐴  ↔  ( 𝑡  ∈  𝑇  ↦  ( ( ( 𝑡  ∈  𝑇  ↦  Σ 𝑖  ∈  ( 0 ... 𝑚 ) ( 𝐸  ·  ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ‘ 𝑡 )  +  ( 𝑔 ‘ 𝑡 ) ) )  ∈  𝐴 ) ) | 
						
							| 171 | 170 | imbi2d | ⊢ ( 𝑓  =  ( 𝑟  ∈  𝑇  ↦  Σ 𝑖  ∈  ( 0 ... 𝑚 ) ( 𝐸  ·  ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑟 ) ) )  →  ( ( ( 𝜑  ∧  𝑔  ∈  𝐴 )  →  ( 𝑡  ∈  𝑇  ↦  ( ( 𝑓 ‘ 𝑡 )  +  ( 𝑔 ‘ 𝑡 ) ) )  ∈  𝐴 )  ↔  ( ( 𝜑  ∧  𝑔  ∈  𝐴 )  →  ( 𝑡  ∈  𝑇  ↦  ( ( ( 𝑡  ∈  𝑇  ↦  Σ 𝑖  ∈  ( 0 ... 𝑚 ) ( 𝐸  ·  ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ‘ 𝑡 )  +  ( 𝑔 ‘ 𝑡 ) ) )  ∈  𝐴 ) ) ) | 
						
							| 172 | 4 | 3com12 | ⊢ ( ( 𝑓  ∈  𝐴  ∧  𝜑  ∧  𝑔  ∈  𝐴 )  →  ( 𝑡  ∈  𝑇  ↦  ( ( 𝑓 ‘ 𝑡 )  +  ( 𝑔 ‘ 𝑡 ) ) )  ∈  𝐴 ) | 
						
							| 173 | 172 | 3expib | ⊢ ( 𝑓  ∈  𝐴  →  ( ( 𝜑  ∧  𝑔  ∈  𝐴 )  →  ( 𝑡  ∈  𝑇  ↦  ( ( 𝑓 ‘ 𝑡 )  +  ( 𝑔 ‘ 𝑡 ) ) )  ∈  𝐴 ) ) | 
						
							| 174 | 171 173 | vtoclga | ⊢ ( ( 𝑟  ∈  𝑇  ↦  Σ 𝑖  ∈  ( 0 ... 𝑚 ) ( 𝐸  ·  ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑟 ) ) )  ∈  𝐴  →  ( ( 𝜑  ∧  𝑔  ∈  𝐴 )  →  ( 𝑡  ∈  𝑇  ↦  ( ( ( 𝑡  ∈  𝑇  ↦  Σ 𝑖  ∈  ( 0 ... 𝑚 ) ( 𝐸  ·  ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ‘ 𝑡 )  +  ( 𝑔 ‘ 𝑡 ) ) )  ∈  𝐴 ) ) | 
						
							| 175 | 164 174 | sylbir | ⊢ ( ( 𝑡  ∈  𝑇  ↦  Σ 𝑖  ∈  ( 0 ... 𝑚 ) ( 𝐸  ·  ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) )  ∈  𝐴  →  ( ( 𝜑  ∧  𝑔  ∈  𝐴 )  →  ( 𝑡  ∈  𝑇  ↦  ( ( ( 𝑡  ∈  𝑇  ↦  Σ 𝑖  ∈  ( 0 ... 𝑚 ) ( 𝐸  ·  ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ‘ 𝑡 )  +  ( 𝑔 ‘ 𝑡 ) ) )  ∈  𝐴 ) ) | 
						
							| 176 | 175 | 3impib | ⊢ ( ( ( 𝑡  ∈  𝑇  ↦  Σ 𝑖  ∈  ( 0 ... 𝑚 ) ( 𝐸  ·  ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) )  ∈  𝐴  ∧  𝜑  ∧  𝑔  ∈  𝐴 )  →  ( 𝑡  ∈  𝑇  ↦  ( ( ( 𝑡  ∈  𝑇  ↦  Σ 𝑖  ∈  ( 0 ... 𝑚 ) ( 𝐸  ·  ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ‘ 𝑡 )  +  ( 𝑔 ‘ 𝑡 ) ) )  ∈  𝐴 ) | 
						
							| 177 | 176 | 3com13 | ⊢ ( ( 𝑔  ∈  𝐴  ∧  𝜑  ∧  ( 𝑡  ∈  𝑇  ↦  Σ 𝑖  ∈  ( 0 ... 𝑚 ) ( 𝐸  ·  ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) )  ∈  𝐴 )  →  ( 𝑡  ∈  𝑇  ↦  ( ( ( 𝑡  ∈  𝑇  ↦  Σ 𝑖  ∈  ( 0 ... 𝑚 ) ( 𝐸  ·  ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ‘ 𝑡 )  +  ( 𝑔 ‘ 𝑡 ) ) )  ∈  𝐴 ) | 
						
							| 178 | 177 | 3expib | ⊢ ( 𝑔  ∈  𝐴  →  ( ( 𝜑  ∧  ( 𝑡  ∈  𝑇  ↦  Σ 𝑖  ∈  ( 0 ... 𝑚 ) ( 𝐸  ·  ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) )  ∈  𝐴 )  →  ( 𝑡  ∈  𝑇  ↦  ( ( ( 𝑡  ∈  𝑇  ↦  Σ 𝑖  ∈  ( 0 ... 𝑚 ) ( 𝐸  ·  ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ‘ 𝑡 )  +  ( 𝑔 ‘ 𝑡 ) ) )  ∈  𝐴 ) ) | 
						
							| 179 | 159 178 | vtoclga | ⊢ ( ( 𝑟  ∈  𝑇  ↦  ( 𝐸  ·  ( ( 𝑋 ‘ ( 𝑚  +  1 ) ) ‘ 𝑟 ) ) )  ∈  𝐴  →  ( ( 𝜑  ∧  ( 𝑡  ∈  𝑇  ↦  Σ 𝑖  ∈  ( 0 ... 𝑚 ) ( 𝐸  ·  ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) )  ∈  𝐴 )  →  ( 𝑡  ∈  𝑇  ↦  ( ( ( 𝑡  ∈  𝑇  ↦  Σ 𝑖  ∈  ( 0 ... 𝑚 ) ( 𝐸  ·  ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ‘ 𝑡 )  +  ( ( 𝑡  ∈  𝑇  ↦  ( 𝐸  ·  ( ( 𝑋 ‘ ( 𝑚  +  1 ) ) ‘ 𝑡 ) ) ) ‘ 𝑡 ) ) )  ∈  𝐴 ) ) | 
						
							| 180 | 152 179 | sylbir | ⊢ ( ( 𝑡  ∈  𝑇  ↦  ( 𝐸  ·  ( ( 𝑋 ‘ ( 𝑚  +  1 ) ) ‘ 𝑡 ) ) )  ∈  𝐴  →  ( ( 𝜑  ∧  ( 𝑡  ∈  𝑇  ↦  Σ 𝑖  ∈  ( 0 ... 𝑚 ) ( 𝐸  ·  ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) )  ∈  𝐴 )  →  ( 𝑡  ∈  𝑇  ↦  ( ( ( 𝑡  ∈  𝑇  ↦  Σ 𝑖  ∈  ( 0 ... 𝑚 ) ( 𝐸  ·  ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ‘ 𝑡 )  +  ( ( 𝑡  ∈  𝑇  ↦  ( 𝐸  ·  ( ( 𝑋 ‘ ( 𝑚  +  1 ) ) ‘ 𝑡 ) ) ) ‘ 𝑡 ) ) )  ∈  𝐴 ) ) | 
						
							| 181 | 180 | 3impib | ⊢ ( ( ( 𝑡  ∈  𝑇  ↦  ( 𝐸  ·  ( ( 𝑋 ‘ ( 𝑚  +  1 ) ) ‘ 𝑡 ) ) )  ∈  𝐴  ∧  𝜑  ∧  ( 𝑡  ∈  𝑇  ↦  Σ 𝑖  ∈  ( 0 ... 𝑚 ) ( 𝐸  ·  ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) )  ∈  𝐴 )  →  ( 𝑡  ∈  𝑇  ↦  ( ( ( 𝑡  ∈  𝑇  ↦  Σ 𝑖  ∈  ( 0 ... 𝑚 ) ( 𝐸  ·  ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ‘ 𝑡 )  +  ( ( 𝑡  ∈  𝑇  ↦  ( 𝐸  ·  ( ( 𝑋 ‘ ( 𝑚  +  1 ) ) ‘ 𝑡 ) ) ) ‘ 𝑡 ) ) )  ∈  𝐴 ) | 
						
							| 182 | 124 125 148 181 | syl3anc | ⊢ ( ( ( 𝑚  ∈  ℕ0  →  ( ( 𝜑  ∧  𝑚  ∈  ( 0 ... 𝑁 ) )  →  ( 𝑡  ∈  𝑇  ↦  Σ 𝑖  ∈  ( 0 ... 𝑚 ) ( 𝐸  ·  ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) )  ∈  𝐴 ) )  ∧  ( 𝑚  ∈  ℕ0  ∧  ( 𝜑  ∧  ( 𝑚  +  1 )  ∈  ( 0 ... 𝑁 ) ) ) )  →  ( 𝑡  ∈  𝑇  ↦  ( ( ( 𝑡  ∈  𝑇  ↦  Σ 𝑖  ∈  ( 0 ... 𝑚 ) ( 𝐸  ·  ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ‘ 𝑡 )  +  ( ( 𝑡  ∈  𝑇  ↦  ( 𝐸  ·  ( ( 𝑋 ‘ ( 𝑚  +  1 ) ) ‘ 𝑡 ) ) ) ‘ 𝑡 ) ) )  ∈  𝐴 ) | 
						
							| 183 |  | 3anass | ⊢ ( ( 𝑚  ∈  ℕ0  ∧  𝜑  ∧  ( 𝑚  +  1 )  ∈  ( 0 ... 𝑁 ) )  ↔  ( 𝑚  ∈  ℕ0  ∧  ( 𝜑  ∧  ( 𝑚  +  1 )  ∈  ( 0 ... 𝑁 ) ) ) ) | 
						
							| 184 | 183 | biimpri | ⊢ ( ( 𝑚  ∈  ℕ0  ∧  ( 𝜑  ∧  ( 𝑚  +  1 )  ∈  ( 0 ... 𝑁 ) ) )  →  ( 𝑚  ∈  ℕ0  ∧  𝜑  ∧  ( 𝑚  +  1 )  ∈  ( 0 ... 𝑁 ) ) ) | 
						
							| 185 | 184 | adantl | ⊢ ( ( ( 𝑚  ∈  ℕ0  →  ( ( 𝜑  ∧  𝑚  ∈  ( 0 ... 𝑁 ) )  →  ( 𝑡  ∈  𝑇  ↦  Σ 𝑖  ∈  ( 0 ... 𝑚 ) ( 𝐸  ·  ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) )  ∈  𝐴 ) )  ∧  ( 𝑚  ∈  ℕ0  ∧  ( 𝜑  ∧  ( 𝑚  +  1 )  ∈  ( 0 ... 𝑁 ) ) ) )  →  ( 𝑚  ∈  ℕ0  ∧  𝜑  ∧  ( 𝑚  +  1 )  ∈  ( 0 ... 𝑁 ) ) ) | 
						
							| 186 |  | nfv | ⊢ Ⅎ 𝑡 𝑚  ∈  ℕ0 | 
						
							| 187 |  | nfv | ⊢ Ⅎ 𝑡 ( 𝑚  +  1 )  ∈  ( 0 ... 𝑁 ) | 
						
							| 188 | 186 1 187 | nf3an | ⊢ Ⅎ 𝑡 ( 𝑚  ∈  ℕ0  ∧  𝜑  ∧  ( 𝑚  +  1 )  ∈  ( 0 ... 𝑁 ) ) | 
						
							| 189 |  | simpr | ⊢ ( ( ( 𝑚  ∈  ℕ0  ∧  𝜑  ∧  ( 𝑚  +  1 )  ∈  ( 0 ... 𝑁 ) )  ∧  𝑡  ∈  𝑇 )  →  𝑡  ∈  𝑇 ) | 
						
							| 190 |  | fzfid | ⊢ ( ( ( 𝑚  ∈  ℕ0  ∧  𝜑  ∧  ( 𝑚  +  1 )  ∈  ( 0 ... 𝑁 ) )  ∧  𝑡  ∈  𝑇 )  →  ( 0 ... 𝑚 )  ∈  Fin ) | 
						
							| 191 | 7 | 3ad2ant2 | ⊢ ( ( 𝑚  ∈  ℕ0  ∧  𝜑  ∧  ( 𝑚  +  1 )  ∈  ( 0 ... 𝑁 ) )  →  𝐸  ∈  ℝ ) | 
						
							| 192 | 191 | adantr | ⊢ ( ( ( 𝑚  ∈  ℕ0  ∧  𝜑  ∧  ( 𝑚  +  1 )  ∈  ( 0 ... 𝑁 ) )  ∧  𝑡  ∈  𝑇 )  →  𝐸  ∈  ℝ ) | 
						
							| 193 | 192 | adantr | ⊢ ( ( ( ( 𝑚  ∈  ℕ0  ∧  𝜑  ∧  ( 𝑚  +  1 )  ∈  ( 0 ... 𝑁 ) )  ∧  𝑡  ∈  𝑇 )  ∧  𝑖  ∈  ( 0 ... 𝑚 ) )  →  𝐸  ∈  ℝ ) | 
						
							| 194 |  | fzelp1 | ⊢ ( 𝑖  ∈  ( 0 ... 𝑚 )  →  𝑖  ∈  ( 0 ... ( 𝑚  +  1 ) ) ) | 
						
							| 195 | 194 | anim2i | ⊢ ( ( ( ( 𝑚  ∈  ℕ0  ∧  𝜑  ∧  ( 𝑚  +  1 )  ∈  ( 0 ... 𝑁 ) )  ∧  𝑡  ∈  𝑇 )  ∧  𝑖  ∈  ( 0 ... 𝑚 ) )  →  ( ( ( 𝑚  ∈  ℕ0  ∧  𝜑  ∧  ( 𝑚  +  1 )  ∈  ( 0 ... 𝑁 ) )  ∧  𝑡  ∈  𝑇 )  ∧  𝑖  ∈  ( 0 ... ( 𝑚  +  1 ) ) ) ) | 
						
							| 196 |  | an32 | ⊢ ( ( ( ( 𝑚  ∈  ℕ0  ∧  𝜑  ∧  ( 𝑚  +  1 )  ∈  ( 0 ... 𝑁 ) )  ∧  𝑡  ∈  𝑇 )  ∧  𝑖  ∈  ( 0 ... ( 𝑚  +  1 ) ) )  ↔  ( ( ( 𝑚  ∈  ℕ0  ∧  𝜑  ∧  ( 𝑚  +  1 )  ∈  ( 0 ... 𝑁 ) )  ∧  𝑖  ∈  ( 0 ... ( 𝑚  +  1 ) ) )  ∧  𝑡  ∈  𝑇 ) ) | 
						
							| 197 | 195 196 | sylib | ⊢ ( ( ( ( 𝑚  ∈  ℕ0  ∧  𝜑  ∧  ( 𝑚  +  1 )  ∈  ( 0 ... 𝑁 ) )  ∧  𝑡  ∈  𝑇 )  ∧  𝑖  ∈  ( 0 ... 𝑚 ) )  →  ( ( ( 𝑚  ∈  ℕ0  ∧  𝜑  ∧  ( 𝑚  +  1 )  ∈  ( 0 ... 𝑁 ) )  ∧  𝑖  ∈  ( 0 ... ( 𝑚  +  1 ) ) )  ∧  𝑡  ∈  𝑇 ) ) | 
						
							| 198 | 3 | 3ad2ant2 | ⊢ ( ( 𝑚  ∈  ℕ0  ∧  𝜑  ∧  ( 𝑚  +  1 )  ∈  ( 0 ... 𝑁 ) )  →  𝑋 : ( 0 ... 𝑁 ) ⟶ 𝐴 ) | 
						
							| 199 | 198 | adantr | ⊢ ( ( ( 𝑚  ∈  ℕ0  ∧  𝜑  ∧  ( 𝑚  +  1 )  ∈  ( 0 ... 𝑁 ) )  ∧  𝑖  ∈  ( 0 ... ( 𝑚  +  1 ) ) )  →  𝑋 : ( 0 ... 𝑁 ) ⟶ 𝐴 ) | 
						
							| 200 |  | elfzuz3 | ⊢ ( ( 𝑚  +  1 )  ∈  ( 0 ... 𝑁 )  →  𝑁  ∈  ( ℤ≥ ‘ ( 𝑚  +  1 ) ) ) | 
						
							| 201 |  | fzss2 | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ ( 𝑚  +  1 ) )  →  ( 0 ... ( 𝑚  +  1 ) )  ⊆  ( 0 ... 𝑁 ) ) | 
						
							| 202 | 200 201 | syl | ⊢ ( ( 𝑚  +  1 )  ∈  ( 0 ... 𝑁 )  →  ( 0 ... ( 𝑚  +  1 ) )  ⊆  ( 0 ... 𝑁 ) ) | 
						
							| 203 | 202 | sselda | ⊢ ( ( ( 𝑚  +  1 )  ∈  ( 0 ... 𝑁 )  ∧  𝑖  ∈  ( 0 ... ( 𝑚  +  1 ) ) )  →  𝑖  ∈  ( 0 ... 𝑁 ) ) | 
						
							| 204 | 203 | 3ad2antl3 | ⊢ ( ( ( 𝑚  ∈  ℕ0  ∧  𝜑  ∧  ( 𝑚  +  1 )  ∈  ( 0 ... 𝑁 ) )  ∧  𝑖  ∈  ( 0 ... ( 𝑚  +  1 ) ) )  →  𝑖  ∈  ( 0 ... 𝑁 ) ) | 
						
							| 205 | 199 204 | ffvelcdmd | ⊢ ( ( ( 𝑚  ∈  ℕ0  ∧  𝜑  ∧  ( 𝑚  +  1 )  ∈  ( 0 ... 𝑁 ) )  ∧  𝑖  ∈  ( 0 ... ( 𝑚  +  1 ) ) )  →  ( 𝑋 ‘ 𝑖 )  ∈  𝐴 ) | 
						
							| 206 |  | simpl2 | ⊢ ( ( ( 𝑚  ∈  ℕ0  ∧  𝜑  ∧  ( 𝑚  +  1 )  ∈  ( 0 ... 𝑁 ) )  ∧  𝑖  ∈  ( 0 ... ( 𝑚  +  1 ) ) )  →  𝜑 ) | 
						
							| 207 |  | feq1 | ⊢ ( 𝑓  =  ( 𝑋 ‘ 𝑖 )  →  ( 𝑓 : 𝑇 ⟶ ℝ  ↔  ( 𝑋 ‘ 𝑖 ) : 𝑇 ⟶ ℝ ) ) | 
						
							| 208 | 207 | imbi2d | ⊢ ( 𝑓  =  ( 𝑋 ‘ 𝑖 )  →  ( ( 𝜑  →  𝑓 : 𝑇 ⟶ ℝ )  ↔  ( 𝜑  →  ( 𝑋 ‘ 𝑖 ) : 𝑇 ⟶ ℝ ) ) ) | 
						
							| 209 | 208 66 | vtoclga | ⊢ ( ( 𝑋 ‘ 𝑖 )  ∈  𝐴  →  ( 𝜑  →  ( 𝑋 ‘ 𝑖 ) : 𝑇 ⟶ ℝ ) ) | 
						
							| 210 | 205 206 209 | sylc | ⊢ ( ( ( 𝑚  ∈  ℕ0  ∧  𝜑  ∧  ( 𝑚  +  1 )  ∈  ( 0 ... 𝑁 ) )  ∧  𝑖  ∈  ( 0 ... ( 𝑚  +  1 ) ) )  →  ( 𝑋 ‘ 𝑖 ) : 𝑇 ⟶ ℝ ) | 
						
							| 211 | 210 | ffvelcdmda | ⊢ ( ( ( ( 𝑚  ∈  ℕ0  ∧  𝜑  ∧  ( 𝑚  +  1 )  ∈  ( 0 ... 𝑁 ) )  ∧  𝑖  ∈  ( 0 ... ( 𝑚  +  1 ) ) )  ∧  𝑡  ∈  𝑇 )  →  ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 )  ∈  ℝ ) | 
						
							| 212 | 197 211 | syl | ⊢ ( ( ( ( 𝑚  ∈  ℕ0  ∧  𝜑  ∧  ( 𝑚  +  1 )  ∈  ( 0 ... 𝑁 ) )  ∧  𝑡  ∈  𝑇 )  ∧  𝑖  ∈  ( 0 ... 𝑚 ) )  →  ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 )  ∈  ℝ ) | 
						
							| 213 | 193 212 | remulcld | ⊢ ( ( ( ( 𝑚  ∈  ℕ0  ∧  𝜑  ∧  ( 𝑚  +  1 )  ∈  ( 0 ... 𝑁 ) )  ∧  𝑡  ∈  𝑇 )  ∧  𝑖  ∈  ( 0 ... 𝑚 ) )  →  ( 𝐸  ·  ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) )  ∈  ℝ ) | 
						
							| 214 | 190 213 | fsumrecl | ⊢ ( ( ( 𝑚  ∈  ℕ0  ∧  𝜑  ∧  ( 𝑚  +  1 )  ∈  ( 0 ... 𝑁 ) )  ∧  𝑡  ∈  𝑇 )  →  Σ 𝑖  ∈  ( 0 ... 𝑚 ) ( 𝐸  ·  ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) )  ∈  ℝ ) | 
						
							| 215 |  | eqid | ⊢ ( 𝑡  ∈  𝑇  ↦  Σ 𝑖  ∈  ( 0 ... 𝑚 ) ( 𝐸  ·  ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) )  =  ( 𝑡  ∈  𝑇  ↦  Σ 𝑖  ∈  ( 0 ... 𝑚 ) ( 𝐸  ·  ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) | 
						
							| 216 | 215 | fvmpt2 | ⊢ ( ( 𝑡  ∈  𝑇  ∧  Σ 𝑖  ∈  ( 0 ... 𝑚 ) ( 𝐸  ·  ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) )  ∈  ℝ )  →  ( ( 𝑡  ∈  𝑇  ↦  Σ 𝑖  ∈  ( 0 ... 𝑚 ) ( 𝐸  ·  ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ‘ 𝑡 )  =  Σ 𝑖  ∈  ( 0 ... 𝑚 ) ( 𝐸  ·  ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) | 
						
							| 217 | 189 214 216 | syl2anc | ⊢ ( ( ( 𝑚  ∈  ℕ0  ∧  𝜑  ∧  ( 𝑚  +  1 )  ∈  ( 0 ... 𝑁 ) )  ∧  𝑡  ∈  𝑇 )  →  ( ( 𝑡  ∈  𝑇  ↦  Σ 𝑖  ∈  ( 0 ... 𝑚 ) ( 𝐸  ·  ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ‘ 𝑡 )  =  Σ 𝑖  ∈  ( 0 ... 𝑚 ) ( 𝐸  ·  ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) | 
						
							| 218 | 217 | oveq1d | ⊢ ( ( ( 𝑚  ∈  ℕ0  ∧  𝜑  ∧  ( 𝑚  +  1 )  ∈  ( 0 ... 𝑁 ) )  ∧  𝑡  ∈  𝑇 )  →  ( ( ( 𝑡  ∈  𝑇  ↦  Σ 𝑖  ∈  ( 0 ... 𝑚 ) ( 𝐸  ·  ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ‘ 𝑡 )  +  ( 𝐸  ·  ( ( 𝑋 ‘ ( 𝑚  +  1 ) ) ‘ 𝑡 ) ) )  =  ( Σ 𝑖  ∈  ( 0 ... 𝑚 ) ( 𝐸  ·  ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) )  +  ( 𝐸  ·  ( ( 𝑋 ‘ ( 𝑚  +  1 ) ) ‘ 𝑡 ) ) ) ) | 
						
							| 219 |  | 3simpc | ⊢ ( ( 𝑚  ∈  ℕ0  ∧  𝜑  ∧  ( 𝑚  +  1 )  ∈  ( 0 ... 𝑁 ) )  →  ( 𝜑  ∧  ( 𝑚  +  1 )  ∈  ( 0 ... 𝑁 ) ) ) | 
						
							| 220 | 219 | adantr | ⊢ ( ( ( 𝑚  ∈  ℕ0  ∧  𝜑  ∧  ( 𝑚  +  1 )  ∈  ( 0 ... 𝑁 ) )  ∧  𝑡  ∈  𝑇 )  →  ( 𝜑  ∧  ( 𝑚  +  1 )  ∈  ( 0 ... 𝑁 ) ) ) | 
						
							| 221 |  | feq1 | ⊢ ( 𝑓  =  ( 𝑋 ‘ ( 𝑚  +  1 ) )  →  ( 𝑓 : 𝑇 ⟶ ℝ  ↔  ( 𝑋 ‘ ( 𝑚  +  1 ) ) : 𝑇 ⟶ ℝ ) ) | 
						
							| 222 | 221 | imbi2d | ⊢ ( 𝑓  =  ( 𝑋 ‘ ( 𝑚  +  1 ) )  →  ( ( 𝜑  →  𝑓 : 𝑇 ⟶ ℝ )  ↔  ( 𝜑  →  ( 𝑋 ‘ ( 𝑚  +  1 ) ) : 𝑇 ⟶ ℝ ) ) ) | 
						
							| 223 | 222 66 | vtoclga | ⊢ ( ( 𝑋 ‘ ( 𝑚  +  1 ) )  ∈  𝐴  →  ( 𝜑  →  ( 𝑋 ‘ ( 𝑚  +  1 ) ) : 𝑇 ⟶ ℝ ) ) | 
						
							| 224 | 90 91 223 | sylc | ⊢ ( ( 𝜑  ∧  ( 𝑚  +  1 )  ∈  ( 0 ... 𝑁 ) )  →  ( 𝑋 ‘ ( 𝑚  +  1 ) ) : 𝑇 ⟶ ℝ ) | 
						
							| 225 | 220 224 | syl | ⊢ ( ( ( 𝑚  ∈  ℕ0  ∧  𝜑  ∧  ( 𝑚  +  1 )  ∈  ( 0 ... 𝑁 ) )  ∧  𝑡  ∈  𝑇 )  →  ( 𝑋 ‘ ( 𝑚  +  1 ) ) : 𝑇 ⟶ ℝ ) | 
						
							| 226 | 225 189 | ffvelcdmd | ⊢ ( ( ( 𝑚  ∈  ℕ0  ∧  𝜑  ∧  ( 𝑚  +  1 )  ∈  ( 0 ... 𝑁 ) )  ∧  𝑡  ∈  𝑇 )  →  ( ( 𝑋 ‘ ( 𝑚  +  1 ) ) ‘ 𝑡 )  ∈  ℝ ) | 
						
							| 227 | 192 226 | remulcld | ⊢ ( ( ( 𝑚  ∈  ℕ0  ∧  𝜑  ∧  ( 𝑚  +  1 )  ∈  ( 0 ... 𝑁 ) )  ∧  𝑡  ∈  𝑇 )  →  ( 𝐸  ·  ( ( 𝑋 ‘ ( 𝑚  +  1 ) ) ‘ 𝑡 ) )  ∈  ℝ ) | 
						
							| 228 |  | eqid | ⊢ ( 𝑡  ∈  𝑇  ↦  ( 𝐸  ·  ( ( 𝑋 ‘ ( 𝑚  +  1 ) ) ‘ 𝑡 ) ) )  =  ( 𝑡  ∈  𝑇  ↦  ( 𝐸  ·  ( ( 𝑋 ‘ ( 𝑚  +  1 ) ) ‘ 𝑡 ) ) ) | 
						
							| 229 | 228 | fvmpt2 | ⊢ ( ( 𝑡  ∈  𝑇  ∧  ( 𝐸  ·  ( ( 𝑋 ‘ ( 𝑚  +  1 ) ) ‘ 𝑡 ) )  ∈  ℝ )  →  ( ( 𝑡  ∈  𝑇  ↦  ( 𝐸  ·  ( ( 𝑋 ‘ ( 𝑚  +  1 ) ) ‘ 𝑡 ) ) ) ‘ 𝑡 )  =  ( 𝐸  ·  ( ( 𝑋 ‘ ( 𝑚  +  1 ) ) ‘ 𝑡 ) ) ) | 
						
							| 230 | 189 227 229 | syl2anc | ⊢ ( ( ( 𝑚  ∈  ℕ0  ∧  𝜑  ∧  ( 𝑚  +  1 )  ∈  ( 0 ... 𝑁 ) )  ∧  𝑡  ∈  𝑇 )  →  ( ( 𝑡  ∈  𝑇  ↦  ( 𝐸  ·  ( ( 𝑋 ‘ ( 𝑚  +  1 ) ) ‘ 𝑡 ) ) ) ‘ 𝑡 )  =  ( 𝐸  ·  ( ( 𝑋 ‘ ( 𝑚  +  1 ) ) ‘ 𝑡 ) ) ) | 
						
							| 231 | 230 | oveq2d | ⊢ ( ( ( 𝑚  ∈  ℕ0  ∧  𝜑  ∧  ( 𝑚  +  1 )  ∈  ( 0 ... 𝑁 ) )  ∧  𝑡  ∈  𝑇 )  →  ( ( ( 𝑡  ∈  𝑇  ↦  Σ 𝑖  ∈  ( 0 ... 𝑚 ) ( 𝐸  ·  ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ‘ 𝑡 )  +  ( ( 𝑡  ∈  𝑇  ↦  ( 𝐸  ·  ( ( 𝑋 ‘ ( 𝑚  +  1 ) ) ‘ 𝑡 ) ) ) ‘ 𝑡 ) )  =  ( ( ( 𝑡  ∈  𝑇  ↦  Σ 𝑖  ∈  ( 0 ... 𝑚 ) ( 𝐸  ·  ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ‘ 𝑡 )  +  ( 𝐸  ·  ( ( 𝑋 ‘ ( 𝑚  +  1 ) ) ‘ 𝑡 ) ) ) ) | 
						
							| 232 |  | elfzuz | ⊢ ( ( 𝑚  +  1 )  ∈  ( 0 ... 𝑁 )  →  ( 𝑚  +  1 )  ∈  ( ℤ≥ ‘ 0 ) ) | 
						
							| 233 | 232 | 3ad2ant3 | ⊢ ( ( 𝑚  ∈  ℕ0  ∧  𝜑  ∧  ( 𝑚  +  1 )  ∈  ( 0 ... 𝑁 ) )  →  ( 𝑚  +  1 )  ∈  ( ℤ≥ ‘ 0 ) ) | 
						
							| 234 | 233 | adantr | ⊢ ( ( ( 𝑚  ∈  ℕ0  ∧  𝜑  ∧  ( 𝑚  +  1 )  ∈  ( 0 ... 𝑁 ) )  ∧  𝑡  ∈  𝑇 )  →  ( 𝑚  +  1 )  ∈  ( ℤ≥ ‘ 0 ) ) | 
						
							| 235 | 192 | adantr | ⊢ ( ( ( ( 𝑚  ∈  ℕ0  ∧  𝜑  ∧  ( 𝑚  +  1 )  ∈  ( 0 ... 𝑁 ) )  ∧  𝑡  ∈  𝑇 )  ∧  𝑖  ∈  ( 0 ... ( 𝑚  +  1 ) ) )  →  𝐸  ∈  ℝ ) | 
						
							| 236 | 211 | an32s | ⊢ ( ( ( ( 𝑚  ∈  ℕ0  ∧  𝜑  ∧  ( 𝑚  +  1 )  ∈  ( 0 ... 𝑁 ) )  ∧  𝑡  ∈  𝑇 )  ∧  𝑖  ∈  ( 0 ... ( 𝑚  +  1 ) ) )  →  ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 )  ∈  ℝ ) | 
						
							| 237 |  | remulcl | ⊢ ( ( 𝐸  ∈  ℝ  ∧  ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 )  ∈  ℝ )  →  ( 𝐸  ·  ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) )  ∈  ℝ ) | 
						
							| 238 | 237 | recnd | ⊢ ( ( 𝐸  ∈  ℝ  ∧  ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 )  ∈  ℝ )  →  ( 𝐸  ·  ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) )  ∈  ℂ ) | 
						
							| 239 | 235 236 238 | syl2anc | ⊢ ( ( ( ( 𝑚  ∈  ℕ0  ∧  𝜑  ∧  ( 𝑚  +  1 )  ∈  ( 0 ... 𝑁 ) )  ∧  𝑡  ∈  𝑇 )  ∧  𝑖  ∈  ( 0 ... ( 𝑚  +  1 ) ) )  →  ( 𝐸  ·  ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) )  ∈  ℂ ) | 
						
							| 240 |  | fveq2 | ⊢ ( 𝑖  =  ( 𝑚  +  1 )  →  ( 𝑋 ‘ 𝑖 )  =  ( 𝑋 ‘ ( 𝑚  +  1 ) ) ) | 
						
							| 241 | 240 | fveq1d | ⊢ ( 𝑖  =  ( 𝑚  +  1 )  →  ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 )  =  ( ( 𝑋 ‘ ( 𝑚  +  1 ) ) ‘ 𝑡 ) ) | 
						
							| 242 | 241 | oveq2d | ⊢ ( 𝑖  =  ( 𝑚  +  1 )  →  ( 𝐸  ·  ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) )  =  ( 𝐸  ·  ( ( 𝑋 ‘ ( 𝑚  +  1 ) ) ‘ 𝑡 ) ) ) | 
						
							| 243 | 234 239 242 | fsumm1 | ⊢ ( ( ( 𝑚  ∈  ℕ0  ∧  𝜑  ∧  ( 𝑚  +  1 )  ∈  ( 0 ... 𝑁 ) )  ∧  𝑡  ∈  𝑇 )  →  Σ 𝑖  ∈  ( 0 ... ( 𝑚  +  1 ) ) ( 𝐸  ·  ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) )  =  ( Σ 𝑖  ∈  ( 0 ... ( ( 𝑚  +  1 )  −  1 ) ) ( 𝐸  ·  ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) )  +  ( 𝐸  ·  ( ( 𝑋 ‘ ( 𝑚  +  1 ) ) ‘ 𝑡 ) ) ) ) | 
						
							| 244 |  | nn0cn | ⊢ ( 𝑚  ∈  ℕ0  →  𝑚  ∈  ℂ ) | 
						
							| 245 | 244 | 3ad2ant1 | ⊢ ( ( 𝑚  ∈  ℕ0  ∧  𝜑  ∧  ( 𝑚  +  1 )  ∈  ( 0 ... 𝑁 ) )  →  𝑚  ∈  ℂ ) | 
						
							| 246 | 245 | adantr | ⊢ ( ( ( 𝑚  ∈  ℕ0  ∧  𝜑  ∧  ( 𝑚  +  1 )  ∈  ( 0 ... 𝑁 ) )  ∧  𝑡  ∈  𝑇 )  →  𝑚  ∈  ℂ ) | 
						
							| 247 |  | 1cnd | ⊢ ( ( ( 𝑚  ∈  ℕ0  ∧  𝜑  ∧  ( 𝑚  +  1 )  ∈  ( 0 ... 𝑁 ) )  ∧  𝑡  ∈  𝑇 )  →  1  ∈  ℂ ) | 
						
							| 248 | 246 247 | pncand | ⊢ ( ( ( 𝑚  ∈  ℕ0  ∧  𝜑  ∧  ( 𝑚  +  1 )  ∈  ( 0 ... 𝑁 ) )  ∧  𝑡  ∈  𝑇 )  →  ( ( 𝑚  +  1 )  −  1 )  =  𝑚 ) | 
						
							| 249 | 248 | oveq2d | ⊢ ( ( ( 𝑚  ∈  ℕ0  ∧  𝜑  ∧  ( 𝑚  +  1 )  ∈  ( 0 ... 𝑁 ) )  ∧  𝑡  ∈  𝑇 )  →  ( 0 ... ( ( 𝑚  +  1 )  −  1 ) )  =  ( 0 ... 𝑚 ) ) | 
						
							| 250 | 249 | sumeq1d | ⊢ ( ( ( 𝑚  ∈  ℕ0  ∧  𝜑  ∧  ( 𝑚  +  1 )  ∈  ( 0 ... 𝑁 ) )  ∧  𝑡  ∈  𝑇 )  →  Σ 𝑖  ∈  ( 0 ... ( ( 𝑚  +  1 )  −  1 ) ) ( 𝐸  ·  ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) )  =  Σ 𝑖  ∈  ( 0 ... 𝑚 ) ( 𝐸  ·  ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) | 
						
							| 251 | 250 | oveq1d | ⊢ ( ( ( 𝑚  ∈  ℕ0  ∧  𝜑  ∧  ( 𝑚  +  1 )  ∈  ( 0 ... 𝑁 ) )  ∧  𝑡  ∈  𝑇 )  →  ( Σ 𝑖  ∈  ( 0 ... ( ( 𝑚  +  1 )  −  1 ) ) ( 𝐸  ·  ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) )  +  ( 𝐸  ·  ( ( 𝑋 ‘ ( 𝑚  +  1 ) ) ‘ 𝑡 ) ) )  =  ( Σ 𝑖  ∈  ( 0 ... 𝑚 ) ( 𝐸  ·  ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) )  +  ( 𝐸  ·  ( ( 𝑋 ‘ ( 𝑚  +  1 ) ) ‘ 𝑡 ) ) ) ) | 
						
							| 252 | 243 251 | eqtrd | ⊢ ( ( ( 𝑚  ∈  ℕ0  ∧  𝜑  ∧  ( 𝑚  +  1 )  ∈  ( 0 ... 𝑁 ) )  ∧  𝑡  ∈  𝑇 )  →  Σ 𝑖  ∈  ( 0 ... ( 𝑚  +  1 ) ) ( 𝐸  ·  ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) )  =  ( Σ 𝑖  ∈  ( 0 ... 𝑚 ) ( 𝐸  ·  ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) )  +  ( 𝐸  ·  ( ( 𝑋 ‘ ( 𝑚  +  1 ) ) ‘ 𝑡 ) ) ) ) | 
						
							| 253 | 218 231 252 | 3eqtr4rd | ⊢ ( ( ( 𝑚  ∈  ℕ0  ∧  𝜑  ∧  ( 𝑚  +  1 )  ∈  ( 0 ... 𝑁 ) )  ∧  𝑡  ∈  𝑇 )  →  Σ 𝑖  ∈  ( 0 ... ( 𝑚  +  1 ) ) ( 𝐸  ·  ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) )  =  ( ( ( 𝑡  ∈  𝑇  ↦  Σ 𝑖  ∈  ( 0 ... 𝑚 ) ( 𝐸  ·  ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ‘ 𝑡 )  +  ( ( 𝑡  ∈  𝑇  ↦  ( 𝐸  ·  ( ( 𝑋 ‘ ( 𝑚  +  1 ) ) ‘ 𝑡 ) ) ) ‘ 𝑡 ) ) ) | 
						
							| 254 | 188 253 | mpteq2da | ⊢ ( ( 𝑚  ∈  ℕ0  ∧  𝜑  ∧  ( 𝑚  +  1 )  ∈  ( 0 ... 𝑁 ) )  →  ( 𝑡  ∈  𝑇  ↦  Σ 𝑖  ∈  ( 0 ... ( 𝑚  +  1 ) ) ( 𝐸  ·  ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) )  =  ( 𝑡  ∈  𝑇  ↦  ( ( ( 𝑡  ∈  𝑇  ↦  Σ 𝑖  ∈  ( 0 ... 𝑚 ) ( 𝐸  ·  ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ‘ 𝑡 )  +  ( ( 𝑡  ∈  𝑇  ↦  ( 𝐸  ·  ( ( 𝑋 ‘ ( 𝑚  +  1 ) ) ‘ 𝑡 ) ) ) ‘ 𝑡 ) ) ) ) | 
						
							| 255 | 254 | eleq1d | ⊢ ( ( 𝑚  ∈  ℕ0  ∧  𝜑  ∧  ( 𝑚  +  1 )  ∈  ( 0 ... 𝑁 ) )  →  ( ( 𝑡  ∈  𝑇  ↦  Σ 𝑖  ∈  ( 0 ... ( 𝑚  +  1 ) ) ( 𝐸  ·  ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) )  ∈  𝐴  ↔  ( 𝑡  ∈  𝑇  ↦  ( ( ( 𝑡  ∈  𝑇  ↦  Σ 𝑖  ∈  ( 0 ... 𝑚 ) ( 𝐸  ·  ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ‘ 𝑡 )  +  ( ( 𝑡  ∈  𝑇  ↦  ( 𝐸  ·  ( ( 𝑋 ‘ ( 𝑚  +  1 ) ) ‘ 𝑡 ) ) ) ‘ 𝑡 ) ) )  ∈  𝐴 ) ) | 
						
							| 256 | 185 255 | syl | ⊢ ( ( ( 𝑚  ∈  ℕ0  →  ( ( 𝜑  ∧  𝑚  ∈  ( 0 ... 𝑁 ) )  →  ( 𝑡  ∈  𝑇  ↦  Σ 𝑖  ∈  ( 0 ... 𝑚 ) ( 𝐸  ·  ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) )  ∈  𝐴 ) )  ∧  ( 𝑚  ∈  ℕ0  ∧  ( 𝜑  ∧  ( 𝑚  +  1 )  ∈  ( 0 ... 𝑁 ) ) ) )  →  ( ( 𝑡  ∈  𝑇  ↦  Σ 𝑖  ∈  ( 0 ... ( 𝑚  +  1 ) ) ( 𝐸  ·  ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) )  ∈  𝐴  ↔  ( 𝑡  ∈  𝑇  ↦  ( ( ( 𝑡  ∈  𝑇  ↦  Σ 𝑖  ∈  ( 0 ... 𝑚 ) ( 𝐸  ·  ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) ) ‘ 𝑡 )  +  ( ( 𝑡  ∈  𝑇  ↦  ( 𝐸  ·  ( ( 𝑋 ‘ ( 𝑚  +  1 ) ) ‘ 𝑡 ) ) ) ‘ 𝑡 ) ) )  ∈  𝐴 ) ) | 
						
							| 257 | 182 256 | mpbird | ⊢ ( ( ( 𝑚  ∈  ℕ0  →  ( ( 𝜑  ∧  𝑚  ∈  ( 0 ... 𝑁 ) )  →  ( 𝑡  ∈  𝑇  ↦  Σ 𝑖  ∈  ( 0 ... 𝑚 ) ( 𝐸  ·  ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) )  ∈  𝐴 ) )  ∧  ( 𝑚  ∈  ℕ0  ∧  ( 𝜑  ∧  ( 𝑚  +  1 )  ∈  ( 0 ... 𝑁 ) ) ) )  →  ( 𝑡  ∈  𝑇  ↦  Σ 𝑖  ∈  ( 0 ... ( 𝑚  +  1 ) ) ( 𝐸  ·  ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) )  ∈  𝐴 ) | 
						
							| 258 | 257 | exp32 | ⊢ ( ( 𝑚  ∈  ℕ0  →  ( ( 𝜑  ∧  𝑚  ∈  ( 0 ... 𝑁 ) )  →  ( 𝑡  ∈  𝑇  ↦  Σ 𝑖  ∈  ( 0 ... 𝑚 ) ( 𝐸  ·  ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) )  ∈  𝐴 ) )  →  ( 𝑚  ∈  ℕ0  →  ( ( 𝜑  ∧  ( 𝑚  +  1 )  ∈  ( 0 ... 𝑁 ) )  →  ( 𝑡  ∈  𝑇  ↦  Σ 𝑖  ∈  ( 0 ... ( 𝑚  +  1 ) ) ( 𝐸  ·  ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) )  ∈  𝐴 ) ) ) | 
						
							| 259 | 258 | pm2.86i | ⊢ ( 𝑚  ∈  ℕ0  →  ( ( ( 𝜑  ∧  𝑚  ∈  ( 0 ... 𝑁 ) )  →  ( 𝑡  ∈  𝑇  ↦  Σ 𝑖  ∈  ( 0 ... 𝑚 ) ( 𝐸  ·  ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) )  ∈  𝐴 )  →  ( ( 𝜑  ∧  ( 𝑚  +  1 )  ∈  ( 0 ... 𝑁 ) )  →  ( 𝑡  ∈  𝑇  ↦  Σ 𝑖  ∈  ( 0 ... ( 𝑚  +  1 ) ) ( 𝐸  ·  ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) )  ∈  𝐴 ) ) ) | 
						
							| 260 | 21 28 35 42 81 259 | nn0ind | ⊢ ( 𝑁  ∈  ℕ0  →  ( ( 𝜑  ∧  𝑁  ∈  ( 0 ... 𝑁 ) )  →  ( 𝑡  ∈  𝑇  ↦  Σ 𝑖  ∈  ( 0 ... 𝑁 ) ( 𝐸  ·  ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) )  ∈  𝐴 ) ) | 
						
							| 261 | 9 14 260 | sylc | ⊢ ( 𝜑  →  ( 𝑡  ∈  𝑇  ↦  Σ 𝑖  ∈  ( 0 ... 𝑁 ) ( 𝐸  ·  ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑡 ) ) )  ∈  𝐴 ) |