Step |
Hyp |
Ref |
Expression |
1 |
|
fsumm1.1 |
⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
2 |
|
fsumm1.2 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) → 𝐴 ∈ ℂ ) |
3 |
|
fsumm1.3 |
⊢ ( 𝑘 = 𝑁 → 𝐴 = 𝐵 ) |
4 |
|
eluzelz |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑁 ∈ ℤ ) |
5 |
1 4
|
syl |
⊢ ( 𝜑 → 𝑁 ∈ ℤ ) |
6 |
|
fzsn |
⊢ ( 𝑁 ∈ ℤ → ( 𝑁 ... 𝑁 ) = { 𝑁 } ) |
7 |
5 6
|
syl |
⊢ ( 𝜑 → ( 𝑁 ... 𝑁 ) = { 𝑁 } ) |
8 |
7
|
ineq2d |
⊢ ( 𝜑 → ( ( 𝑀 ... ( 𝑁 − 1 ) ) ∩ ( 𝑁 ... 𝑁 ) ) = ( ( 𝑀 ... ( 𝑁 − 1 ) ) ∩ { 𝑁 } ) ) |
9 |
5
|
zred |
⊢ ( 𝜑 → 𝑁 ∈ ℝ ) |
10 |
9
|
ltm1d |
⊢ ( 𝜑 → ( 𝑁 − 1 ) < 𝑁 ) |
11 |
|
fzdisj |
⊢ ( ( 𝑁 − 1 ) < 𝑁 → ( ( 𝑀 ... ( 𝑁 − 1 ) ) ∩ ( 𝑁 ... 𝑁 ) ) = ∅ ) |
12 |
10 11
|
syl |
⊢ ( 𝜑 → ( ( 𝑀 ... ( 𝑁 − 1 ) ) ∩ ( 𝑁 ... 𝑁 ) ) = ∅ ) |
13 |
8 12
|
eqtr3d |
⊢ ( 𝜑 → ( ( 𝑀 ... ( 𝑁 − 1 ) ) ∩ { 𝑁 } ) = ∅ ) |
14 |
|
eluzel2 |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑀 ∈ ℤ ) |
15 |
1 14
|
syl |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
16 |
|
peano2zm |
⊢ ( 𝑀 ∈ ℤ → ( 𝑀 − 1 ) ∈ ℤ ) |
17 |
15 16
|
syl |
⊢ ( 𝜑 → ( 𝑀 − 1 ) ∈ ℤ ) |
18 |
15
|
zcnd |
⊢ ( 𝜑 → 𝑀 ∈ ℂ ) |
19 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
20 |
|
npcan |
⊢ ( ( 𝑀 ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( 𝑀 − 1 ) + 1 ) = 𝑀 ) |
21 |
18 19 20
|
sylancl |
⊢ ( 𝜑 → ( ( 𝑀 − 1 ) + 1 ) = 𝑀 ) |
22 |
21
|
fveq2d |
⊢ ( 𝜑 → ( ℤ≥ ‘ ( ( 𝑀 − 1 ) + 1 ) ) = ( ℤ≥ ‘ 𝑀 ) ) |
23 |
1 22
|
eleqtrrd |
⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ ( ( 𝑀 − 1 ) + 1 ) ) ) |
24 |
|
eluzp1m1 |
⊢ ( ( ( 𝑀 − 1 ) ∈ ℤ ∧ 𝑁 ∈ ( ℤ≥ ‘ ( ( 𝑀 − 1 ) + 1 ) ) ) → ( 𝑁 − 1 ) ∈ ( ℤ≥ ‘ ( 𝑀 − 1 ) ) ) |
25 |
17 23 24
|
syl2anc |
⊢ ( 𝜑 → ( 𝑁 − 1 ) ∈ ( ℤ≥ ‘ ( 𝑀 − 1 ) ) ) |
26 |
|
fzsuc2 |
⊢ ( ( 𝑀 ∈ ℤ ∧ ( 𝑁 − 1 ) ∈ ( ℤ≥ ‘ ( 𝑀 − 1 ) ) ) → ( 𝑀 ... ( ( 𝑁 − 1 ) + 1 ) ) = ( ( 𝑀 ... ( 𝑁 − 1 ) ) ∪ { ( ( 𝑁 − 1 ) + 1 ) } ) ) |
27 |
15 25 26
|
syl2anc |
⊢ ( 𝜑 → ( 𝑀 ... ( ( 𝑁 − 1 ) + 1 ) ) = ( ( 𝑀 ... ( 𝑁 − 1 ) ) ∪ { ( ( 𝑁 − 1 ) + 1 ) } ) ) |
28 |
5
|
zcnd |
⊢ ( 𝜑 → 𝑁 ∈ ℂ ) |
29 |
|
npcan |
⊢ ( ( 𝑁 ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( 𝑁 − 1 ) + 1 ) = 𝑁 ) |
30 |
28 19 29
|
sylancl |
⊢ ( 𝜑 → ( ( 𝑁 − 1 ) + 1 ) = 𝑁 ) |
31 |
30
|
oveq2d |
⊢ ( 𝜑 → ( 𝑀 ... ( ( 𝑁 − 1 ) + 1 ) ) = ( 𝑀 ... 𝑁 ) ) |
32 |
27 31
|
eqtr3d |
⊢ ( 𝜑 → ( ( 𝑀 ... ( 𝑁 − 1 ) ) ∪ { ( ( 𝑁 − 1 ) + 1 ) } ) = ( 𝑀 ... 𝑁 ) ) |
33 |
30
|
sneqd |
⊢ ( 𝜑 → { ( ( 𝑁 − 1 ) + 1 ) } = { 𝑁 } ) |
34 |
33
|
uneq2d |
⊢ ( 𝜑 → ( ( 𝑀 ... ( 𝑁 − 1 ) ) ∪ { ( ( 𝑁 − 1 ) + 1 ) } ) = ( ( 𝑀 ... ( 𝑁 − 1 ) ) ∪ { 𝑁 } ) ) |
35 |
32 34
|
eqtr3d |
⊢ ( 𝜑 → ( 𝑀 ... 𝑁 ) = ( ( 𝑀 ... ( 𝑁 − 1 ) ) ∪ { 𝑁 } ) ) |
36 |
|
fzfid |
⊢ ( 𝜑 → ( 𝑀 ... 𝑁 ) ∈ Fin ) |
37 |
13 35 36 2
|
fsumsplit |
⊢ ( 𝜑 → Σ 𝑘 ∈ ( 𝑀 ... 𝑁 ) 𝐴 = ( Σ 𝑘 ∈ ( 𝑀 ... ( 𝑁 − 1 ) ) 𝐴 + Σ 𝑘 ∈ { 𝑁 } 𝐴 ) ) |
38 |
3
|
eleq1d |
⊢ ( 𝑘 = 𝑁 → ( 𝐴 ∈ ℂ ↔ 𝐵 ∈ ℂ ) ) |
39 |
2
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑘 ∈ ( 𝑀 ... 𝑁 ) 𝐴 ∈ ℂ ) |
40 |
|
eluzfz2 |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑁 ∈ ( 𝑀 ... 𝑁 ) ) |
41 |
1 40
|
syl |
⊢ ( 𝜑 → 𝑁 ∈ ( 𝑀 ... 𝑁 ) ) |
42 |
38 39 41
|
rspcdva |
⊢ ( 𝜑 → 𝐵 ∈ ℂ ) |
43 |
3
|
sumsn |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ 𝐵 ∈ ℂ ) → Σ 𝑘 ∈ { 𝑁 } 𝐴 = 𝐵 ) |
44 |
1 42 43
|
syl2anc |
⊢ ( 𝜑 → Σ 𝑘 ∈ { 𝑁 } 𝐴 = 𝐵 ) |
45 |
44
|
oveq2d |
⊢ ( 𝜑 → ( Σ 𝑘 ∈ ( 𝑀 ... ( 𝑁 − 1 ) ) 𝐴 + Σ 𝑘 ∈ { 𝑁 } 𝐴 ) = ( Σ 𝑘 ∈ ( 𝑀 ... ( 𝑁 − 1 ) ) 𝐴 + 𝐵 ) ) |
46 |
37 45
|
eqtrd |
⊢ ( 𝜑 → Σ 𝑘 ∈ ( 𝑀 ... 𝑁 ) 𝐴 = ( Σ 𝑘 ∈ ( 𝑀 ... ( 𝑁 − 1 ) ) 𝐴 + 𝐵 ) ) |