| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fsumm1.1 |
|- ( ph -> N e. ( ZZ>= ` M ) ) |
| 2 |
|
fsumm1.2 |
|- ( ( ph /\ k e. ( M ... N ) ) -> A e. CC ) |
| 3 |
|
fsumm1.3 |
|- ( k = N -> A = B ) |
| 4 |
|
eluzelz |
|- ( N e. ( ZZ>= ` M ) -> N e. ZZ ) |
| 5 |
1 4
|
syl |
|- ( ph -> N e. ZZ ) |
| 6 |
|
fzsn |
|- ( N e. ZZ -> ( N ... N ) = { N } ) |
| 7 |
5 6
|
syl |
|- ( ph -> ( N ... N ) = { N } ) |
| 8 |
7
|
ineq2d |
|- ( ph -> ( ( M ... ( N - 1 ) ) i^i ( N ... N ) ) = ( ( M ... ( N - 1 ) ) i^i { N } ) ) |
| 9 |
5
|
zred |
|- ( ph -> N e. RR ) |
| 10 |
9
|
ltm1d |
|- ( ph -> ( N - 1 ) < N ) |
| 11 |
|
fzdisj |
|- ( ( N - 1 ) < N -> ( ( M ... ( N - 1 ) ) i^i ( N ... N ) ) = (/) ) |
| 12 |
10 11
|
syl |
|- ( ph -> ( ( M ... ( N - 1 ) ) i^i ( N ... N ) ) = (/) ) |
| 13 |
8 12
|
eqtr3d |
|- ( ph -> ( ( M ... ( N - 1 ) ) i^i { N } ) = (/) ) |
| 14 |
|
eluzel2 |
|- ( N e. ( ZZ>= ` M ) -> M e. ZZ ) |
| 15 |
1 14
|
syl |
|- ( ph -> M e. ZZ ) |
| 16 |
|
peano2zm |
|- ( M e. ZZ -> ( M - 1 ) e. ZZ ) |
| 17 |
15 16
|
syl |
|- ( ph -> ( M - 1 ) e. ZZ ) |
| 18 |
15
|
zcnd |
|- ( ph -> M e. CC ) |
| 19 |
|
ax-1cn |
|- 1 e. CC |
| 20 |
|
npcan |
|- ( ( M e. CC /\ 1 e. CC ) -> ( ( M - 1 ) + 1 ) = M ) |
| 21 |
18 19 20
|
sylancl |
|- ( ph -> ( ( M - 1 ) + 1 ) = M ) |
| 22 |
21
|
fveq2d |
|- ( ph -> ( ZZ>= ` ( ( M - 1 ) + 1 ) ) = ( ZZ>= ` M ) ) |
| 23 |
1 22
|
eleqtrrd |
|- ( ph -> N e. ( ZZ>= ` ( ( M - 1 ) + 1 ) ) ) |
| 24 |
|
eluzp1m1 |
|- ( ( ( M - 1 ) e. ZZ /\ N e. ( ZZ>= ` ( ( M - 1 ) + 1 ) ) ) -> ( N - 1 ) e. ( ZZ>= ` ( M - 1 ) ) ) |
| 25 |
17 23 24
|
syl2anc |
|- ( ph -> ( N - 1 ) e. ( ZZ>= ` ( M - 1 ) ) ) |
| 26 |
|
fzsuc2 |
|- ( ( M e. ZZ /\ ( N - 1 ) e. ( ZZ>= ` ( M - 1 ) ) ) -> ( M ... ( ( N - 1 ) + 1 ) ) = ( ( M ... ( N - 1 ) ) u. { ( ( N - 1 ) + 1 ) } ) ) |
| 27 |
15 25 26
|
syl2anc |
|- ( ph -> ( M ... ( ( N - 1 ) + 1 ) ) = ( ( M ... ( N - 1 ) ) u. { ( ( N - 1 ) + 1 ) } ) ) |
| 28 |
5
|
zcnd |
|- ( ph -> N e. CC ) |
| 29 |
|
npcan |
|- ( ( N e. CC /\ 1 e. CC ) -> ( ( N - 1 ) + 1 ) = N ) |
| 30 |
28 19 29
|
sylancl |
|- ( ph -> ( ( N - 1 ) + 1 ) = N ) |
| 31 |
30
|
oveq2d |
|- ( ph -> ( M ... ( ( N - 1 ) + 1 ) ) = ( M ... N ) ) |
| 32 |
27 31
|
eqtr3d |
|- ( ph -> ( ( M ... ( N - 1 ) ) u. { ( ( N - 1 ) + 1 ) } ) = ( M ... N ) ) |
| 33 |
30
|
sneqd |
|- ( ph -> { ( ( N - 1 ) + 1 ) } = { N } ) |
| 34 |
33
|
uneq2d |
|- ( ph -> ( ( M ... ( N - 1 ) ) u. { ( ( N - 1 ) + 1 ) } ) = ( ( M ... ( N - 1 ) ) u. { N } ) ) |
| 35 |
32 34
|
eqtr3d |
|- ( ph -> ( M ... N ) = ( ( M ... ( N - 1 ) ) u. { N } ) ) |
| 36 |
|
fzfid |
|- ( ph -> ( M ... N ) e. Fin ) |
| 37 |
13 35 36 2
|
fsumsplit |
|- ( ph -> sum_ k e. ( M ... N ) A = ( sum_ k e. ( M ... ( N - 1 ) ) A + sum_ k e. { N } A ) ) |
| 38 |
3
|
eleq1d |
|- ( k = N -> ( A e. CC <-> B e. CC ) ) |
| 39 |
2
|
ralrimiva |
|- ( ph -> A. k e. ( M ... N ) A e. CC ) |
| 40 |
|
eluzfz2 |
|- ( N e. ( ZZ>= ` M ) -> N e. ( M ... N ) ) |
| 41 |
1 40
|
syl |
|- ( ph -> N e. ( M ... N ) ) |
| 42 |
38 39 41
|
rspcdva |
|- ( ph -> B e. CC ) |
| 43 |
3
|
sumsn |
|- ( ( N e. ( ZZ>= ` M ) /\ B e. CC ) -> sum_ k e. { N } A = B ) |
| 44 |
1 42 43
|
syl2anc |
|- ( ph -> sum_ k e. { N } A = B ) |
| 45 |
44
|
oveq2d |
|- ( ph -> ( sum_ k e. ( M ... ( N - 1 ) ) A + sum_ k e. { N } A ) = ( sum_ k e. ( M ... ( N - 1 ) ) A + B ) ) |
| 46 |
37 45
|
eqtrd |
|- ( ph -> sum_ k e. ( M ... N ) A = ( sum_ k e. ( M ... ( N - 1 ) ) A + B ) ) |