Step |
Hyp |
Ref |
Expression |
1 |
|
df-3an |
⊢ ( ( 𝜑 ∧ 𝜓 ∧ 𝜒 ) ↔ ( ( 𝜑 ∧ 𝜓 ) ∧ 𝜒 ) ) |
2 |
1
|
ralbii |
⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝜑 ∧ 𝜓 ∧ 𝜒 ) ↔ ∀ 𝑥 ∈ 𝐴 ( ( 𝜑 ∧ 𝜓 ) ∧ 𝜒 ) ) |
3 |
|
r19.26 |
⊢ ( ∀ 𝑥 ∈ 𝐴 ( ( 𝜑 ∧ 𝜓 ) ∧ 𝜒 ) ↔ ( ∀ 𝑥 ∈ 𝐴 ( 𝜑 ∧ 𝜓 ) ∧ ∀ 𝑥 ∈ 𝐴 𝜒 ) ) |
4 |
|
r19.26 |
⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝜑 ∧ 𝜓 ) ↔ ( ∀ 𝑥 ∈ 𝐴 𝜑 ∧ ∀ 𝑥 ∈ 𝐴 𝜓 ) ) |
5 |
4
|
anbi1i |
⊢ ( ( ∀ 𝑥 ∈ 𝐴 ( 𝜑 ∧ 𝜓 ) ∧ ∀ 𝑥 ∈ 𝐴 𝜒 ) ↔ ( ( ∀ 𝑥 ∈ 𝐴 𝜑 ∧ ∀ 𝑥 ∈ 𝐴 𝜓 ) ∧ ∀ 𝑥 ∈ 𝐴 𝜒 ) ) |
6 |
|
df-3an |
⊢ ( ( ∀ 𝑥 ∈ 𝐴 𝜑 ∧ ∀ 𝑥 ∈ 𝐴 𝜓 ∧ ∀ 𝑥 ∈ 𝐴 𝜒 ) ↔ ( ( ∀ 𝑥 ∈ 𝐴 𝜑 ∧ ∀ 𝑥 ∈ 𝐴 𝜓 ) ∧ ∀ 𝑥 ∈ 𝐴 𝜒 ) ) |
7 |
5 6
|
bitr4i |
⊢ ( ( ∀ 𝑥 ∈ 𝐴 ( 𝜑 ∧ 𝜓 ) ∧ ∀ 𝑥 ∈ 𝐴 𝜒 ) ↔ ( ∀ 𝑥 ∈ 𝐴 𝜑 ∧ ∀ 𝑥 ∈ 𝐴 𝜓 ∧ ∀ 𝑥 ∈ 𝐴 𝜒 ) ) |
8 |
2 3 7
|
3bitri |
⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝜑 ∧ 𝜓 ∧ 𝜒 ) ↔ ( ∀ 𝑥 ∈ 𝐴 𝜑 ∧ ∀ 𝑥 ∈ 𝐴 𝜓 ∧ ∀ 𝑥 ∈ 𝐴 𝜒 ) ) |