| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							uniun | 
							⊢ ∪  ( ( 𝐴  ∖  { ∅ } )  ∪  { ∅ } )  =  ( ∪  ( 𝐴  ∖  { ∅ } )  ∪  ∪  { ∅ } )  | 
						
						
							| 2 | 
							
								
							 | 
							undif1 | 
							⊢ ( ( 𝐴  ∖  { ∅ } )  ∪  { ∅ } )  =  ( 𝐴  ∪  { ∅ } )  | 
						
						
							| 3 | 
							
								
							 | 
							uncom | 
							⊢ ( 𝐴  ∪  { ∅ } )  =  ( { ∅ }  ∪  𝐴 )  | 
						
						
							| 4 | 
							
								2 3
							 | 
							eqtr2i | 
							⊢ ( { ∅ }  ∪  𝐴 )  =  ( ( 𝐴  ∖  { ∅ } )  ∪  { ∅ } )  | 
						
						
							| 5 | 
							
								4
							 | 
							unieqi | 
							⊢ ∪  ( { ∅ }  ∪  𝐴 )  =  ∪  ( ( 𝐴  ∖  { ∅ } )  ∪  { ∅ } )  | 
						
						
							| 6 | 
							
								
							 | 
							0ex | 
							⊢ ∅  ∈  V  | 
						
						
							| 7 | 
							
								6
							 | 
							unisn | 
							⊢ ∪  { ∅ }  =  ∅  | 
						
						
							| 8 | 
							
								7
							 | 
							uneq2i | 
							⊢ ( ∪  ( 𝐴  ∖  { ∅ } )  ∪  ∪  { ∅ } )  =  ( ∪  ( 𝐴  ∖  { ∅ } )  ∪  ∅ )  | 
						
						
							| 9 | 
							
								
							 | 
							un0 | 
							⊢ ( ∪  ( 𝐴  ∖  { ∅ } )  ∪  ∅ )  =  ∪  ( 𝐴  ∖  { ∅ } )  | 
						
						
							| 10 | 
							
								8 9
							 | 
							eqtr2i | 
							⊢ ∪  ( 𝐴  ∖  { ∅ } )  =  ( ∪  ( 𝐴  ∖  { ∅ } )  ∪  ∪  { ∅ } )  | 
						
						
							| 11 | 
							
								1 5 10
							 | 
							3eqtr4ri | 
							⊢ ∪  ( 𝐴  ∖  { ∅ } )  =  ∪  ( { ∅ }  ∪  𝐴 )  | 
						
						
							| 12 | 
							
								
							 | 
							uniun | 
							⊢ ∪  ( { ∅ }  ∪  𝐴 )  =  ( ∪  { ∅ }  ∪  ∪  𝐴 )  | 
						
						
							| 13 | 
							
								7
							 | 
							uneq1i | 
							⊢ ( ∪  { ∅ }  ∪  ∪  𝐴 )  =  ( ∅  ∪  ∪  𝐴 )  | 
						
						
							| 14 | 
							
								11 12 13
							 | 
							3eqtri | 
							⊢ ∪  ( 𝐴  ∖  { ∅ } )  =  ( ∅  ∪  ∪  𝐴 )  | 
						
						
							| 15 | 
							
								
							 | 
							uncom | 
							⊢ ( ∅  ∪  ∪  𝐴 )  =  ( ∪  𝐴  ∪  ∅ )  | 
						
						
							| 16 | 
							
								
							 | 
							un0 | 
							⊢ ( ∪  𝐴  ∪  ∅ )  =  ∪  𝐴  | 
						
						
							| 17 | 
							
								14 15 16
							 | 
							3eqtri | 
							⊢ ∪  ( 𝐴  ∖  { ∅ } )  =  ∪  𝐴  |