Metamath Proof Explorer


Theorem eqsnuniex

Description: If a class is equal to the singleton of its union, then its union exists. (Contributed by BTernaryTau, 24-Sep-2024)

Ref Expression
Assertion eqsnuniex ( 𝐴 = { 𝐴 } → 𝐴 ∈ V )

Proof

Step Hyp Ref Expression
1 unieq ( 𝐴 = { 𝐴 } → 𝐴 = { 𝐴 } )
2 unieq ( { 𝐴 } = ∅ → { 𝐴 } = ∅ )
3 uni0 ∅ = ∅
4 2 3 eqtrdi ( { 𝐴 } = ∅ → { 𝐴 } = ∅ )
5 1 4 sylan9eq ( ( 𝐴 = { 𝐴 } ∧ { 𝐴 } = ∅ ) → 𝐴 = ∅ )
6 5 sneqd ( ( 𝐴 = { 𝐴 } ∧ { 𝐴 } = ∅ ) → { 𝐴 } = { ∅ } )
7 0inp0 ( { 𝐴 } = ∅ → ¬ { 𝐴 } = { ∅ } )
8 7 adantl ( ( 𝐴 = { 𝐴 } ∧ { 𝐴 } = ∅ ) → ¬ { 𝐴 } = { ∅ } )
9 6 8 pm2.65da ( 𝐴 = { 𝐴 } → ¬ { 𝐴 } = ∅ )
10 snprc ( ¬ 𝐴 ∈ V ↔ { 𝐴 } = ∅ )
11 10 bicomi ( { 𝐴 } = ∅ ↔ ¬ 𝐴 ∈ V )
12 11 con2bii ( 𝐴 ∈ V ↔ ¬ { 𝐴 } = ∅ )
13 9 12 sylibr ( 𝐴 = { 𝐴 } → 𝐴 ∈ V )