| Step | Hyp | Ref | Expression | 
						
							| 1 |  | stoweidlem28.1 | ⊢ Ⅎ 𝑡 𝑈 | 
						
							| 2 |  | stoweidlem28.2 | ⊢ Ⅎ 𝑡 𝜑 | 
						
							| 3 |  | stoweidlem28.3 | ⊢ 𝐾  =  ( topGen ‘ ran  (,) ) | 
						
							| 4 |  | stoweidlem28.4 | ⊢ 𝑇  =  ∪  𝐽 | 
						
							| 5 |  | stoweidlem28.5 | ⊢ ( 𝜑  →  𝐽  ∈  Comp ) | 
						
							| 6 |  | stoweidlem28.6 | ⊢ ( 𝜑  →  𝑃  ∈  ( 𝐽  Cn  𝐾 ) ) | 
						
							| 7 |  | stoweidlem28.7 | ⊢ ( 𝜑  →  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) 0  <  ( 𝑃 ‘ 𝑡 ) ) | 
						
							| 8 |  | stoweidlem28.8 | ⊢ ( 𝜑  →  𝑈  ∈  𝐽 ) | 
						
							| 9 |  | halfre | ⊢ ( 1  /  2 )  ∈  ℝ | 
						
							| 10 |  | halfgt0 | ⊢ 0  <  ( 1  /  2 ) | 
						
							| 11 | 9 10 | elrpii | ⊢ ( 1  /  2 )  ∈  ℝ+ | 
						
							| 12 | 11 | a1i | ⊢ ( ( 𝜑  ∧  ( 𝑇  ∖  𝑈 )  =  ∅ )  →  ( 1  /  2 )  ∈  ℝ+ ) | 
						
							| 13 |  | halflt1 | ⊢ ( 1  /  2 )  <  1 | 
						
							| 14 | 13 | a1i | ⊢ ( ( 𝜑  ∧  ( 𝑇  ∖  𝑈 )  =  ∅ )  →  ( 1  /  2 )  <  1 ) | 
						
							| 15 |  | nfcv | ⊢ Ⅎ 𝑡 𝑇 | 
						
							| 16 | 15 1 | nfdif | ⊢ Ⅎ 𝑡 ( 𝑇  ∖  𝑈 ) | 
						
							| 17 | 16 | nfeq1 | ⊢ Ⅎ 𝑡 ( 𝑇  ∖  𝑈 )  =  ∅ | 
						
							| 18 | 17 | rzalf | ⊢ ( ( 𝑇  ∖  𝑈 )  =  ∅  →  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) ( 1  /  2 )  ≤  ( 𝑃 ‘ 𝑡 ) ) | 
						
							| 19 | 18 | adantl | ⊢ ( ( 𝜑  ∧  ( 𝑇  ∖  𝑈 )  =  ∅ )  →  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) ( 1  /  2 )  ≤  ( 𝑃 ‘ 𝑡 ) ) | 
						
							| 20 |  | ovex | ⊢ ( 1  /  2 )  ∈  V | 
						
							| 21 |  | eleq1 | ⊢ ( 𝑑  =  ( 1  /  2 )  →  ( 𝑑  ∈  ℝ+  ↔  ( 1  /  2 )  ∈  ℝ+ ) ) | 
						
							| 22 |  | breq1 | ⊢ ( 𝑑  =  ( 1  /  2 )  →  ( 𝑑  <  1  ↔  ( 1  /  2 )  <  1 ) ) | 
						
							| 23 |  | breq1 | ⊢ ( 𝑑  =  ( 1  /  2 )  →  ( 𝑑  ≤  ( 𝑃 ‘ 𝑡 )  ↔  ( 1  /  2 )  ≤  ( 𝑃 ‘ 𝑡 ) ) ) | 
						
							| 24 | 23 | ralbidv | ⊢ ( 𝑑  =  ( 1  /  2 )  →  ( ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) 𝑑  ≤  ( 𝑃 ‘ 𝑡 )  ↔  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) ( 1  /  2 )  ≤  ( 𝑃 ‘ 𝑡 ) ) ) | 
						
							| 25 | 21 22 24 | 3anbi123d | ⊢ ( 𝑑  =  ( 1  /  2 )  →  ( ( 𝑑  ∈  ℝ+  ∧  𝑑  <  1  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) 𝑑  ≤  ( 𝑃 ‘ 𝑡 ) )  ↔  ( ( 1  /  2 )  ∈  ℝ+  ∧  ( 1  /  2 )  <  1  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) ( 1  /  2 )  ≤  ( 𝑃 ‘ 𝑡 ) ) ) ) | 
						
							| 26 | 20 25 | spcev | ⊢ ( ( ( 1  /  2 )  ∈  ℝ+  ∧  ( 1  /  2 )  <  1  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) ( 1  /  2 )  ≤  ( 𝑃 ‘ 𝑡 ) )  →  ∃ 𝑑 ( 𝑑  ∈  ℝ+  ∧  𝑑  <  1  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) 𝑑  ≤  ( 𝑃 ‘ 𝑡 ) ) ) | 
						
							| 27 | 12 14 19 26 | syl3anc | ⊢ ( ( 𝜑  ∧  ( 𝑇  ∖  𝑈 )  =  ∅ )  →  ∃ 𝑑 ( 𝑑  ∈  ℝ+  ∧  𝑑  <  1  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) 𝑑  ≤  ( 𝑃 ‘ 𝑡 ) ) ) | 
						
							| 28 |  | simplll | ⊢ ( ( ( ( 𝜑  ∧  ¬  ( 𝑇  ∖  𝑈 )  =  ∅ )  ∧  𝑥  ∈  ( 𝑇  ∖  𝑈 ) )  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) ( ( 𝑃  ↾  ( 𝑇  ∖  𝑈 ) ) ‘ 𝑥 )  ≤  ( ( 𝑃  ↾  ( 𝑇  ∖  𝑈 ) ) ‘ 𝑡 ) )  →  𝜑 ) | 
						
							| 29 |  | simplr | ⊢ ( ( ( ( 𝜑  ∧  ¬  ( 𝑇  ∖  𝑈 )  =  ∅ )  ∧  𝑥  ∈  ( 𝑇  ∖  𝑈 ) )  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) ( ( 𝑃  ↾  ( 𝑇  ∖  𝑈 ) ) ‘ 𝑥 )  ≤  ( ( 𝑃  ↾  ( 𝑇  ∖  𝑈 ) ) ‘ 𝑡 ) )  →  𝑥  ∈  ( 𝑇  ∖  𝑈 ) ) | 
						
							| 30 |  | simpr | ⊢ ( ( ( ( 𝜑  ∧  ¬  ( 𝑇  ∖  𝑈 )  =  ∅ )  ∧  𝑥  ∈  ( 𝑇  ∖  𝑈 ) )  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) ( ( 𝑃  ↾  ( 𝑇  ∖  𝑈 ) ) ‘ 𝑥 )  ≤  ( ( 𝑃  ↾  ( 𝑇  ∖  𝑈 ) ) ‘ 𝑡 ) )  →  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) ( ( 𝑃  ↾  ( 𝑇  ∖  𝑈 ) ) ‘ 𝑥 )  ≤  ( ( 𝑃  ↾  ( 𝑇  ∖  𝑈 ) ) ‘ 𝑡 ) ) | 
						
							| 31 |  | eqid | ⊢ ( 𝐽  Cn  𝐾 )  =  ( 𝐽  Cn  𝐾 ) | 
						
							| 32 | 3 4 31 6 | fcnre | ⊢ ( 𝜑  →  𝑃 : 𝑇 ⟶ ℝ ) | 
						
							| 33 | 32 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝑇  ∖  𝑈 ) )  →  𝑃 : 𝑇 ⟶ ℝ ) | 
						
							| 34 |  | eldifi | ⊢ ( 𝑥  ∈  ( 𝑇  ∖  𝑈 )  →  𝑥  ∈  𝑇 ) | 
						
							| 35 | 34 | adantl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝑇  ∖  𝑈 ) )  →  𝑥  ∈  𝑇 ) | 
						
							| 36 | 33 35 | ffvelcdmd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝑇  ∖  𝑈 ) )  →  ( 𝑃 ‘ 𝑥 )  ∈  ℝ ) | 
						
							| 37 |  | nfcv | ⊢ Ⅎ 𝑥 ( 𝑇  ∖  𝑈 ) | 
						
							| 38 |  | nfv | ⊢ Ⅎ 𝑥 0  <  ( 𝑃 ‘ 𝑡 ) | 
						
							| 39 |  | nfv | ⊢ Ⅎ 𝑡 0  <  ( 𝑃 ‘ 𝑥 ) | 
						
							| 40 |  | fveq2 | ⊢ ( 𝑡  =  𝑥  →  ( 𝑃 ‘ 𝑡 )  =  ( 𝑃 ‘ 𝑥 ) ) | 
						
							| 41 | 40 | breq2d | ⊢ ( 𝑡  =  𝑥  →  ( 0  <  ( 𝑃 ‘ 𝑡 )  ↔  0  <  ( 𝑃 ‘ 𝑥 ) ) ) | 
						
							| 42 | 16 37 38 39 41 | cbvralfw | ⊢ ( ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) 0  <  ( 𝑃 ‘ 𝑡 )  ↔  ∀ 𝑥  ∈  ( 𝑇  ∖  𝑈 ) 0  <  ( 𝑃 ‘ 𝑥 ) ) | 
						
							| 43 | 42 | biimpi | ⊢ ( ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) 0  <  ( 𝑃 ‘ 𝑡 )  →  ∀ 𝑥  ∈  ( 𝑇  ∖  𝑈 ) 0  <  ( 𝑃 ‘ 𝑥 ) ) | 
						
							| 44 | 43 | r19.21bi | ⊢ ( ( ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) 0  <  ( 𝑃 ‘ 𝑡 )  ∧  𝑥  ∈  ( 𝑇  ∖  𝑈 ) )  →  0  <  ( 𝑃 ‘ 𝑥 ) ) | 
						
							| 45 | 7 44 | sylan | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝑇  ∖  𝑈 ) )  →  0  <  ( 𝑃 ‘ 𝑥 ) ) | 
						
							| 46 | 36 45 | elrpd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝑇  ∖  𝑈 ) )  →  ( 𝑃 ‘ 𝑥 )  ∈  ℝ+ ) | 
						
							| 47 | 46 | 3adant3 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝑇  ∖  𝑈 )  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) ( ( 𝑃  ↾  ( 𝑇  ∖  𝑈 ) ) ‘ 𝑥 )  ≤  ( ( 𝑃  ↾  ( 𝑇  ∖  𝑈 ) ) ‘ 𝑡 ) )  →  ( 𝑃 ‘ 𝑥 )  ∈  ℝ+ ) | 
						
							| 48 | 16 | nfcri | ⊢ Ⅎ 𝑡 𝑥  ∈  ( 𝑇  ∖  𝑈 ) | 
						
							| 49 |  | nfra1 | ⊢ Ⅎ 𝑡 ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) ( ( 𝑃  ↾  ( 𝑇  ∖  𝑈 ) ) ‘ 𝑥 )  ≤  ( ( 𝑃  ↾  ( 𝑇  ∖  𝑈 ) ) ‘ 𝑡 ) | 
						
							| 50 | 2 48 49 | nf3an | ⊢ Ⅎ 𝑡 ( 𝜑  ∧  𝑥  ∈  ( 𝑇  ∖  𝑈 )  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) ( ( 𝑃  ↾  ( 𝑇  ∖  𝑈 ) ) ‘ 𝑥 )  ≤  ( ( 𝑃  ↾  ( 𝑇  ∖  𝑈 ) ) ‘ 𝑡 ) ) | 
						
							| 51 |  | rspa | ⊢ ( ( ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) ( ( 𝑃  ↾  ( 𝑇  ∖  𝑈 ) ) ‘ 𝑥 )  ≤  ( ( 𝑃  ↾  ( 𝑇  ∖  𝑈 ) ) ‘ 𝑡 )  ∧  𝑡  ∈  ( 𝑇  ∖  𝑈 ) )  →  ( ( 𝑃  ↾  ( 𝑇  ∖  𝑈 ) ) ‘ 𝑥 )  ≤  ( ( 𝑃  ↾  ( 𝑇  ∖  𝑈 ) ) ‘ 𝑡 ) ) | 
						
							| 52 | 51 | 3ad2antl3 | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 𝑇  ∖  𝑈 )  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) ( ( 𝑃  ↾  ( 𝑇  ∖  𝑈 ) ) ‘ 𝑥 )  ≤  ( ( 𝑃  ↾  ( 𝑇  ∖  𝑈 ) ) ‘ 𝑡 ) )  ∧  𝑡  ∈  ( 𝑇  ∖  𝑈 ) )  →  ( ( 𝑃  ↾  ( 𝑇  ∖  𝑈 ) ) ‘ 𝑥 )  ≤  ( ( 𝑃  ↾  ( 𝑇  ∖  𝑈 ) ) ‘ 𝑡 ) ) | 
						
							| 53 |  | simpl2 | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 𝑇  ∖  𝑈 )  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) ( ( 𝑃  ↾  ( 𝑇  ∖  𝑈 ) ) ‘ 𝑥 )  ≤  ( ( 𝑃  ↾  ( 𝑇  ∖  𝑈 ) ) ‘ 𝑡 ) )  ∧  𝑡  ∈  ( 𝑇  ∖  𝑈 ) )  →  𝑥  ∈  ( 𝑇  ∖  𝑈 ) ) | 
						
							| 54 |  | fvres | ⊢ ( 𝑥  ∈  ( 𝑇  ∖  𝑈 )  →  ( ( 𝑃  ↾  ( 𝑇  ∖  𝑈 ) ) ‘ 𝑥 )  =  ( 𝑃 ‘ 𝑥 ) ) | 
						
							| 55 | 53 54 | syl | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 𝑇  ∖  𝑈 )  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) ( ( 𝑃  ↾  ( 𝑇  ∖  𝑈 ) ) ‘ 𝑥 )  ≤  ( ( 𝑃  ↾  ( 𝑇  ∖  𝑈 ) ) ‘ 𝑡 ) )  ∧  𝑡  ∈  ( 𝑇  ∖  𝑈 ) )  →  ( ( 𝑃  ↾  ( 𝑇  ∖  𝑈 ) ) ‘ 𝑥 )  =  ( 𝑃 ‘ 𝑥 ) ) | 
						
							| 56 |  | fvres | ⊢ ( 𝑡  ∈  ( 𝑇  ∖  𝑈 )  →  ( ( 𝑃  ↾  ( 𝑇  ∖  𝑈 ) ) ‘ 𝑡 )  =  ( 𝑃 ‘ 𝑡 ) ) | 
						
							| 57 | 56 | adantl | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 𝑇  ∖  𝑈 )  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) ( ( 𝑃  ↾  ( 𝑇  ∖  𝑈 ) ) ‘ 𝑥 )  ≤  ( ( 𝑃  ↾  ( 𝑇  ∖  𝑈 ) ) ‘ 𝑡 ) )  ∧  𝑡  ∈  ( 𝑇  ∖  𝑈 ) )  →  ( ( 𝑃  ↾  ( 𝑇  ∖  𝑈 ) ) ‘ 𝑡 )  =  ( 𝑃 ‘ 𝑡 ) ) | 
						
							| 58 | 52 55 57 | 3brtr3d | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 𝑇  ∖  𝑈 )  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) ( ( 𝑃  ↾  ( 𝑇  ∖  𝑈 ) ) ‘ 𝑥 )  ≤  ( ( 𝑃  ↾  ( 𝑇  ∖  𝑈 ) ) ‘ 𝑡 ) )  ∧  𝑡  ∈  ( 𝑇  ∖  𝑈 ) )  →  ( 𝑃 ‘ 𝑥 )  ≤  ( 𝑃 ‘ 𝑡 ) ) | 
						
							| 59 | 58 | ex | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝑇  ∖  𝑈 )  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) ( ( 𝑃  ↾  ( 𝑇  ∖  𝑈 ) ) ‘ 𝑥 )  ≤  ( ( 𝑃  ↾  ( 𝑇  ∖  𝑈 ) ) ‘ 𝑡 ) )  →  ( 𝑡  ∈  ( 𝑇  ∖  𝑈 )  →  ( 𝑃 ‘ 𝑥 )  ≤  ( 𝑃 ‘ 𝑡 ) ) ) | 
						
							| 60 | 50 59 | ralrimi | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝑇  ∖  𝑈 )  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) ( ( 𝑃  ↾  ( 𝑇  ∖  𝑈 ) ) ‘ 𝑥 )  ≤  ( ( 𝑃  ↾  ( 𝑇  ∖  𝑈 ) ) ‘ 𝑡 ) )  →  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) ( 𝑃 ‘ 𝑥 )  ≤  ( 𝑃 ‘ 𝑡 ) ) | 
						
							| 61 |  | eleq1 | ⊢ ( 𝑐  =  ( 𝑃 ‘ 𝑥 )  →  ( 𝑐  ∈  ℝ+  ↔  ( 𝑃 ‘ 𝑥 )  ∈  ℝ+ ) ) | 
						
							| 62 |  | breq1 | ⊢ ( 𝑐  =  ( 𝑃 ‘ 𝑥 )  →  ( 𝑐  ≤  ( 𝑃 ‘ 𝑡 )  ↔  ( 𝑃 ‘ 𝑥 )  ≤  ( 𝑃 ‘ 𝑡 ) ) ) | 
						
							| 63 | 62 | ralbidv | ⊢ ( 𝑐  =  ( 𝑃 ‘ 𝑥 )  →  ( ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) 𝑐  ≤  ( 𝑃 ‘ 𝑡 )  ↔  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) ( 𝑃 ‘ 𝑥 )  ≤  ( 𝑃 ‘ 𝑡 ) ) ) | 
						
							| 64 | 61 63 | anbi12d | ⊢ ( 𝑐  =  ( 𝑃 ‘ 𝑥 )  →  ( ( 𝑐  ∈  ℝ+  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) 𝑐  ≤  ( 𝑃 ‘ 𝑡 ) )  ↔  ( ( 𝑃 ‘ 𝑥 )  ∈  ℝ+  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) ( 𝑃 ‘ 𝑥 )  ≤  ( 𝑃 ‘ 𝑡 ) ) ) ) | 
						
							| 65 | 64 | spcegv | ⊢ ( ( 𝑃 ‘ 𝑥 )  ∈  ℝ+  →  ( ( ( 𝑃 ‘ 𝑥 )  ∈  ℝ+  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) ( 𝑃 ‘ 𝑥 )  ≤  ( 𝑃 ‘ 𝑡 ) )  →  ∃ 𝑐 ( 𝑐  ∈  ℝ+  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) 𝑐  ≤  ( 𝑃 ‘ 𝑡 ) ) ) ) | 
						
							| 66 | 47 65 | syl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝑇  ∖  𝑈 )  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) ( ( 𝑃  ↾  ( 𝑇  ∖  𝑈 ) ) ‘ 𝑥 )  ≤  ( ( 𝑃  ↾  ( 𝑇  ∖  𝑈 ) ) ‘ 𝑡 ) )  →  ( ( ( 𝑃 ‘ 𝑥 )  ∈  ℝ+  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) ( 𝑃 ‘ 𝑥 )  ≤  ( 𝑃 ‘ 𝑡 ) )  →  ∃ 𝑐 ( 𝑐  ∈  ℝ+  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) 𝑐  ≤  ( 𝑃 ‘ 𝑡 ) ) ) ) | 
						
							| 67 | 47 60 66 | mp2and | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝑇  ∖  𝑈 )  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) ( ( 𝑃  ↾  ( 𝑇  ∖  𝑈 ) ) ‘ 𝑥 )  ≤  ( ( 𝑃  ↾  ( 𝑇  ∖  𝑈 ) ) ‘ 𝑡 ) )  →  ∃ 𝑐 ( 𝑐  ∈  ℝ+  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) 𝑐  ≤  ( 𝑃 ‘ 𝑡 ) ) ) | 
						
							| 68 |  | simpl1 | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 𝑇  ∖  𝑈 )  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) ( ( 𝑃  ↾  ( 𝑇  ∖  𝑈 ) ) ‘ 𝑥 )  ≤  ( ( 𝑃  ↾  ( 𝑇  ∖  𝑈 ) ) ‘ 𝑡 ) )  ∧  ( 𝑐  ∈  ℝ+  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) 𝑐  ≤  ( 𝑃 ‘ 𝑡 ) ) )  →  𝜑 ) | 
						
							| 69 |  | simprl | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 𝑇  ∖  𝑈 )  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) ( ( 𝑃  ↾  ( 𝑇  ∖  𝑈 ) ) ‘ 𝑥 )  ≤  ( ( 𝑃  ↾  ( 𝑇  ∖  𝑈 ) ) ‘ 𝑡 ) )  ∧  ( 𝑐  ∈  ℝ+  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) 𝑐  ≤  ( 𝑃 ‘ 𝑡 ) ) )  →  𝑐  ∈  ℝ+ ) | 
						
							| 70 |  | simprr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 𝑇  ∖  𝑈 )  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) ( ( 𝑃  ↾  ( 𝑇  ∖  𝑈 ) ) ‘ 𝑥 )  ≤  ( ( 𝑃  ↾  ( 𝑇  ∖  𝑈 ) ) ‘ 𝑡 ) )  ∧  ( 𝑐  ∈  ℝ+  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) 𝑐  ≤  ( 𝑃 ‘ 𝑡 ) ) )  →  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) 𝑐  ≤  ( 𝑃 ‘ 𝑡 ) ) | 
						
							| 71 |  | nfv | ⊢ Ⅎ 𝑡 𝑐  ∈  ℝ+ | 
						
							| 72 |  | nfra1 | ⊢ Ⅎ 𝑡 ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) 𝑐  ≤  ( 𝑃 ‘ 𝑡 ) | 
						
							| 73 | 2 71 72 | nf3an | ⊢ Ⅎ 𝑡 ( 𝜑  ∧  𝑐  ∈  ℝ+  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) 𝑐  ≤  ( 𝑃 ‘ 𝑡 ) ) | 
						
							| 74 |  | eqid | ⊢ if ( 𝑐  ≤  ( 1  /  2 ) ,  𝑐 ,  ( 1  /  2 ) )  =  if ( 𝑐  ≤  ( 1  /  2 ) ,  𝑐 ,  ( 1  /  2 ) ) | 
						
							| 75 | 32 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  𝑐  ∈  ℝ+  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) 𝑐  ≤  ( 𝑃 ‘ 𝑡 ) )  →  𝑃 : 𝑇 ⟶ ℝ ) | 
						
							| 76 |  | difssd | ⊢ ( ( 𝜑  ∧  𝑐  ∈  ℝ+  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) 𝑐  ≤  ( 𝑃 ‘ 𝑡 ) )  →  ( 𝑇  ∖  𝑈 )  ⊆  𝑇 ) | 
						
							| 77 |  | simp2 | ⊢ ( ( 𝜑  ∧  𝑐  ∈  ℝ+  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) 𝑐  ≤  ( 𝑃 ‘ 𝑡 ) )  →  𝑐  ∈  ℝ+ ) | 
						
							| 78 |  | simp3 | ⊢ ( ( 𝜑  ∧  𝑐  ∈  ℝ+  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) 𝑐  ≤  ( 𝑃 ‘ 𝑡 ) )  →  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) 𝑐  ≤  ( 𝑃 ‘ 𝑡 ) ) | 
						
							| 79 | 73 74 75 76 77 78 | stoweidlem5 | ⊢ ( ( 𝜑  ∧  𝑐  ∈  ℝ+  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) 𝑐  ≤  ( 𝑃 ‘ 𝑡 ) )  →  ∃ 𝑑 ( 𝑑  ∈  ℝ+  ∧  𝑑  <  1  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) 𝑑  ≤  ( 𝑃 ‘ 𝑡 ) ) ) | 
						
							| 80 | 68 69 70 79 | syl3anc | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 𝑇  ∖  𝑈 )  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) ( ( 𝑃  ↾  ( 𝑇  ∖  𝑈 ) ) ‘ 𝑥 )  ≤  ( ( 𝑃  ↾  ( 𝑇  ∖  𝑈 ) ) ‘ 𝑡 ) )  ∧  ( 𝑐  ∈  ℝ+  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) 𝑐  ≤  ( 𝑃 ‘ 𝑡 ) ) )  →  ∃ 𝑑 ( 𝑑  ∈  ℝ+  ∧  𝑑  <  1  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) 𝑑  ≤  ( 𝑃 ‘ 𝑡 ) ) ) | 
						
							| 81 | 67 80 | exlimddv | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝑇  ∖  𝑈 )  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) ( ( 𝑃  ↾  ( 𝑇  ∖  𝑈 ) ) ‘ 𝑥 )  ≤  ( ( 𝑃  ↾  ( 𝑇  ∖  𝑈 ) ) ‘ 𝑡 ) )  →  ∃ 𝑑 ( 𝑑  ∈  ℝ+  ∧  𝑑  <  1  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) 𝑑  ≤  ( 𝑃 ‘ 𝑡 ) ) ) | 
						
							| 82 | 28 29 30 81 | syl3anc | ⊢ ( ( ( ( 𝜑  ∧  ¬  ( 𝑇  ∖  𝑈 )  =  ∅ )  ∧  𝑥  ∈  ( 𝑇  ∖  𝑈 ) )  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) ( ( 𝑃  ↾  ( 𝑇  ∖  𝑈 ) ) ‘ 𝑥 )  ≤  ( ( 𝑃  ↾  ( 𝑇  ∖  𝑈 ) ) ‘ 𝑡 ) )  →  ∃ 𝑑 ( 𝑑  ∈  ℝ+  ∧  𝑑  <  1  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) 𝑑  ≤  ( 𝑃 ‘ 𝑡 ) ) ) | 
						
							| 83 |  | eqid | ⊢ ∪  ( 𝐽  ↾t  ( 𝑇  ∖  𝑈 ) )  =  ∪  ( 𝐽  ↾t  ( 𝑇  ∖  𝑈 ) ) | 
						
							| 84 |  | cmptop | ⊢ ( 𝐽  ∈  Comp  →  𝐽  ∈  Top ) | 
						
							| 85 | 5 84 | syl | ⊢ ( 𝜑  →  𝐽  ∈  Top ) | 
						
							| 86 |  | elssuni | ⊢ ( 𝑈  ∈  𝐽  →  𝑈  ⊆  ∪  𝐽 ) | 
						
							| 87 | 8 86 | syl | ⊢ ( 𝜑  →  𝑈  ⊆  ∪  𝐽 ) | 
						
							| 88 | 87 4 | sseqtrrdi | ⊢ ( 𝜑  →  𝑈  ⊆  𝑇 ) | 
						
							| 89 | 4 | isopn2 | ⊢ ( ( 𝐽  ∈  Top  ∧  𝑈  ⊆  𝑇 )  →  ( 𝑈  ∈  𝐽  ↔  ( 𝑇  ∖  𝑈 )  ∈  ( Clsd ‘ 𝐽 ) ) ) | 
						
							| 90 | 85 88 89 | syl2anc | ⊢ ( 𝜑  →  ( 𝑈  ∈  𝐽  ↔  ( 𝑇  ∖  𝑈 )  ∈  ( Clsd ‘ 𝐽 ) ) ) | 
						
							| 91 | 8 90 | mpbid | ⊢ ( 𝜑  →  ( 𝑇  ∖  𝑈 )  ∈  ( Clsd ‘ 𝐽 ) ) | 
						
							| 92 |  | cmpcld | ⊢ ( ( 𝐽  ∈  Comp  ∧  ( 𝑇  ∖  𝑈 )  ∈  ( Clsd ‘ 𝐽 ) )  →  ( 𝐽  ↾t  ( 𝑇  ∖  𝑈 ) )  ∈  Comp ) | 
						
							| 93 | 5 91 92 | syl2anc | ⊢ ( 𝜑  →  ( 𝐽  ↾t  ( 𝑇  ∖  𝑈 ) )  ∈  Comp ) | 
						
							| 94 | 93 | adantr | ⊢ ( ( 𝜑  ∧  ¬  ( 𝑇  ∖  𝑈 )  =  ∅ )  →  ( 𝐽  ↾t  ( 𝑇  ∖  𝑈 ) )  ∈  Comp ) | 
						
							| 95 | 6 | adantr | ⊢ ( ( 𝜑  ∧  ¬  ( 𝑇  ∖  𝑈 )  =  ∅ )  →  𝑃  ∈  ( 𝐽  Cn  𝐾 ) ) | 
						
							| 96 |  | difssd | ⊢ ( ( 𝜑  ∧  ¬  ( 𝑇  ∖  𝑈 )  =  ∅ )  →  ( 𝑇  ∖  𝑈 )  ⊆  𝑇 ) | 
						
							| 97 | 4 | cnrest | ⊢ ( ( 𝑃  ∈  ( 𝐽  Cn  𝐾 )  ∧  ( 𝑇  ∖  𝑈 )  ⊆  𝑇 )  →  ( 𝑃  ↾  ( 𝑇  ∖  𝑈 ) )  ∈  ( ( 𝐽  ↾t  ( 𝑇  ∖  𝑈 ) )  Cn  𝐾 ) ) | 
						
							| 98 | 95 96 97 | syl2anc | ⊢ ( ( 𝜑  ∧  ¬  ( 𝑇  ∖  𝑈 )  =  ∅ )  →  ( 𝑃  ↾  ( 𝑇  ∖  𝑈 ) )  ∈  ( ( 𝐽  ↾t  ( 𝑇  ∖  𝑈 ) )  Cn  𝐾 ) ) | 
						
							| 99 |  | difssd | ⊢ ( 𝜑  →  ( 𝑇  ∖  𝑈 )  ⊆  𝑇 ) | 
						
							| 100 | 4 | restuni | ⊢ ( ( 𝐽  ∈  Top  ∧  ( 𝑇  ∖  𝑈 )  ⊆  𝑇 )  →  ( 𝑇  ∖  𝑈 )  =  ∪  ( 𝐽  ↾t  ( 𝑇  ∖  𝑈 ) ) ) | 
						
							| 101 | 85 99 100 | syl2anc | ⊢ ( 𝜑  →  ( 𝑇  ∖  𝑈 )  =  ∪  ( 𝐽  ↾t  ( 𝑇  ∖  𝑈 ) ) ) | 
						
							| 102 | 101 | neeq1d | ⊢ ( 𝜑  →  ( ( 𝑇  ∖  𝑈 )  ≠  ∅  ↔  ∪  ( 𝐽  ↾t  ( 𝑇  ∖  𝑈 ) )  ≠  ∅ ) ) | 
						
							| 103 |  | df-ne | ⊢ ( ( 𝑇  ∖  𝑈 )  ≠  ∅  ↔  ¬  ( 𝑇  ∖  𝑈 )  =  ∅ ) | 
						
							| 104 | 102 103 | bitr3di | ⊢ ( 𝜑  →  ( ∪  ( 𝐽  ↾t  ( 𝑇  ∖  𝑈 ) )  ≠  ∅  ↔  ¬  ( 𝑇  ∖  𝑈 )  =  ∅ ) ) | 
						
							| 105 | 104 | biimpar | ⊢ ( ( 𝜑  ∧  ¬  ( 𝑇  ∖  𝑈 )  =  ∅ )  →  ∪  ( 𝐽  ↾t  ( 𝑇  ∖  𝑈 ) )  ≠  ∅ ) | 
						
							| 106 | 83 3 94 98 105 | evth2 | ⊢ ( ( 𝜑  ∧  ¬  ( 𝑇  ∖  𝑈 )  =  ∅ )  →  ∃ 𝑥  ∈  ∪  ( 𝐽  ↾t  ( 𝑇  ∖  𝑈 ) ) ∀ 𝑠  ∈  ∪  ( 𝐽  ↾t  ( 𝑇  ∖  𝑈 ) ) ( ( 𝑃  ↾  ( 𝑇  ∖  𝑈 ) ) ‘ 𝑥 )  ≤  ( ( 𝑃  ↾  ( 𝑇  ∖  𝑈 ) ) ‘ 𝑠 ) ) | 
						
							| 107 |  | nfcv | ⊢ Ⅎ 𝑠 ∪  ( 𝐽  ↾t  ( 𝑇  ∖  𝑈 ) ) | 
						
							| 108 |  | nfcv | ⊢ Ⅎ 𝑡 𝐽 | 
						
							| 109 |  | nfcv | ⊢ Ⅎ 𝑡  ↾t | 
						
							| 110 | 108 109 16 | nfov | ⊢ Ⅎ 𝑡 ( 𝐽  ↾t  ( 𝑇  ∖  𝑈 ) ) | 
						
							| 111 | 110 | nfuni | ⊢ Ⅎ 𝑡 ∪  ( 𝐽  ↾t  ( 𝑇  ∖  𝑈 ) ) | 
						
							| 112 |  | nfcv | ⊢ Ⅎ 𝑡 𝑃 | 
						
							| 113 | 112 16 | nfres | ⊢ Ⅎ 𝑡 ( 𝑃  ↾  ( 𝑇  ∖  𝑈 ) ) | 
						
							| 114 |  | nfcv | ⊢ Ⅎ 𝑡 𝑥 | 
						
							| 115 | 113 114 | nffv | ⊢ Ⅎ 𝑡 ( ( 𝑃  ↾  ( 𝑇  ∖  𝑈 ) ) ‘ 𝑥 ) | 
						
							| 116 |  | nfcv | ⊢ Ⅎ 𝑡  ≤ | 
						
							| 117 |  | nfcv | ⊢ Ⅎ 𝑡 𝑠 | 
						
							| 118 | 113 117 | nffv | ⊢ Ⅎ 𝑡 ( ( 𝑃  ↾  ( 𝑇  ∖  𝑈 ) ) ‘ 𝑠 ) | 
						
							| 119 | 115 116 118 | nfbr | ⊢ Ⅎ 𝑡 ( ( 𝑃  ↾  ( 𝑇  ∖  𝑈 ) ) ‘ 𝑥 )  ≤  ( ( 𝑃  ↾  ( 𝑇  ∖  𝑈 ) ) ‘ 𝑠 ) | 
						
							| 120 |  | nfv | ⊢ Ⅎ 𝑠 ( ( 𝑃  ↾  ( 𝑇  ∖  𝑈 ) ) ‘ 𝑥 )  ≤  ( ( 𝑃  ↾  ( 𝑇  ∖  𝑈 ) ) ‘ 𝑡 ) | 
						
							| 121 |  | fveq2 | ⊢ ( 𝑠  =  𝑡  →  ( ( 𝑃  ↾  ( 𝑇  ∖  𝑈 ) ) ‘ 𝑠 )  =  ( ( 𝑃  ↾  ( 𝑇  ∖  𝑈 ) ) ‘ 𝑡 ) ) | 
						
							| 122 | 121 | breq2d | ⊢ ( 𝑠  =  𝑡  →  ( ( ( 𝑃  ↾  ( 𝑇  ∖  𝑈 ) ) ‘ 𝑥 )  ≤  ( ( 𝑃  ↾  ( 𝑇  ∖  𝑈 ) ) ‘ 𝑠 )  ↔  ( ( 𝑃  ↾  ( 𝑇  ∖  𝑈 ) ) ‘ 𝑥 )  ≤  ( ( 𝑃  ↾  ( 𝑇  ∖  𝑈 ) ) ‘ 𝑡 ) ) ) | 
						
							| 123 | 107 111 119 120 122 | cbvralfw | ⊢ ( ∀ 𝑠  ∈  ∪  ( 𝐽  ↾t  ( 𝑇  ∖  𝑈 ) ) ( ( 𝑃  ↾  ( 𝑇  ∖  𝑈 ) ) ‘ 𝑥 )  ≤  ( ( 𝑃  ↾  ( 𝑇  ∖  𝑈 ) ) ‘ 𝑠 )  ↔  ∀ 𝑡  ∈  ∪  ( 𝐽  ↾t  ( 𝑇  ∖  𝑈 ) ) ( ( 𝑃  ↾  ( 𝑇  ∖  𝑈 ) ) ‘ 𝑥 )  ≤  ( ( 𝑃  ↾  ( 𝑇  ∖  𝑈 ) ) ‘ 𝑡 ) ) | 
						
							| 124 | 123 | rexbii | ⊢ ( ∃ 𝑥  ∈  ∪  ( 𝐽  ↾t  ( 𝑇  ∖  𝑈 ) ) ∀ 𝑠  ∈  ∪  ( 𝐽  ↾t  ( 𝑇  ∖  𝑈 ) ) ( ( 𝑃  ↾  ( 𝑇  ∖  𝑈 ) ) ‘ 𝑥 )  ≤  ( ( 𝑃  ↾  ( 𝑇  ∖  𝑈 ) ) ‘ 𝑠 )  ↔  ∃ 𝑥  ∈  ∪  ( 𝐽  ↾t  ( 𝑇  ∖  𝑈 ) ) ∀ 𝑡  ∈  ∪  ( 𝐽  ↾t  ( 𝑇  ∖  𝑈 ) ) ( ( 𝑃  ↾  ( 𝑇  ∖  𝑈 ) ) ‘ 𝑥 )  ≤  ( ( 𝑃  ↾  ( 𝑇  ∖  𝑈 ) ) ‘ 𝑡 ) ) | 
						
							| 125 | 106 124 | sylib | ⊢ ( ( 𝜑  ∧  ¬  ( 𝑇  ∖  𝑈 )  =  ∅ )  →  ∃ 𝑥  ∈  ∪  ( 𝐽  ↾t  ( 𝑇  ∖  𝑈 ) ) ∀ 𝑡  ∈  ∪  ( 𝐽  ↾t  ( 𝑇  ∖  𝑈 ) ) ( ( 𝑃  ↾  ( 𝑇  ∖  𝑈 ) ) ‘ 𝑥 )  ≤  ( ( 𝑃  ↾  ( 𝑇  ∖  𝑈 ) ) ‘ 𝑡 ) ) | 
						
							| 126 | 16 111 | raleqf | ⊢ ( ( 𝑇  ∖  𝑈 )  =  ∪  ( 𝐽  ↾t  ( 𝑇  ∖  𝑈 ) )  →  ( ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) ( ( 𝑃  ↾  ( 𝑇  ∖  𝑈 ) ) ‘ 𝑥 )  ≤  ( ( 𝑃  ↾  ( 𝑇  ∖  𝑈 ) ) ‘ 𝑡 )  ↔  ∀ 𝑡  ∈  ∪  ( 𝐽  ↾t  ( 𝑇  ∖  𝑈 ) ) ( ( 𝑃  ↾  ( 𝑇  ∖  𝑈 ) ) ‘ 𝑥 )  ≤  ( ( 𝑃  ↾  ( 𝑇  ∖  𝑈 ) ) ‘ 𝑡 ) ) ) | 
						
							| 127 | 126 | rexeqbi1dv | ⊢ ( ( 𝑇  ∖  𝑈 )  =  ∪  ( 𝐽  ↾t  ( 𝑇  ∖  𝑈 ) )  →  ( ∃ 𝑥  ∈  ( 𝑇  ∖  𝑈 ) ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) ( ( 𝑃  ↾  ( 𝑇  ∖  𝑈 ) ) ‘ 𝑥 )  ≤  ( ( 𝑃  ↾  ( 𝑇  ∖  𝑈 ) ) ‘ 𝑡 )  ↔  ∃ 𝑥  ∈  ∪  ( 𝐽  ↾t  ( 𝑇  ∖  𝑈 ) ) ∀ 𝑡  ∈  ∪  ( 𝐽  ↾t  ( 𝑇  ∖  𝑈 ) ) ( ( 𝑃  ↾  ( 𝑇  ∖  𝑈 ) ) ‘ 𝑥 )  ≤  ( ( 𝑃  ↾  ( 𝑇  ∖  𝑈 ) ) ‘ 𝑡 ) ) ) | 
						
							| 128 | 101 127 | syl | ⊢ ( 𝜑  →  ( ∃ 𝑥  ∈  ( 𝑇  ∖  𝑈 ) ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) ( ( 𝑃  ↾  ( 𝑇  ∖  𝑈 ) ) ‘ 𝑥 )  ≤  ( ( 𝑃  ↾  ( 𝑇  ∖  𝑈 ) ) ‘ 𝑡 )  ↔  ∃ 𝑥  ∈  ∪  ( 𝐽  ↾t  ( 𝑇  ∖  𝑈 ) ) ∀ 𝑡  ∈  ∪  ( 𝐽  ↾t  ( 𝑇  ∖  𝑈 ) ) ( ( 𝑃  ↾  ( 𝑇  ∖  𝑈 ) ) ‘ 𝑥 )  ≤  ( ( 𝑃  ↾  ( 𝑇  ∖  𝑈 ) ) ‘ 𝑡 ) ) ) | 
						
							| 129 | 128 | adantr | ⊢ ( ( 𝜑  ∧  ¬  ( 𝑇  ∖  𝑈 )  =  ∅ )  →  ( ∃ 𝑥  ∈  ( 𝑇  ∖  𝑈 ) ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) ( ( 𝑃  ↾  ( 𝑇  ∖  𝑈 ) ) ‘ 𝑥 )  ≤  ( ( 𝑃  ↾  ( 𝑇  ∖  𝑈 ) ) ‘ 𝑡 )  ↔  ∃ 𝑥  ∈  ∪  ( 𝐽  ↾t  ( 𝑇  ∖  𝑈 ) ) ∀ 𝑡  ∈  ∪  ( 𝐽  ↾t  ( 𝑇  ∖  𝑈 ) ) ( ( 𝑃  ↾  ( 𝑇  ∖  𝑈 ) ) ‘ 𝑥 )  ≤  ( ( 𝑃  ↾  ( 𝑇  ∖  𝑈 ) ) ‘ 𝑡 ) ) ) | 
						
							| 130 | 125 129 | mpbird | ⊢ ( ( 𝜑  ∧  ¬  ( 𝑇  ∖  𝑈 )  =  ∅ )  →  ∃ 𝑥  ∈  ( 𝑇  ∖  𝑈 ) ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) ( ( 𝑃  ↾  ( 𝑇  ∖  𝑈 ) ) ‘ 𝑥 )  ≤  ( ( 𝑃  ↾  ( 𝑇  ∖  𝑈 ) ) ‘ 𝑡 ) ) | 
						
							| 131 | 82 130 | r19.29a | ⊢ ( ( 𝜑  ∧  ¬  ( 𝑇  ∖  𝑈 )  =  ∅ )  →  ∃ 𝑑 ( 𝑑  ∈  ℝ+  ∧  𝑑  <  1  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) 𝑑  ≤  ( 𝑃 ‘ 𝑡 ) ) ) | 
						
							| 132 | 27 131 | pm2.61dan | ⊢ ( 𝜑  →  ∃ 𝑑 ( 𝑑  ∈  ℝ+  ∧  𝑑  <  1  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) 𝑑  ≤  ( 𝑃 ‘ 𝑡 ) ) ) |