| Step | Hyp | Ref | Expression | 
						
							| 1 |  | stoweidlem44.1 | ⊢ Ⅎ 𝑗 𝜑 | 
						
							| 2 |  | stoweidlem44.2 | ⊢ Ⅎ 𝑡 𝜑 | 
						
							| 3 |  | stoweidlem44.3 | ⊢ 𝐾  =  ( topGen ‘ ran  (,) ) | 
						
							| 4 |  | stoweidlem44.4 | ⊢ 𝑄  =  { ℎ  ∈  𝐴  ∣  ( ( ℎ ‘ 𝑍 )  =  0  ∧  ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ℎ ‘ 𝑡 )  ∧  ( ℎ ‘ 𝑡 )  ≤  1 ) ) } | 
						
							| 5 |  | stoweidlem44.5 | ⊢ 𝑃  =  ( 𝑡  ∈  𝑇  ↦  ( ( 1  /  𝑀 )  ·  Σ 𝑖  ∈  ( 1 ... 𝑀 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ) ) | 
						
							| 6 |  | stoweidlem44.6 | ⊢ ( 𝜑  →  𝑀  ∈  ℕ ) | 
						
							| 7 |  | stoweidlem44.7 | ⊢ ( 𝜑  →  𝐺 : ( 1 ... 𝑀 ) ⟶ 𝑄 ) | 
						
							| 8 |  | stoweidlem44.8 | ⊢ ( 𝜑  →  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) ∃ 𝑗  ∈  ( 1 ... 𝑀 ) 0  <  ( ( 𝐺 ‘ 𝑗 ) ‘ 𝑡 ) ) | 
						
							| 9 |  | stoweidlem44.9 | ⊢ 𝑇  =  ∪  𝐽 | 
						
							| 10 |  | stoweidlem44.10 | ⊢ ( 𝜑  →  𝐴  ⊆  ( 𝐽  Cn  𝐾 ) ) | 
						
							| 11 |  | stoweidlem44.11 | ⊢ ( ( 𝜑  ∧  𝑓  ∈  𝐴  ∧  𝑔  ∈  𝐴 )  →  ( 𝑡  ∈  𝑇  ↦  ( ( 𝑓 ‘ 𝑡 )  +  ( 𝑔 ‘ 𝑡 ) ) )  ∈  𝐴 ) | 
						
							| 12 |  | stoweidlem44.12 | ⊢ ( ( 𝜑  ∧  𝑓  ∈  𝐴  ∧  𝑔  ∈  𝐴 )  →  ( 𝑡  ∈  𝑇  ↦  ( ( 𝑓 ‘ 𝑡 )  ·  ( 𝑔 ‘ 𝑡 ) ) )  ∈  𝐴 ) | 
						
							| 13 |  | stoweidlem44.13 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ )  →  ( 𝑡  ∈  𝑇  ↦  𝑥 )  ∈  𝐴 ) | 
						
							| 14 |  | stoweidlem44.14 | ⊢ ( 𝜑  →  𝑍  ∈  𝑇 ) | 
						
							| 15 |  | eqid | ⊢ ( 𝑡  ∈  𝑇  ↦  Σ 𝑖  ∈  ( 1 ... 𝑀 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) )  =  ( 𝑡  ∈  𝑇  ↦  Σ 𝑖  ∈  ( 1 ... 𝑀 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ) | 
						
							| 16 |  | eqid | ⊢ ( 𝑡  ∈  𝑇  ↦  ( 1  /  𝑀 ) )  =  ( 𝑡  ∈  𝑇  ↦  ( 1  /  𝑀 ) ) | 
						
							| 17 | 6 | nnrecred | ⊢ ( 𝜑  →  ( 1  /  𝑀 )  ∈  ℝ ) | 
						
							| 18 |  | ssrab2 | ⊢ { ℎ  ∈  𝐴  ∣  ( ( ℎ ‘ 𝑍 )  =  0  ∧  ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ℎ ‘ 𝑡 )  ∧  ( ℎ ‘ 𝑡 )  ≤  1 ) ) }  ⊆  𝐴 | 
						
							| 19 | 4 18 | eqsstri | ⊢ 𝑄  ⊆  𝐴 | 
						
							| 20 |  | fss | ⊢ ( ( 𝐺 : ( 1 ... 𝑀 ) ⟶ 𝑄  ∧  𝑄  ⊆  𝐴 )  →  𝐺 : ( 1 ... 𝑀 ) ⟶ 𝐴 ) | 
						
							| 21 | 7 19 20 | sylancl | ⊢ ( 𝜑  →  𝐺 : ( 1 ... 𝑀 ) ⟶ 𝐴 ) | 
						
							| 22 |  | eqid | ⊢ ( 𝐽  Cn  𝐾 )  =  ( 𝐽  Cn  𝐾 ) | 
						
							| 23 | 10 | sselda | ⊢ ( ( 𝜑  ∧  𝑓  ∈  𝐴 )  →  𝑓  ∈  ( 𝐽  Cn  𝐾 ) ) | 
						
							| 24 | 3 9 22 23 | fcnre | ⊢ ( ( 𝜑  ∧  𝑓  ∈  𝐴 )  →  𝑓 : 𝑇 ⟶ ℝ ) | 
						
							| 25 | 2 5 15 16 6 17 21 11 12 13 24 | stoweidlem32 | ⊢ ( 𝜑  →  𝑃  ∈  𝐴 ) | 
						
							| 26 | 4 5 6 7 24 | stoweidlem38 | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  →  ( 0  ≤  ( 𝑃 ‘ 𝑡 )  ∧  ( 𝑃 ‘ 𝑡 )  ≤  1 ) ) | 
						
							| 27 | 26 | ex | ⊢ ( 𝜑  →  ( 𝑡  ∈  𝑇  →  ( 0  ≤  ( 𝑃 ‘ 𝑡 )  ∧  ( 𝑃 ‘ 𝑡 )  ≤  1 ) ) ) | 
						
							| 28 | 2 27 | ralrimi | ⊢ ( 𝜑  →  ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( 𝑃 ‘ 𝑡 )  ∧  ( 𝑃 ‘ 𝑡 )  ≤  1 ) ) | 
						
							| 29 | 4 5 6 7 24 14 | stoweidlem37 | ⊢ ( 𝜑  →  ( 𝑃 ‘ 𝑍 )  =  0 ) | 
						
							| 30 |  | nfv | ⊢ Ⅎ 𝑗 𝑡  ∈  ( 𝑇  ∖  𝑈 ) | 
						
							| 31 | 1 30 | nfan | ⊢ Ⅎ 𝑗 ( 𝜑  ∧  𝑡  ∈  ( 𝑇  ∖  𝑈 ) ) | 
						
							| 32 |  | nfv | ⊢ Ⅎ 𝑗 0  <  ( ( 1  /  𝑀 )  ·  Σ 𝑖  ∈  ( 1 ... 𝑀 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ) | 
						
							| 33 | 8 | r19.21bi | ⊢ ( ( 𝜑  ∧  𝑡  ∈  ( 𝑇  ∖  𝑈 ) )  →  ∃ 𝑗  ∈  ( 1 ... 𝑀 ) 0  <  ( ( 𝐺 ‘ 𝑗 ) ‘ 𝑡 ) ) | 
						
							| 34 |  | df-rex | ⊢ ( ∃ 𝑗  ∈  ( 1 ... 𝑀 ) 0  <  ( ( 𝐺 ‘ 𝑗 ) ‘ 𝑡 )  ↔  ∃ 𝑗 ( 𝑗  ∈  ( 1 ... 𝑀 )  ∧  0  <  ( ( 𝐺 ‘ 𝑗 ) ‘ 𝑡 ) ) ) | 
						
							| 35 | 33 34 | sylib | ⊢ ( ( 𝜑  ∧  𝑡  ∈  ( 𝑇  ∖  𝑈 ) )  →  ∃ 𝑗 ( 𝑗  ∈  ( 1 ... 𝑀 )  ∧  0  <  ( ( 𝐺 ‘ 𝑗 ) ‘ 𝑡 ) ) ) | 
						
							| 36 | 17 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  ( 𝑇  ∖  𝑈 ) )  ∧  ( 𝑗  ∈  ( 1 ... 𝑀 )  ∧  0  <  ( ( 𝐺 ‘ 𝑗 ) ‘ 𝑡 ) ) )  →  ( 1  /  𝑀 )  ∈  ℝ ) | 
						
							| 37 |  | simpll | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  ( 𝑇  ∖  𝑈 ) )  ∧  ( 𝑗  ∈  ( 1 ... 𝑀 )  ∧  0  <  ( ( 𝐺 ‘ 𝑗 ) ‘ 𝑡 ) ) )  →  𝜑 ) | 
						
							| 38 |  | eldifi | ⊢ ( 𝑡  ∈  ( 𝑇  ∖  𝑈 )  →  𝑡  ∈  𝑇 ) | 
						
							| 39 | 38 | ad2antlr | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  ( 𝑇  ∖  𝑈 ) )  ∧  ( 𝑗  ∈  ( 1 ... 𝑀 )  ∧  0  <  ( ( 𝐺 ‘ 𝑗 ) ‘ 𝑡 ) ) )  →  𝑡  ∈  𝑇 ) | 
						
							| 40 |  | fzfid | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  →  ( 1 ... 𝑀 )  ∈  Fin ) | 
						
							| 41 | 4 7 24 | stoweidlem15 | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... 𝑀 ) )  ∧  𝑡  ∈  𝑇 )  →  ( ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 )  ∈  ℝ  ∧  0  ≤  ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 )  ∧  ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 )  ≤  1 ) ) | 
						
							| 42 | 41 | an32s | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  ∧  𝑖  ∈  ( 1 ... 𝑀 ) )  →  ( ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 )  ∈  ℝ  ∧  0  ≤  ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 )  ∧  ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 )  ≤  1 ) ) | 
						
							| 43 | 42 | simp1d | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  ∧  𝑖  ∈  ( 1 ... 𝑀 ) )  →  ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 )  ∈  ℝ ) | 
						
							| 44 | 40 43 | fsumrecl | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  →  Σ 𝑖  ∈  ( 1 ... 𝑀 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 )  ∈  ℝ ) | 
						
							| 45 | 37 39 44 | syl2anc | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  ( 𝑇  ∖  𝑈 ) )  ∧  ( 𝑗  ∈  ( 1 ... 𝑀 )  ∧  0  <  ( ( 𝐺 ‘ 𝑗 ) ‘ 𝑡 ) ) )  →  Σ 𝑖  ∈  ( 1 ... 𝑀 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 )  ∈  ℝ ) | 
						
							| 46 | 6 | nnred | ⊢ ( 𝜑  →  𝑀  ∈  ℝ ) | 
						
							| 47 | 6 | nngt0d | ⊢ ( 𝜑  →  0  <  𝑀 ) | 
						
							| 48 | 46 47 | recgt0d | ⊢ ( 𝜑  →  0  <  ( 1  /  𝑀 ) ) | 
						
							| 49 | 48 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  ( 𝑇  ∖  𝑈 ) )  ∧  ( 𝑗  ∈  ( 1 ... 𝑀 )  ∧  0  <  ( ( 𝐺 ‘ 𝑗 ) ‘ 𝑡 ) ) )  →  0  <  ( 1  /  𝑀 ) ) | 
						
							| 50 |  | 0red | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  ( 𝑇  ∖  𝑈 ) )  ∧  ( 𝑗  ∈  ( 1 ... 𝑀 )  ∧  0  <  ( ( 𝐺 ‘ 𝑗 ) ‘ 𝑡 ) ) )  →  0  ∈  ℝ ) | 
						
							| 51 |  | simprl | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  ( 𝑇  ∖  𝑈 ) )  ∧  ( 𝑗  ∈  ( 1 ... 𝑀 )  ∧  0  <  ( ( 𝐺 ‘ 𝑗 ) ‘ 𝑡 ) ) )  →  𝑗  ∈  ( 1 ... 𝑀 ) ) | 
						
							| 52 | 37 51 39 | 3jca | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  ( 𝑇  ∖  𝑈 ) )  ∧  ( 𝑗  ∈  ( 1 ... 𝑀 )  ∧  0  <  ( ( 𝐺 ‘ 𝑗 ) ‘ 𝑡 ) ) )  →  ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑀 )  ∧  𝑡  ∈  𝑇 ) ) | 
						
							| 53 |  | snfi | ⊢ { 𝑗 }  ∈  Fin | 
						
							| 54 | 53 | a1i | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑀 )  ∧  𝑡  ∈  𝑇 )  →  { 𝑗 }  ∈  Fin ) | 
						
							| 55 |  | simpl1 | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑀 )  ∧  𝑡  ∈  𝑇 )  ∧  𝑖  ∈  { 𝑗 } )  →  𝜑 ) | 
						
							| 56 |  | simpl3 | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑀 )  ∧  𝑡  ∈  𝑇 )  ∧  𝑖  ∈  { 𝑗 } )  →  𝑡  ∈  𝑇 ) | 
						
							| 57 |  | elsni | ⊢ ( 𝑖  ∈  { 𝑗 }  →  𝑖  =  𝑗 ) | 
						
							| 58 | 57 | adantl | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑀 )  ∧  𝑡  ∈  𝑇 )  ∧  𝑖  ∈  { 𝑗 } )  →  𝑖  =  𝑗 ) | 
						
							| 59 |  | simpl2 | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑀 )  ∧  𝑡  ∈  𝑇 )  ∧  𝑖  ∈  { 𝑗 } )  →  𝑗  ∈  ( 1 ... 𝑀 ) ) | 
						
							| 60 | 58 59 | eqeltrd | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑀 )  ∧  𝑡  ∈  𝑇 )  ∧  𝑖  ∈  { 𝑗 } )  →  𝑖  ∈  ( 1 ... 𝑀 ) ) | 
						
							| 61 | 55 56 60 43 | syl21anc | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑀 )  ∧  𝑡  ∈  𝑇 )  ∧  𝑖  ∈  { 𝑗 } )  →  ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 )  ∈  ℝ ) | 
						
							| 62 | 54 61 | fsumrecl | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑀 )  ∧  𝑡  ∈  𝑇 )  →  Σ 𝑖  ∈  { 𝑗 } ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 )  ∈  ℝ ) | 
						
							| 63 | 52 62 | syl | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  ( 𝑇  ∖  𝑈 ) )  ∧  ( 𝑗  ∈  ( 1 ... 𝑀 )  ∧  0  <  ( ( 𝐺 ‘ 𝑗 ) ‘ 𝑡 ) ) )  →  Σ 𝑖  ∈  { 𝑗 } ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 )  ∈  ℝ ) | 
						
							| 64 | 50 63 | readdcld | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  ( 𝑇  ∖  𝑈 ) )  ∧  ( 𝑗  ∈  ( 1 ... 𝑀 )  ∧  0  <  ( ( 𝐺 ‘ 𝑗 ) ‘ 𝑡 ) ) )  →  ( 0  +  Σ 𝑖  ∈  { 𝑗 } ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) )  ∈  ℝ ) | 
						
							| 65 |  | fzfi | ⊢ ( 1 ... 𝑀 )  ∈  Fin | 
						
							| 66 |  | diffi | ⊢ ( ( 1 ... 𝑀 )  ∈  Fin  →  ( ( 1 ... 𝑀 )  ∖  { 𝑗 } )  ∈  Fin ) | 
						
							| 67 | 65 66 | mp1i | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  →  ( ( 1 ... 𝑀 )  ∖  { 𝑗 } )  ∈  Fin ) | 
						
							| 68 |  | eldifi | ⊢ ( 𝑖  ∈  ( ( 1 ... 𝑀 )  ∖  { 𝑗 } )  →  𝑖  ∈  ( 1 ... 𝑀 ) ) | 
						
							| 69 | 68 43 | sylan2 | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  ∧  𝑖  ∈  ( ( 1 ... 𝑀 )  ∖  { 𝑗 } ) )  →  ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 )  ∈  ℝ ) | 
						
							| 70 | 67 69 | fsumrecl | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  →  Σ 𝑖  ∈  ( ( 1 ... 𝑀 )  ∖  { 𝑗 } ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 )  ∈  ℝ ) | 
						
							| 71 | 37 39 70 | syl2anc | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  ( 𝑇  ∖  𝑈 ) )  ∧  ( 𝑗  ∈  ( 1 ... 𝑀 )  ∧  0  <  ( ( 𝐺 ‘ 𝑗 ) ‘ 𝑡 ) ) )  →  Σ 𝑖  ∈  ( ( 1 ... 𝑀 )  ∖  { 𝑗 } ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 )  ∈  ℝ ) | 
						
							| 72 | 71 63 | readdcld | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  ( 𝑇  ∖  𝑈 ) )  ∧  ( 𝑗  ∈  ( 1 ... 𝑀 )  ∧  0  <  ( ( 𝐺 ‘ 𝑗 ) ‘ 𝑡 ) ) )  →  ( Σ 𝑖  ∈  ( ( 1 ... 𝑀 )  ∖  { 𝑗 } ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 )  +  Σ 𝑖  ∈  { 𝑗 } ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) )  ∈  ℝ ) | 
						
							| 73 |  | 00id | ⊢ ( 0  +  0 )  =  0 | 
						
							| 74 |  | simprr | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  ( 𝑇  ∖  𝑈 ) )  ∧  ( 𝑗  ∈  ( 1 ... 𝑀 )  ∧  0  <  ( ( 𝐺 ‘ 𝑗 ) ‘ 𝑡 ) ) )  →  0  <  ( ( 𝐺 ‘ 𝑗 ) ‘ 𝑡 ) ) | 
						
							| 75 | 4 7 24 | stoweidlem15 | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑀 ) )  ∧  𝑡  ∈  𝑇 )  →  ( ( ( 𝐺 ‘ 𝑗 ) ‘ 𝑡 )  ∈  ℝ  ∧  0  ≤  ( ( 𝐺 ‘ 𝑗 ) ‘ 𝑡 )  ∧  ( ( 𝐺 ‘ 𝑗 ) ‘ 𝑡 )  ≤  1 ) ) | 
						
							| 76 | 75 | simp1d | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑀 ) )  ∧  𝑡  ∈  𝑇 )  →  ( ( 𝐺 ‘ 𝑗 ) ‘ 𝑡 )  ∈  ℝ ) | 
						
							| 77 | 37 51 39 76 | syl21anc | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  ( 𝑇  ∖  𝑈 ) )  ∧  ( 𝑗  ∈  ( 1 ... 𝑀 )  ∧  0  <  ( ( 𝐺 ‘ 𝑗 ) ‘ 𝑡 ) ) )  →  ( ( 𝐺 ‘ 𝑗 ) ‘ 𝑡 )  ∈  ℝ ) | 
						
							| 78 | 77 | recnd | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  ( 𝑇  ∖  𝑈 ) )  ∧  ( 𝑗  ∈  ( 1 ... 𝑀 )  ∧  0  <  ( ( 𝐺 ‘ 𝑗 ) ‘ 𝑡 ) ) )  →  ( ( 𝐺 ‘ 𝑗 ) ‘ 𝑡 )  ∈  ℂ ) | 
						
							| 79 |  | fveq2 | ⊢ ( 𝑖  =  𝑗  →  ( 𝐺 ‘ 𝑖 )  =  ( 𝐺 ‘ 𝑗 ) ) | 
						
							| 80 | 79 | fveq1d | ⊢ ( 𝑖  =  𝑗  →  ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 )  =  ( ( 𝐺 ‘ 𝑗 ) ‘ 𝑡 ) ) | 
						
							| 81 | 80 | sumsn | ⊢ ( ( 𝑗  ∈  ( 1 ... 𝑀 )  ∧  ( ( 𝐺 ‘ 𝑗 ) ‘ 𝑡 )  ∈  ℂ )  →  Σ 𝑖  ∈  { 𝑗 } ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 )  =  ( ( 𝐺 ‘ 𝑗 ) ‘ 𝑡 ) ) | 
						
							| 82 | 51 78 81 | syl2anc | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  ( 𝑇  ∖  𝑈 ) )  ∧  ( 𝑗  ∈  ( 1 ... 𝑀 )  ∧  0  <  ( ( 𝐺 ‘ 𝑗 ) ‘ 𝑡 ) ) )  →  Σ 𝑖  ∈  { 𝑗 } ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 )  =  ( ( 𝐺 ‘ 𝑗 ) ‘ 𝑡 ) ) | 
						
							| 83 | 74 82 | breqtrrd | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  ( 𝑇  ∖  𝑈 ) )  ∧  ( 𝑗  ∈  ( 1 ... 𝑀 )  ∧  0  <  ( ( 𝐺 ‘ 𝑗 ) ‘ 𝑡 ) ) )  →  0  <  Σ 𝑖  ∈  { 𝑗 } ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ) | 
						
							| 84 | 50 63 50 83 | ltadd2dd | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  ( 𝑇  ∖  𝑈 ) )  ∧  ( 𝑗  ∈  ( 1 ... 𝑀 )  ∧  0  <  ( ( 𝐺 ‘ 𝑗 ) ‘ 𝑡 ) ) )  →  ( 0  +  0 )  <  ( 0  +  Σ 𝑖  ∈  { 𝑗 } ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ) ) | 
						
							| 85 | 73 84 | eqbrtrrid | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  ( 𝑇  ∖  𝑈 ) )  ∧  ( 𝑗  ∈  ( 1 ... 𝑀 )  ∧  0  <  ( ( 𝐺 ‘ 𝑗 ) ‘ 𝑡 ) ) )  →  0  <  ( 0  +  Σ 𝑖  ∈  { 𝑗 } ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ) ) | 
						
							| 86 |  | 0red | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑀 )  ∧  𝑡  ∈  𝑇 )  →  0  ∈  ℝ ) | 
						
							| 87 | 70 | 3adant2 | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑀 )  ∧  𝑡  ∈  𝑇 )  →  Σ 𝑖  ∈  ( ( 1 ... 𝑀 )  ∖  { 𝑗 } ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 )  ∈  ℝ ) | 
						
							| 88 |  | simpll | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  ∧  𝑖  ∈  ( ( 1 ... 𝑀 )  ∖  { 𝑗 } ) )  →  𝜑 ) | 
						
							| 89 | 68 | adantl | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  ∧  𝑖  ∈  ( ( 1 ... 𝑀 )  ∖  { 𝑗 } ) )  →  𝑖  ∈  ( 1 ... 𝑀 ) ) | 
						
							| 90 |  | simplr | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  ∧  𝑖  ∈  ( ( 1 ... 𝑀 )  ∖  { 𝑗 } ) )  →  𝑡  ∈  𝑇 ) | 
						
							| 91 | 88 89 90 41 | syl21anc | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  ∧  𝑖  ∈  ( ( 1 ... 𝑀 )  ∖  { 𝑗 } ) )  →  ( ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 )  ∈  ℝ  ∧  0  ≤  ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 )  ∧  ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 )  ≤  1 ) ) | 
						
							| 92 | 91 | simp2d | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  ∧  𝑖  ∈  ( ( 1 ... 𝑀 )  ∖  { 𝑗 } ) )  →  0  ≤  ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ) | 
						
							| 93 | 67 69 92 | fsumge0 | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  →  0  ≤  Σ 𝑖  ∈  ( ( 1 ... 𝑀 )  ∖  { 𝑗 } ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ) | 
						
							| 94 | 93 | 3adant2 | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑀 )  ∧  𝑡  ∈  𝑇 )  →  0  ≤  Σ 𝑖  ∈  ( ( 1 ... 𝑀 )  ∖  { 𝑗 } ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ) | 
						
							| 95 | 86 87 62 94 | leadd1dd | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑀 )  ∧  𝑡  ∈  𝑇 )  →  ( 0  +  Σ 𝑖  ∈  { 𝑗 } ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) )  ≤  ( Σ 𝑖  ∈  ( ( 1 ... 𝑀 )  ∖  { 𝑗 } ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 )  +  Σ 𝑖  ∈  { 𝑗 } ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ) ) | 
						
							| 96 | 52 95 | syl | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  ( 𝑇  ∖  𝑈 ) )  ∧  ( 𝑗  ∈  ( 1 ... 𝑀 )  ∧  0  <  ( ( 𝐺 ‘ 𝑗 ) ‘ 𝑡 ) ) )  →  ( 0  +  Σ 𝑖  ∈  { 𝑗 } ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) )  ≤  ( Σ 𝑖  ∈  ( ( 1 ... 𝑀 )  ∖  { 𝑗 } ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 )  +  Σ 𝑖  ∈  { 𝑗 } ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ) ) | 
						
							| 97 | 50 64 72 85 96 | ltletrd | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  ( 𝑇  ∖  𝑈 ) )  ∧  ( 𝑗  ∈  ( 1 ... 𝑀 )  ∧  0  <  ( ( 𝐺 ‘ 𝑗 ) ‘ 𝑡 ) ) )  →  0  <  ( Σ 𝑖  ∈  ( ( 1 ... 𝑀 )  ∖  { 𝑗 } ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 )  +  Σ 𝑖  ∈  { 𝑗 } ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ) ) | 
						
							| 98 |  | eldifn | ⊢ ( 𝑥  ∈  ( ( 1 ... 𝑀 )  ∖  { 𝑗 } )  →  ¬  𝑥  ∈  { 𝑗 } ) | 
						
							| 99 |  | imnan | ⊢ ( ( 𝑥  ∈  ( ( 1 ... 𝑀 )  ∖  { 𝑗 } )  →  ¬  𝑥  ∈  { 𝑗 } )  ↔  ¬  ( 𝑥  ∈  ( ( 1 ... 𝑀 )  ∖  { 𝑗 } )  ∧  𝑥  ∈  { 𝑗 } ) ) | 
						
							| 100 | 98 99 | mpbi | ⊢ ¬  ( 𝑥  ∈  ( ( 1 ... 𝑀 )  ∖  { 𝑗 } )  ∧  𝑥  ∈  { 𝑗 } ) | 
						
							| 101 |  | elin | ⊢ ( 𝑥  ∈  ( ( ( 1 ... 𝑀 )  ∖  { 𝑗 } )  ∩  { 𝑗 } )  ↔  ( 𝑥  ∈  ( ( 1 ... 𝑀 )  ∖  { 𝑗 } )  ∧  𝑥  ∈  { 𝑗 } ) ) | 
						
							| 102 | 100 101 | mtbir | ⊢ ¬  𝑥  ∈  ( ( ( 1 ... 𝑀 )  ∖  { 𝑗 } )  ∩  { 𝑗 } ) | 
						
							| 103 | 102 | nel0 | ⊢ ( ( ( 1 ... 𝑀 )  ∖  { 𝑗 } )  ∩  { 𝑗 } )  =  ∅ | 
						
							| 104 | 103 | a1i | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑀 )  ∧  𝑡  ∈  𝑇 )  →  ( ( ( 1 ... 𝑀 )  ∖  { 𝑗 } )  ∩  { 𝑗 } )  =  ∅ ) | 
						
							| 105 |  | undif1 | ⊢ ( ( ( 1 ... 𝑀 )  ∖  { 𝑗 } )  ∪  { 𝑗 } )  =  ( ( 1 ... 𝑀 )  ∪  { 𝑗 } ) | 
						
							| 106 |  | snssi | ⊢ ( 𝑗  ∈  ( 1 ... 𝑀 )  →  { 𝑗 }  ⊆  ( 1 ... 𝑀 ) ) | 
						
							| 107 | 106 | 3ad2ant2 | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑀 )  ∧  𝑡  ∈  𝑇 )  →  { 𝑗 }  ⊆  ( 1 ... 𝑀 ) ) | 
						
							| 108 |  | ssequn2 | ⊢ ( { 𝑗 }  ⊆  ( 1 ... 𝑀 )  ↔  ( ( 1 ... 𝑀 )  ∪  { 𝑗 } )  =  ( 1 ... 𝑀 ) ) | 
						
							| 109 | 107 108 | sylib | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑀 )  ∧  𝑡  ∈  𝑇 )  →  ( ( 1 ... 𝑀 )  ∪  { 𝑗 } )  =  ( 1 ... 𝑀 ) ) | 
						
							| 110 | 105 109 | eqtr2id | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑀 )  ∧  𝑡  ∈  𝑇 )  →  ( 1 ... 𝑀 )  =  ( ( ( 1 ... 𝑀 )  ∖  { 𝑗 } )  ∪  { 𝑗 } ) ) | 
						
							| 111 |  | fzfid | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑀 )  ∧  𝑡  ∈  𝑇 )  →  ( 1 ... 𝑀 )  ∈  Fin ) | 
						
							| 112 | 43 | 3adantl2 | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑀 )  ∧  𝑡  ∈  𝑇 )  ∧  𝑖  ∈  ( 1 ... 𝑀 ) )  →  ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 )  ∈  ℝ ) | 
						
							| 113 | 112 | recnd | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑀 )  ∧  𝑡  ∈  𝑇 )  ∧  𝑖  ∈  ( 1 ... 𝑀 ) )  →  ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 )  ∈  ℂ ) | 
						
							| 114 | 104 110 111 113 | fsumsplit | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑀 )  ∧  𝑡  ∈  𝑇 )  →  Σ 𝑖  ∈  ( 1 ... 𝑀 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 )  =  ( Σ 𝑖  ∈  ( ( 1 ... 𝑀 )  ∖  { 𝑗 } ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 )  +  Σ 𝑖  ∈  { 𝑗 } ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ) ) | 
						
							| 115 | 52 114 | syl | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  ( 𝑇  ∖  𝑈 ) )  ∧  ( 𝑗  ∈  ( 1 ... 𝑀 )  ∧  0  <  ( ( 𝐺 ‘ 𝑗 ) ‘ 𝑡 ) ) )  →  Σ 𝑖  ∈  ( 1 ... 𝑀 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 )  =  ( Σ 𝑖  ∈  ( ( 1 ... 𝑀 )  ∖  { 𝑗 } ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 )  +  Σ 𝑖  ∈  { 𝑗 } ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ) ) | 
						
							| 116 | 97 115 | breqtrrd | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  ( 𝑇  ∖  𝑈 ) )  ∧  ( 𝑗  ∈  ( 1 ... 𝑀 )  ∧  0  <  ( ( 𝐺 ‘ 𝑗 ) ‘ 𝑡 ) ) )  →  0  <  Σ 𝑖  ∈  ( 1 ... 𝑀 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ) | 
						
							| 117 | 36 45 49 116 | mulgt0d | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  ( 𝑇  ∖  𝑈 ) )  ∧  ( 𝑗  ∈  ( 1 ... 𝑀 )  ∧  0  <  ( ( 𝐺 ‘ 𝑗 ) ‘ 𝑡 ) ) )  →  0  <  ( ( 1  /  𝑀 )  ·  Σ 𝑖  ∈  ( 1 ... 𝑀 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ) ) | 
						
							| 118 | 31 32 35 117 | exlimdd | ⊢ ( ( 𝜑  ∧  𝑡  ∈  ( 𝑇  ∖  𝑈 ) )  →  0  <  ( ( 1  /  𝑀 )  ·  Σ 𝑖  ∈  ( 1 ... 𝑀 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ) ) | 
						
							| 119 | 4 5 6 7 24 | stoweidlem30 | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  →  ( 𝑃 ‘ 𝑡 )  =  ( ( 1  /  𝑀 )  ·  Σ 𝑖  ∈  ( 1 ... 𝑀 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ) ) | 
						
							| 120 | 38 119 | sylan2 | ⊢ ( ( 𝜑  ∧  𝑡  ∈  ( 𝑇  ∖  𝑈 ) )  →  ( 𝑃 ‘ 𝑡 )  =  ( ( 1  /  𝑀 )  ·  Σ 𝑖  ∈  ( 1 ... 𝑀 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ) ) | 
						
							| 121 | 118 120 | breqtrrd | ⊢ ( ( 𝜑  ∧  𝑡  ∈  ( 𝑇  ∖  𝑈 ) )  →  0  <  ( 𝑃 ‘ 𝑡 ) ) | 
						
							| 122 | 121 | ex | ⊢ ( 𝜑  →  ( 𝑡  ∈  ( 𝑇  ∖  𝑈 )  →  0  <  ( 𝑃 ‘ 𝑡 ) ) ) | 
						
							| 123 | 2 122 | ralrimi | ⊢ ( 𝜑  →  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) 0  <  ( 𝑃 ‘ 𝑡 ) ) | 
						
							| 124 | 28 29 123 | 3jca | ⊢ ( 𝜑  →  ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( 𝑃 ‘ 𝑡 )  ∧  ( 𝑃 ‘ 𝑡 )  ≤  1 )  ∧  ( 𝑃 ‘ 𝑍 )  =  0  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) 0  <  ( 𝑃 ‘ 𝑡 ) ) ) | 
						
							| 125 |  | eleq1 | ⊢ ( 𝑝  =  𝑃  →  ( 𝑝  ∈  𝐴  ↔  𝑃  ∈  𝐴 ) ) | 
						
							| 126 |  | nfmpt1 | ⊢ Ⅎ 𝑡 ( 𝑡  ∈  𝑇  ↦  ( ( 1  /  𝑀 )  ·  Σ 𝑖  ∈  ( 1 ... 𝑀 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ) ) | 
						
							| 127 | 5 126 | nfcxfr | ⊢ Ⅎ 𝑡 𝑃 | 
						
							| 128 | 127 | nfeq2 | ⊢ Ⅎ 𝑡 𝑝  =  𝑃 | 
						
							| 129 |  | fveq1 | ⊢ ( 𝑝  =  𝑃  →  ( 𝑝 ‘ 𝑡 )  =  ( 𝑃 ‘ 𝑡 ) ) | 
						
							| 130 | 129 | breq2d | ⊢ ( 𝑝  =  𝑃  →  ( 0  ≤  ( 𝑝 ‘ 𝑡 )  ↔  0  ≤  ( 𝑃 ‘ 𝑡 ) ) ) | 
						
							| 131 | 129 | breq1d | ⊢ ( 𝑝  =  𝑃  →  ( ( 𝑝 ‘ 𝑡 )  ≤  1  ↔  ( 𝑃 ‘ 𝑡 )  ≤  1 ) ) | 
						
							| 132 | 130 131 | anbi12d | ⊢ ( 𝑝  =  𝑃  →  ( ( 0  ≤  ( 𝑝 ‘ 𝑡 )  ∧  ( 𝑝 ‘ 𝑡 )  ≤  1 )  ↔  ( 0  ≤  ( 𝑃 ‘ 𝑡 )  ∧  ( 𝑃 ‘ 𝑡 )  ≤  1 ) ) ) | 
						
							| 133 | 128 132 | ralbid | ⊢ ( 𝑝  =  𝑃  →  ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( 𝑝 ‘ 𝑡 )  ∧  ( 𝑝 ‘ 𝑡 )  ≤  1 )  ↔  ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( 𝑃 ‘ 𝑡 )  ∧  ( 𝑃 ‘ 𝑡 )  ≤  1 ) ) ) | 
						
							| 134 |  | fveq1 | ⊢ ( 𝑝  =  𝑃  →  ( 𝑝 ‘ 𝑍 )  =  ( 𝑃 ‘ 𝑍 ) ) | 
						
							| 135 | 134 | eqeq1d | ⊢ ( 𝑝  =  𝑃  →  ( ( 𝑝 ‘ 𝑍 )  =  0  ↔  ( 𝑃 ‘ 𝑍 )  =  0 ) ) | 
						
							| 136 | 129 | breq2d | ⊢ ( 𝑝  =  𝑃  →  ( 0  <  ( 𝑝 ‘ 𝑡 )  ↔  0  <  ( 𝑃 ‘ 𝑡 ) ) ) | 
						
							| 137 | 128 136 | ralbid | ⊢ ( 𝑝  =  𝑃  →  ( ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) 0  <  ( 𝑝 ‘ 𝑡 )  ↔  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) 0  <  ( 𝑃 ‘ 𝑡 ) ) ) | 
						
							| 138 | 133 135 137 | 3anbi123d | ⊢ ( 𝑝  =  𝑃  →  ( ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( 𝑝 ‘ 𝑡 )  ∧  ( 𝑝 ‘ 𝑡 )  ≤  1 )  ∧  ( 𝑝 ‘ 𝑍 )  =  0  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) 0  <  ( 𝑝 ‘ 𝑡 ) )  ↔  ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( 𝑃 ‘ 𝑡 )  ∧  ( 𝑃 ‘ 𝑡 )  ≤  1 )  ∧  ( 𝑃 ‘ 𝑍 )  =  0  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) 0  <  ( 𝑃 ‘ 𝑡 ) ) ) ) | 
						
							| 139 | 125 138 | anbi12d | ⊢ ( 𝑝  =  𝑃  →  ( ( 𝑝  ∈  𝐴  ∧  ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( 𝑝 ‘ 𝑡 )  ∧  ( 𝑝 ‘ 𝑡 )  ≤  1 )  ∧  ( 𝑝 ‘ 𝑍 )  =  0  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) 0  <  ( 𝑝 ‘ 𝑡 ) ) )  ↔  ( 𝑃  ∈  𝐴  ∧  ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( 𝑃 ‘ 𝑡 )  ∧  ( 𝑃 ‘ 𝑡 )  ≤  1 )  ∧  ( 𝑃 ‘ 𝑍 )  =  0  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) 0  <  ( 𝑃 ‘ 𝑡 ) ) ) ) ) | 
						
							| 140 | 139 | spcegv | ⊢ ( 𝑃  ∈  𝐴  →  ( ( 𝑃  ∈  𝐴  ∧  ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( 𝑃 ‘ 𝑡 )  ∧  ( 𝑃 ‘ 𝑡 )  ≤  1 )  ∧  ( 𝑃 ‘ 𝑍 )  =  0  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) 0  <  ( 𝑃 ‘ 𝑡 ) ) )  →  ∃ 𝑝 ( 𝑝  ∈  𝐴  ∧  ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( 𝑝 ‘ 𝑡 )  ∧  ( 𝑝 ‘ 𝑡 )  ≤  1 )  ∧  ( 𝑝 ‘ 𝑍 )  =  0  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) 0  <  ( 𝑝 ‘ 𝑡 ) ) ) ) ) | 
						
							| 141 | 25 140 | syl | ⊢ ( 𝜑  →  ( ( 𝑃  ∈  𝐴  ∧  ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( 𝑃 ‘ 𝑡 )  ∧  ( 𝑃 ‘ 𝑡 )  ≤  1 )  ∧  ( 𝑃 ‘ 𝑍 )  =  0  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) 0  <  ( 𝑃 ‘ 𝑡 ) ) )  →  ∃ 𝑝 ( 𝑝  ∈  𝐴  ∧  ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( 𝑝 ‘ 𝑡 )  ∧  ( 𝑝 ‘ 𝑡 )  ≤  1 )  ∧  ( 𝑝 ‘ 𝑍 )  =  0  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) 0  <  ( 𝑝 ‘ 𝑡 ) ) ) ) ) | 
						
							| 142 | 25 124 141 | mp2and | ⊢ ( 𝜑  →  ∃ 𝑝 ( 𝑝  ∈  𝐴  ∧  ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( 𝑝 ‘ 𝑡 )  ∧  ( 𝑝 ‘ 𝑡 )  ≤  1 )  ∧  ( 𝑝 ‘ 𝑍 )  =  0  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) 0  <  ( 𝑝 ‘ 𝑡 ) ) ) ) | 
						
							| 143 |  | df-rex | ⊢ ( ∃ 𝑝  ∈  𝐴 ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( 𝑝 ‘ 𝑡 )  ∧  ( 𝑝 ‘ 𝑡 )  ≤  1 )  ∧  ( 𝑝 ‘ 𝑍 )  =  0  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) 0  <  ( 𝑝 ‘ 𝑡 ) )  ↔  ∃ 𝑝 ( 𝑝  ∈  𝐴  ∧  ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( 𝑝 ‘ 𝑡 )  ∧  ( 𝑝 ‘ 𝑡 )  ≤  1 )  ∧  ( 𝑝 ‘ 𝑍 )  =  0  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) 0  <  ( 𝑝 ‘ 𝑡 ) ) ) ) | 
						
							| 144 | 142 143 | sylibr | ⊢ ( 𝜑  →  ∃ 𝑝  ∈  𝐴 ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( 𝑝 ‘ 𝑡 )  ∧  ( 𝑝 ‘ 𝑡 )  ≤  1 )  ∧  ( 𝑝 ‘ 𝑍 )  =  0  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) 0  <  ( 𝑝 ‘ 𝑡 ) ) ) |