| Step |
Hyp |
Ref |
Expression |
| 1 |
|
stoweidlem30.1 |
⊢ 𝑄 = { ℎ ∈ 𝐴 ∣ ( ( ℎ ‘ 𝑍 ) = 0 ∧ ∀ 𝑡 ∈ 𝑇 ( 0 ≤ ( ℎ ‘ 𝑡 ) ∧ ( ℎ ‘ 𝑡 ) ≤ 1 ) ) } |
| 2 |
|
stoweidlem30.2 |
⊢ 𝑃 = ( 𝑡 ∈ 𝑇 ↦ ( ( 1 / 𝑀 ) · Σ 𝑖 ∈ ( 1 ... 𝑀 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ) ) |
| 3 |
|
stoweidlem30.3 |
⊢ ( 𝜑 → 𝑀 ∈ ℕ ) |
| 4 |
|
stoweidlem30.4 |
⊢ ( 𝜑 → 𝐺 : ( 1 ... 𝑀 ) ⟶ 𝑄 ) |
| 5 |
|
stoweidlem30.5 |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝐴 ) → 𝑓 : 𝑇 ⟶ ℝ ) |
| 6 |
|
eleq1 |
⊢ ( 𝑠 = 𝑆 → ( 𝑠 ∈ 𝑇 ↔ 𝑆 ∈ 𝑇 ) ) |
| 7 |
6
|
anbi2d |
⊢ ( 𝑠 = 𝑆 → ( ( 𝜑 ∧ 𝑠 ∈ 𝑇 ) ↔ ( 𝜑 ∧ 𝑆 ∈ 𝑇 ) ) ) |
| 8 |
|
fveq2 |
⊢ ( 𝑠 = 𝑆 → ( 𝑃 ‘ 𝑠 ) = ( 𝑃 ‘ 𝑆 ) ) |
| 9 |
|
fveq2 |
⊢ ( 𝑠 = 𝑆 → ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑠 ) = ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑆 ) ) |
| 10 |
9
|
sumeq2sdv |
⊢ ( 𝑠 = 𝑆 → Σ 𝑖 ∈ ( 1 ... 𝑀 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑠 ) = Σ 𝑖 ∈ ( 1 ... 𝑀 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑆 ) ) |
| 11 |
10
|
oveq2d |
⊢ ( 𝑠 = 𝑆 → ( ( 1 / 𝑀 ) · Σ 𝑖 ∈ ( 1 ... 𝑀 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑠 ) ) = ( ( 1 / 𝑀 ) · Σ 𝑖 ∈ ( 1 ... 𝑀 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑆 ) ) ) |
| 12 |
8 11
|
eqeq12d |
⊢ ( 𝑠 = 𝑆 → ( ( 𝑃 ‘ 𝑠 ) = ( ( 1 / 𝑀 ) · Σ 𝑖 ∈ ( 1 ... 𝑀 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑠 ) ) ↔ ( 𝑃 ‘ 𝑆 ) = ( ( 1 / 𝑀 ) · Σ 𝑖 ∈ ( 1 ... 𝑀 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑆 ) ) ) ) |
| 13 |
7 12
|
imbi12d |
⊢ ( 𝑠 = 𝑆 → ( ( ( 𝜑 ∧ 𝑠 ∈ 𝑇 ) → ( 𝑃 ‘ 𝑠 ) = ( ( 1 / 𝑀 ) · Σ 𝑖 ∈ ( 1 ... 𝑀 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑠 ) ) ) ↔ ( ( 𝜑 ∧ 𝑆 ∈ 𝑇 ) → ( 𝑃 ‘ 𝑆 ) = ( ( 1 / 𝑀 ) · Σ 𝑖 ∈ ( 1 ... 𝑀 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑆 ) ) ) ) ) |
| 14 |
|
fveq2 |
⊢ ( 𝑡 = 𝑠 → ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) = ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑠 ) ) |
| 15 |
14
|
sumeq2sdv |
⊢ ( 𝑡 = 𝑠 → Σ 𝑖 ∈ ( 1 ... 𝑀 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) = Σ 𝑖 ∈ ( 1 ... 𝑀 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑠 ) ) |
| 16 |
15
|
oveq2d |
⊢ ( 𝑡 = 𝑠 → ( ( 1 / 𝑀 ) · Σ 𝑖 ∈ ( 1 ... 𝑀 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ) = ( ( 1 / 𝑀 ) · Σ 𝑖 ∈ ( 1 ... 𝑀 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑠 ) ) ) |
| 17 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝑇 ) → 𝑠 ∈ 𝑇 ) |
| 18 |
3
|
nnrecred |
⊢ ( 𝜑 → ( 1 / 𝑀 ) ∈ ℝ ) |
| 19 |
18
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝑇 ) → ( 1 / 𝑀 ) ∈ ℝ ) |
| 20 |
|
fzfid |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝑇 ) → ( 1 ... 𝑀 ) ∈ Fin ) |
| 21 |
1 4 5
|
stoweidlem15 |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) ∧ 𝑠 ∈ 𝑇 ) → ( ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑠 ) ∈ ℝ ∧ 0 ≤ ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑠 ) ∧ ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑠 ) ≤ 1 ) ) |
| 22 |
21
|
simp1d |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) ∧ 𝑠 ∈ 𝑇 ) → ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑠 ) ∈ ℝ ) |
| 23 |
22
|
an32s |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝑇 ) ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) → ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑠 ) ∈ ℝ ) |
| 24 |
20 23
|
fsumrecl |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝑇 ) → Σ 𝑖 ∈ ( 1 ... 𝑀 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑠 ) ∈ ℝ ) |
| 25 |
19 24
|
remulcld |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝑇 ) → ( ( 1 / 𝑀 ) · Σ 𝑖 ∈ ( 1 ... 𝑀 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑠 ) ) ∈ ℝ ) |
| 26 |
2 16 17 25
|
fvmptd3 |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝑇 ) → ( 𝑃 ‘ 𝑠 ) = ( ( 1 / 𝑀 ) · Σ 𝑖 ∈ ( 1 ... 𝑀 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑠 ) ) ) |
| 27 |
13 26
|
vtoclg |
⊢ ( 𝑆 ∈ 𝑇 → ( ( 𝜑 ∧ 𝑆 ∈ 𝑇 ) → ( 𝑃 ‘ 𝑆 ) = ( ( 1 / 𝑀 ) · Σ 𝑖 ∈ ( 1 ... 𝑀 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑆 ) ) ) ) |
| 28 |
27
|
anabsi7 |
⊢ ( ( 𝜑 ∧ 𝑆 ∈ 𝑇 ) → ( 𝑃 ‘ 𝑆 ) = ( ( 1 / 𝑀 ) · Σ 𝑖 ∈ ( 1 ... 𝑀 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑆 ) ) ) |