| Step | Hyp | Ref | Expression | 
						
							| 1 |  | stoweidlem30.1 | ⊢ 𝑄  =  { ℎ  ∈  𝐴  ∣  ( ( ℎ ‘ 𝑍 )  =  0  ∧  ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ℎ ‘ 𝑡 )  ∧  ( ℎ ‘ 𝑡 )  ≤  1 ) ) } | 
						
							| 2 |  | stoweidlem30.2 | ⊢ 𝑃  =  ( 𝑡  ∈  𝑇  ↦  ( ( 1  /  𝑀 )  ·  Σ 𝑖  ∈  ( 1 ... 𝑀 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) ) ) | 
						
							| 3 |  | stoweidlem30.3 | ⊢ ( 𝜑  →  𝑀  ∈  ℕ ) | 
						
							| 4 |  | stoweidlem30.4 | ⊢ ( 𝜑  →  𝐺 : ( 1 ... 𝑀 ) ⟶ 𝑄 ) | 
						
							| 5 |  | stoweidlem30.5 | ⊢ ( ( 𝜑  ∧  𝑓  ∈  𝐴 )  →  𝑓 : 𝑇 ⟶ ℝ ) | 
						
							| 6 |  | eleq1 | ⊢ ( 𝑠  =  𝑆  →  ( 𝑠  ∈  𝑇  ↔  𝑆  ∈  𝑇 ) ) | 
						
							| 7 | 6 | anbi2d | ⊢ ( 𝑠  =  𝑆  →  ( ( 𝜑  ∧  𝑠  ∈  𝑇 )  ↔  ( 𝜑  ∧  𝑆  ∈  𝑇 ) ) ) | 
						
							| 8 |  | fveq2 | ⊢ ( 𝑠  =  𝑆  →  ( 𝑃 ‘ 𝑠 )  =  ( 𝑃 ‘ 𝑆 ) ) | 
						
							| 9 |  | fveq2 | ⊢ ( 𝑠  =  𝑆  →  ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑠 )  =  ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑆 ) ) | 
						
							| 10 | 9 | sumeq2sdv | ⊢ ( 𝑠  =  𝑆  →  Σ 𝑖  ∈  ( 1 ... 𝑀 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑠 )  =  Σ 𝑖  ∈  ( 1 ... 𝑀 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑆 ) ) | 
						
							| 11 | 10 | oveq2d | ⊢ ( 𝑠  =  𝑆  →  ( ( 1  /  𝑀 )  ·  Σ 𝑖  ∈  ( 1 ... 𝑀 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑠 ) )  =  ( ( 1  /  𝑀 )  ·  Σ 𝑖  ∈  ( 1 ... 𝑀 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑆 ) ) ) | 
						
							| 12 | 8 11 | eqeq12d | ⊢ ( 𝑠  =  𝑆  →  ( ( 𝑃 ‘ 𝑠 )  =  ( ( 1  /  𝑀 )  ·  Σ 𝑖  ∈  ( 1 ... 𝑀 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑠 ) )  ↔  ( 𝑃 ‘ 𝑆 )  =  ( ( 1  /  𝑀 )  ·  Σ 𝑖  ∈  ( 1 ... 𝑀 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑆 ) ) ) ) | 
						
							| 13 | 7 12 | imbi12d | ⊢ ( 𝑠  =  𝑆  →  ( ( ( 𝜑  ∧  𝑠  ∈  𝑇 )  →  ( 𝑃 ‘ 𝑠 )  =  ( ( 1  /  𝑀 )  ·  Σ 𝑖  ∈  ( 1 ... 𝑀 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑠 ) ) )  ↔  ( ( 𝜑  ∧  𝑆  ∈  𝑇 )  →  ( 𝑃 ‘ 𝑆 )  =  ( ( 1  /  𝑀 )  ·  Σ 𝑖  ∈  ( 1 ... 𝑀 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑆 ) ) ) ) ) | 
						
							| 14 |  | fveq2 | ⊢ ( 𝑡  =  𝑠  →  ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 )  =  ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑠 ) ) | 
						
							| 15 | 14 | sumeq2sdv | ⊢ ( 𝑡  =  𝑠  →  Σ 𝑖  ∈  ( 1 ... 𝑀 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 )  =  Σ 𝑖  ∈  ( 1 ... 𝑀 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑠 ) ) | 
						
							| 16 | 15 | oveq2d | ⊢ ( 𝑡  =  𝑠  →  ( ( 1  /  𝑀 )  ·  Σ 𝑖  ∈  ( 1 ... 𝑀 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑡 ) )  =  ( ( 1  /  𝑀 )  ·  Σ 𝑖  ∈  ( 1 ... 𝑀 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑠 ) ) ) | 
						
							| 17 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑠  ∈  𝑇 )  →  𝑠  ∈  𝑇 ) | 
						
							| 18 | 3 | nnrecred | ⊢ ( 𝜑  →  ( 1  /  𝑀 )  ∈  ℝ ) | 
						
							| 19 | 18 | adantr | ⊢ ( ( 𝜑  ∧  𝑠  ∈  𝑇 )  →  ( 1  /  𝑀 )  ∈  ℝ ) | 
						
							| 20 |  | fzfid | ⊢ ( ( 𝜑  ∧  𝑠  ∈  𝑇 )  →  ( 1 ... 𝑀 )  ∈  Fin ) | 
						
							| 21 | 1 4 5 | stoweidlem15 | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... 𝑀 ) )  ∧  𝑠  ∈  𝑇 )  →  ( ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑠 )  ∈  ℝ  ∧  0  ≤  ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑠 )  ∧  ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑠 )  ≤  1 ) ) | 
						
							| 22 | 21 | simp1d | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... 𝑀 ) )  ∧  𝑠  ∈  𝑇 )  →  ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑠 )  ∈  ℝ ) | 
						
							| 23 | 22 | an32s | ⊢ ( ( ( 𝜑  ∧  𝑠  ∈  𝑇 )  ∧  𝑖  ∈  ( 1 ... 𝑀 ) )  →  ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑠 )  ∈  ℝ ) | 
						
							| 24 | 20 23 | fsumrecl | ⊢ ( ( 𝜑  ∧  𝑠  ∈  𝑇 )  →  Σ 𝑖  ∈  ( 1 ... 𝑀 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑠 )  ∈  ℝ ) | 
						
							| 25 | 19 24 | remulcld | ⊢ ( ( 𝜑  ∧  𝑠  ∈  𝑇 )  →  ( ( 1  /  𝑀 )  ·  Σ 𝑖  ∈  ( 1 ... 𝑀 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑠 ) )  ∈  ℝ ) | 
						
							| 26 | 2 16 17 25 | fvmptd3 | ⊢ ( ( 𝜑  ∧  𝑠  ∈  𝑇 )  →  ( 𝑃 ‘ 𝑠 )  =  ( ( 1  /  𝑀 )  ·  Σ 𝑖  ∈  ( 1 ... 𝑀 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑠 ) ) ) | 
						
							| 27 | 13 26 | vtoclg | ⊢ ( 𝑆  ∈  𝑇  →  ( ( 𝜑  ∧  𝑆  ∈  𝑇 )  →  ( 𝑃 ‘ 𝑆 )  =  ( ( 1  /  𝑀 )  ·  Σ 𝑖  ∈  ( 1 ... 𝑀 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑆 ) ) ) ) | 
						
							| 28 | 27 | anabsi7 | ⊢ ( ( 𝜑  ∧  𝑆  ∈  𝑇 )  →  ( 𝑃 ‘ 𝑆 )  =  ( ( 1  /  𝑀 )  ·  Σ 𝑖  ∈  ( 1 ... 𝑀 ) ( ( 𝐺 ‘ 𝑖 ) ‘ 𝑆 ) ) ) |