| Step | Hyp | Ref | Expression | 
						
							| 1 |  | stoweidlem15.1 | ⊢ 𝑄  =  { ℎ  ∈  𝐴  ∣  ( ( ℎ ‘ 𝑍 )  =  0  ∧  ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ℎ ‘ 𝑡 )  ∧  ( ℎ ‘ 𝑡 )  ≤  1 ) ) } | 
						
							| 2 |  | stoweidlem15.3 | ⊢ ( 𝜑  →  𝐺 : ( 1 ... 𝑀 ) ⟶ 𝑄 ) | 
						
							| 3 |  | stoweidlem15.4 | ⊢ ( ( 𝜑  ∧  𝑓  ∈  𝐴 )  →  𝑓 : 𝑇 ⟶ ℝ ) | 
						
							| 4 |  | simpl | ⊢ ( ( 𝜑  ∧  𝐼  ∈  ( 1 ... 𝑀 ) )  →  𝜑 ) | 
						
							| 5 | 2 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝐼  ∈  ( 1 ... 𝑀 ) )  →  ( 𝐺 ‘ 𝐼 )  ∈  𝑄 ) | 
						
							| 6 |  | elrabi | ⊢ ( ( 𝐺 ‘ 𝐼 )  ∈  { ℎ  ∈  𝐴  ∣  ( ( ℎ ‘ 𝑍 )  =  0  ∧  ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ℎ ‘ 𝑡 )  ∧  ( ℎ ‘ 𝑡 )  ≤  1 ) ) }  →  ( 𝐺 ‘ 𝐼 )  ∈  𝐴 ) | 
						
							| 7 | 6 1 | eleq2s | ⊢ ( ( 𝐺 ‘ 𝐼 )  ∈  𝑄  →  ( 𝐺 ‘ 𝐼 )  ∈  𝐴 ) | 
						
							| 8 | 5 7 | syl | ⊢ ( ( 𝜑  ∧  𝐼  ∈  ( 1 ... 𝑀 ) )  →  ( 𝐺 ‘ 𝐼 )  ∈  𝐴 ) | 
						
							| 9 |  | eleq1 | ⊢ ( 𝑓  =  ( 𝐺 ‘ 𝐼 )  →  ( 𝑓  ∈  𝐴  ↔  ( 𝐺 ‘ 𝐼 )  ∈  𝐴 ) ) | 
						
							| 10 | 9 | anbi2d | ⊢ ( 𝑓  =  ( 𝐺 ‘ 𝐼 )  →  ( ( 𝜑  ∧  𝑓  ∈  𝐴 )  ↔  ( 𝜑  ∧  ( 𝐺 ‘ 𝐼 )  ∈  𝐴 ) ) ) | 
						
							| 11 |  | feq1 | ⊢ ( 𝑓  =  ( 𝐺 ‘ 𝐼 )  →  ( 𝑓 : 𝑇 ⟶ ℝ  ↔  ( 𝐺 ‘ 𝐼 ) : 𝑇 ⟶ ℝ ) ) | 
						
							| 12 | 10 11 | imbi12d | ⊢ ( 𝑓  =  ( 𝐺 ‘ 𝐼 )  →  ( ( ( 𝜑  ∧  𝑓  ∈  𝐴 )  →  𝑓 : 𝑇 ⟶ ℝ )  ↔  ( ( 𝜑  ∧  ( 𝐺 ‘ 𝐼 )  ∈  𝐴 )  →  ( 𝐺 ‘ 𝐼 ) : 𝑇 ⟶ ℝ ) ) ) | 
						
							| 13 | 12 3 | vtoclg | ⊢ ( ( 𝐺 ‘ 𝐼 )  ∈  𝐴  →  ( ( 𝜑  ∧  ( 𝐺 ‘ 𝐼 )  ∈  𝐴 )  →  ( 𝐺 ‘ 𝐼 ) : 𝑇 ⟶ ℝ ) ) | 
						
							| 14 | 8 13 | syl | ⊢ ( ( 𝜑  ∧  𝐼  ∈  ( 1 ... 𝑀 ) )  →  ( ( 𝜑  ∧  ( 𝐺 ‘ 𝐼 )  ∈  𝐴 )  →  ( 𝐺 ‘ 𝐼 ) : 𝑇 ⟶ ℝ ) ) | 
						
							| 15 | 4 8 14 | mp2and | ⊢ ( ( 𝜑  ∧  𝐼  ∈  ( 1 ... 𝑀 ) )  →  ( 𝐺 ‘ 𝐼 ) : 𝑇 ⟶ ℝ ) | 
						
							| 16 | 15 | ffvelcdmda | ⊢ ( ( ( 𝜑  ∧  𝐼  ∈  ( 1 ... 𝑀 ) )  ∧  𝑆  ∈  𝑇 )  →  ( ( 𝐺 ‘ 𝐼 ) ‘ 𝑆 )  ∈  ℝ ) | 
						
							| 17 | 5 1 | eleqtrdi | ⊢ ( ( 𝜑  ∧  𝐼  ∈  ( 1 ... 𝑀 ) )  →  ( 𝐺 ‘ 𝐼 )  ∈  { ℎ  ∈  𝐴  ∣  ( ( ℎ ‘ 𝑍 )  =  0  ∧  ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ℎ ‘ 𝑡 )  ∧  ( ℎ ‘ 𝑡 )  ≤  1 ) ) } ) | 
						
							| 18 |  | fveq1 | ⊢ ( ℎ  =  ( 𝐺 ‘ 𝐼 )  →  ( ℎ ‘ 𝑍 )  =  ( ( 𝐺 ‘ 𝐼 ) ‘ 𝑍 ) ) | 
						
							| 19 | 18 | eqeq1d | ⊢ ( ℎ  =  ( 𝐺 ‘ 𝐼 )  →  ( ( ℎ ‘ 𝑍 )  =  0  ↔  ( ( 𝐺 ‘ 𝐼 ) ‘ 𝑍 )  =  0 ) ) | 
						
							| 20 |  | fveq1 | ⊢ ( ℎ  =  ( 𝐺 ‘ 𝐼 )  →  ( ℎ ‘ 𝑡 )  =  ( ( 𝐺 ‘ 𝐼 ) ‘ 𝑡 ) ) | 
						
							| 21 | 20 | breq2d | ⊢ ( ℎ  =  ( 𝐺 ‘ 𝐼 )  →  ( 0  ≤  ( ℎ ‘ 𝑡 )  ↔  0  ≤  ( ( 𝐺 ‘ 𝐼 ) ‘ 𝑡 ) ) ) | 
						
							| 22 | 20 | breq1d | ⊢ ( ℎ  =  ( 𝐺 ‘ 𝐼 )  →  ( ( ℎ ‘ 𝑡 )  ≤  1  ↔  ( ( 𝐺 ‘ 𝐼 ) ‘ 𝑡 )  ≤  1 ) ) | 
						
							| 23 | 21 22 | anbi12d | ⊢ ( ℎ  =  ( 𝐺 ‘ 𝐼 )  →  ( ( 0  ≤  ( ℎ ‘ 𝑡 )  ∧  ( ℎ ‘ 𝑡 )  ≤  1 )  ↔  ( 0  ≤  ( ( 𝐺 ‘ 𝐼 ) ‘ 𝑡 )  ∧  ( ( 𝐺 ‘ 𝐼 ) ‘ 𝑡 )  ≤  1 ) ) ) | 
						
							| 24 | 23 | ralbidv | ⊢ ( ℎ  =  ( 𝐺 ‘ 𝐼 )  →  ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ℎ ‘ 𝑡 )  ∧  ( ℎ ‘ 𝑡 )  ≤  1 )  ↔  ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ( 𝐺 ‘ 𝐼 ) ‘ 𝑡 )  ∧  ( ( 𝐺 ‘ 𝐼 ) ‘ 𝑡 )  ≤  1 ) ) ) | 
						
							| 25 | 19 24 | anbi12d | ⊢ ( ℎ  =  ( 𝐺 ‘ 𝐼 )  →  ( ( ( ℎ ‘ 𝑍 )  =  0  ∧  ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ℎ ‘ 𝑡 )  ∧  ( ℎ ‘ 𝑡 )  ≤  1 ) )  ↔  ( ( ( 𝐺 ‘ 𝐼 ) ‘ 𝑍 )  =  0  ∧  ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ( 𝐺 ‘ 𝐼 ) ‘ 𝑡 )  ∧  ( ( 𝐺 ‘ 𝐼 ) ‘ 𝑡 )  ≤  1 ) ) ) ) | 
						
							| 26 | 25 | elrab | ⊢ ( ( 𝐺 ‘ 𝐼 )  ∈  { ℎ  ∈  𝐴  ∣  ( ( ℎ ‘ 𝑍 )  =  0  ∧  ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ℎ ‘ 𝑡 )  ∧  ( ℎ ‘ 𝑡 )  ≤  1 ) ) }  ↔  ( ( 𝐺 ‘ 𝐼 )  ∈  𝐴  ∧  ( ( ( 𝐺 ‘ 𝐼 ) ‘ 𝑍 )  =  0  ∧  ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ( 𝐺 ‘ 𝐼 ) ‘ 𝑡 )  ∧  ( ( 𝐺 ‘ 𝐼 ) ‘ 𝑡 )  ≤  1 ) ) ) ) | 
						
							| 27 | 17 26 | sylib | ⊢ ( ( 𝜑  ∧  𝐼  ∈  ( 1 ... 𝑀 ) )  →  ( ( 𝐺 ‘ 𝐼 )  ∈  𝐴  ∧  ( ( ( 𝐺 ‘ 𝐼 ) ‘ 𝑍 )  =  0  ∧  ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ( 𝐺 ‘ 𝐼 ) ‘ 𝑡 )  ∧  ( ( 𝐺 ‘ 𝐼 ) ‘ 𝑡 )  ≤  1 ) ) ) ) | 
						
							| 28 | 27 | simprd | ⊢ ( ( 𝜑  ∧  𝐼  ∈  ( 1 ... 𝑀 ) )  →  ( ( ( 𝐺 ‘ 𝐼 ) ‘ 𝑍 )  =  0  ∧  ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ( 𝐺 ‘ 𝐼 ) ‘ 𝑡 )  ∧  ( ( 𝐺 ‘ 𝐼 ) ‘ 𝑡 )  ≤  1 ) ) ) | 
						
							| 29 | 28 | simprd | ⊢ ( ( 𝜑  ∧  𝐼  ∈  ( 1 ... 𝑀 ) )  →  ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ( 𝐺 ‘ 𝐼 ) ‘ 𝑡 )  ∧  ( ( 𝐺 ‘ 𝐼 ) ‘ 𝑡 )  ≤  1 ) ) | 
						
							| 30 |  | fveq2 | ⊢ ( 𝑠  =  𝑡  →  ( ( 𝐺 ‘ 𝐼 ) ‘ 𝑠 )  =  ( ( 𝐺 ‘ 𝐼 ) ‘ 𝑡 ) ) | 
						
							| 31 | 30 | breq2d | ⊢ ( 𝑠  =  𝑡  →  ( 0  ≤  ( ( 𝐺 ‘ 𝐼 ) ‘ 𝑠 )  ↔  0  ≤  ( ( 𝐺 ‘ 𝐼 ) ‘ 𝑡 ) ) ) | 
						
							| 32 | 30 | breq1d | ⊢ ( 𝑠  =  𝑡  →  ( ( ( 𝐺 ‘ 𝐼 ) ‘ 𝑠 )  ≤  1  ↔  ( ( 𝐺 ‘ 𝐼 ) ‘ 𝑡 )  ≤  1 ) ) | 
						
							| 33 | 31 32 | anbi12d | ⊢ ( 𝑠  =  𝑡  →  ( ( 0  ≤  ( ( 𝐺 ‘ 𝐼 ) ‘ 𝑠 )  ∧  ( ( 𝐺 ‘ 𝐼 ) ‘ 𝑠 )  ≤  1 )  ↔  ( 0  ≤  ( ( 𝐺 ‘ 𝐼 ) ‘ 𝑡 )  ∧  ( ( 𝐺 ‘ 𝐼 ) ‘ 𝑡 )  ≤  1 ) ) ) | 
						
							| 34 | 33 | cbvralvw | ⊢ ( ∀ 𝑠  ∈  𝑇 ( 0  ≤  ( ( 𝐺 ‘ 𝐼 ) ‘ 𝑠 )  ∧  ( ( 𝐺 ‘ 𝐼 ) ‘ 𝑠 )  ≤  1 )  ↔  ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ( 𝐺 ‘ 𝐼 ) ‘ 𝑡 )  ∧  ( ( 𝐺 ‘ 𝐼 ) ‘ 𝑡 )  ≤  1 ) ) | 
						
							| 35 |  | fveq2 | ⊢ ( 𝑠  =  𝑆  →  ( ( 𝐺 ‘ 𝐼 ) ‘ 𝑠 )  =  ( ( 𝐺 ‘ 𝐼 ) ‘ 𝑆 ) ) | 
						
							| 36 | 35 | breq2d | ⊢ ( 𝑠  =  𝑆  →  ( 0  ≤  ( ( 𝐺 ‘ 𝐼 ) ‘ 𝑠 )  ↔  0  ≤  ( ( 𝐺 ‘ 𝐼 ) ‘ 𝑆 ) ) ) | 
						
							| 37 | 35 | breq1d | ⊢ ( 𝑠  =  𝑆  →  ( ( ( 𝐺 ‘ 𝐼 ) ‘ 𝑠 )  ≤  1  ↔  ( ( 𝐺 ‘ 𝐼 ) ‘ 𝑆 )  ≤  1 ) ) | 
						
							| 38 | 36 37 | anbi12d | ⊢ ( 𝑠  =  𝑆  →  ( ( 0  ≤  ( ( 𝐺 ‘ 𝐼 ) ‘ 𝑠 )  ∧  ( ( 𝐺 ‘ 𝐼 ) ‘ 𝑠 )  ≤  1 )  ↔  ( 0  ≤  ( ( 𝐺 ‘ 𝐼 ) ‘ 𝑆 )  ∧  ( ( 𝐺 ‘ 𝐼 ) ‘ 𝑆 )  ≤  1 ) ) ) | 
						
							| 39 | 38 | rspccva | ⊢ ( ( ∀ 𝑠  ∈  𝑇 ( 0  ≤  ( ( 𝐺 ‘ 𝐼 ) ‘ 𝑠 )  ∧  ( ( 𝐺 ‘ 𝐼 ) ‘ 𝑠 )  ≤  1 )  ∧  𝑆  ∈  𝑇 )  →  ( 0  ≤  ( ( 𝐺 ‘ 𝐼 ) ‘ 𝑆 )  ∧  ( ( 𝐺 ‘ 𝐼 ) ‘ 𝑆 )  ≤  1 ) ) | 
						
							| 40 | 34 39 | sylanbr | ⊢ ( ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ( 𝐺 ‘ 𝐼 ) ‘ 𝑡 )  ∧  ( ( 𝐺 ‘ 𝐼 ) ‘ 𝑡 )  ≤  1 )  ∧  𝑆  ∈  𝑇 )  →  ( 0  ≤  ( ( 𝐺 ‘ 𝐼 ) ‘ 𝑆 )  ∧  ( ( 𝐺 ‘ 𝐼 ) ‘ 𝑆 )  ≤  1 ) ) | 
						
							| 41 | 29 40 | sylan | ⊢ ( ( ( 𝜑  ∧  𝐼  ∈  ( 1 ... 𝑀 ) )  ∧  𝑆  ∈  𝑇 )  →  ( 0  ≤  ( ( 𝐺 ‘ 𝐼 ) ‘ 𝑆 )  ∧  ( ( 𝐺 ‘ 𝐼 ) ‘ 𝑆 )  ≤  1 ) ) | 
						
							| 42 | 41 | simpld | ⊢ ( ( ( 𝜑  ∧  𝐼  ∈  ( 1 ... 𝑀 ) )  ∧  𝑆  ∈  𝑇 )  →  0  ≤  ( ( 𝐺 ‘ 𝐼 ) ‘ 𝑆 ) ) | 
						
							| 43 | 41 | simprd | ⊢ ( ( ( 𝜑  ∧  𝐼  ∈  ( 1 ... 𝑀 ) )  ∧  𝑆  ∈  𝑇 )  →  ( ( 𝐺 ‘ 𝐼 ) ‘ 𝑆 )  ≤  1 ) | 
						
							| 44 | 16 42 43 | 3jca | ⊢ ( ( ( 𝜑  ∧  𝐼  ∈  ( 1 ... 𝑀 ) )  ∧  𝑆  ∈  𝑇 )  →  ( ( ( 𝐺 ‘ 𝐼 ) ‘ 𝑆 )  ∈  ℝ  ∧  0  ≤  ( ( 𝐺 ‘ 𝐼 ) ‘ 𝑆 )  ∧  ( ( 𝐺 ‘ 𝐼 ) ‘ 𝑆 )  ≤  1 ) ) |