Metamath Proof Explorer


Theorem stoweidlem44

Description: This lemma is used to prove the existence of a function p as in Lemma 1 of BrosowskiDeutsh p. 90: p is in the subalgebra, such that 0 <= p <= 1, p__(t_0) = 0, and p > 0 on T - U. Z is used to represent t_0 in the paper. (Contributed by Glauco Siliprandi, 20-Apr-2017)

Ref Expression
Hypotheses stoweidlem44.1 jφ
stoweidlem44.2 tφ
stoweidlem44.3 K=topGenran.
stoweidlem44.4 Q=hA|hZ=0tT0htht1
stoweidlem44.5 P=tT1Mi=1MGit
stoweidlem44.6 φM
stoweidlem44.7 φG:1MQ
stoweidlem44.8 φtTUj1M0<Gjt
stoweidlem44.9 T=J
stoweidlem44.10 φAJCnK
stoweidlem44.11 φfAgAtTft+gtA
stoweidlem44.12 φfAgAtTftgtA
stoweidlem44.13 φxtTxA
stoweidlem44.14 φZT
Assertion stoweidlem44 φpAtT0ptpt1pZ=0tTU0<pt

Proof

Step Hyp Ref Expression
1 stoweidlem44.1 jφ
2 stoweidlem44.2 tφ
3 stoweidlem44.3 K=topGenran.
4 stoweidlem44.4 Q=hA|hZ=0tT0htht1
5 stoweidlem44.5 P=tT1Mi=1MGit
6 stoweidlem44.6 φM
7 stoweidlem44.7 φG:1MQ
8 stoweidlem44.8 φtTUj1M0<Gjt
9 stoweidlem44.9 T=J
10 stoweidlem44.10 φAJCnK
11 stoweidlem44.11 φfAgAtTft+gtA
12 stoweidlem44.12 φfAgAtTftgtA
13 stoweidlem44.13 φxtTxA
14 stoweidlem44.14 φZT
15 eqid tTi=1MGit=tTi=1MGit
16 eqid tT1M=tT1M
17 6 nnrecred φ1M
18 ssrab2 hA|hZ=0tT0htht1A
19 4 18 eqsstri QA
20 fss G:1MQQAG:1MA
21 7 19 20 sylancl φG:1MA
22 eqid JCnK=JCnK
23 10 sselda φfAfJCnK
24 3 9 22 23 fcnre φfAf:T
25 2 5 15 16 6 17 21 11 12 13 24 stoweidlem32 φPA
26 4 5 6 7 24 stoweidlem38 φtT0PtPt1
27 26 ex φtT0PtPt1
28 2 27 ralrimi φtT0PtPt1
29 4 5 6 7 24 14 stoweidlem37 φPZ=0
30 nfv jtTU
31 1 30 nfan jφtTU
32 nfv j0<1Mi=1MGit
33 8 r19.21bi φtTUj1M0<Gjt
34 df-rex j1M0<Gjtjj1M0<Gjt
35 33 34 sylib φtTUjj1M0<Gjt
36 17 ad2antrr φtTUj1M0<Gjt1M
37 simpll φtTUj1M0<Gjtφ
38 eldifi tTUtT
39 38 ad2antlr φtTUj1M0<GjttT
40 fzfid φtT1MFin
41 4 7 24 stoweidlem15 φi1MtTGit0GitGit1
42 41 an32s φtTi1MGit0GitGit1
43 42 simp1d φtTi1MGit
44 40 43 fsumrecl φtTi=1MGit
45 37 39 44 syl2anc φtTUj1M0<Gjti=1MGit
46 6 nnred φM
47 6 nngt0d φ0<M
48 46 47 recgt0d φ0<1M
49 48 ad2antrr φtTUj1M0<Gjt0<1M
50 0red φtTUj1M0<Gjt0
51 simprl φtTUj1M0<Gjtj1M
52 37 51 39 3jca φtTUj1M0<Gjtφj1MtT
53 snfi jFin
54 53 a1i φj1MtTjFin
55 simpl1 φj1MtTijφ
56 simpl3 φj1MtTijtT
57 elsni iji=j
58 57 adantl φj1MtTiji=j
59 simpl2 φj1MtTijj1M
60 58 59 eqeltrd φj1MtTiji1M
61 55 56 60 43 syl21anc φj1MtTijGit
62 54 61 fsumrecl φj1MtTijGit
63 52 62 syl φtTUj1M0<GjtijGit
64 50 63 readdcld φtTUj1M0<Gjt0+ijGit
65 fzfi 1MFin
66 diffi 1MFin1MjFin
67 65 66 mp1i φtT1MjFin
68 eldifi i1Mji1M
69 68 43 sylan2 φtTi1MjGit
70 67 69 fsumrecl φtTi1MjGit
71 37 39 70 syl2anc φtTUj1M0<Gjti1MjGit
72 71 63 readdcld φtTUj1M0<Gjti1MjGit+ijGit
73 00id 0+0=0
74 simprr φtTUj1M0<Gjt0<Gjt
75 4 7 24 stoweidlem15 φj1MtTGjt0GjtGjt1
76 75 simp1d φj1MtTGjt
77 37 51 39 76 syl21anc φtTUj1M0<GjtGjt
78 77 recnd φtTUj1M0<GjtGjt
79 fveq2 i=jGi=Gj
80 79 fveq1d i=jGit=Gjt
81 80 sumsn j1MGjtijGit=Gjt
82 51 78 81 syl2anc φtTUj1M0<GjtijGit=Gjt
83 74 82 breqtrrd φtTUj1M0<Gjt0<ijGit
84 50 63 50 83 ltadd2dd φtTUj1M0<Gjt0+0<0+ijGit
85 73 84 eqbrtrrid φtTUj1M0<Gjt0<0+ijGit
86 0red φj1MtT0
87 70 3adant2 φj1MtTi1MjGit
88 simpll φtTi1Mjφ
89 68 adantl φtTi1Mji1M
90 simplr φtTi1MjtT
91 88 89 90 41 syl21anc φtTi1MjGit0GitGit1
92 91 simp2d φtTi1Mj0Git
93 67 69 92 fsumge0 φtT0i1MjGit
94 93 3adant2 φj1MtT0i1MjGit
95 86 87 62 94 leadd1dd φj1MtT0+ijGiti1MjGit+ijGit
96 52 95 syl φtTUj1M0<Gjt0+ijGiti1MjGit+ijGit
97 50 64 72 85 96 ltletrd φtTUj1M0<Gjt0<i1MjGit+ijGit
98 eldifn x1Mj¬xj
99 imnan x1Mj¬xj¬x1Mjxj
100 98 99 mpbi ¬x1Mjxj
101 elin x1Mjjx1Mjxj
102 100 101 mtbir ¬x1Mjj
103 102 nel0 1Mjj=
104 103 a1i φj1MtT1Mjj=
105 undif1 1Mjj=1Mj
106 snssi j1Mj1M
107 106 3ad2ant2 φj1MtTj1M
108 ssequn2 j1M1Mj=1M
109 107 108 sylib φj1MtT1Mj=1M
110 105 109 eqtr2id φj1MtT1M=1Mjj
111 fzfid φj1MtT1MFin
112 43 3adantl2 φj1MtTi1MGit
113 112 recnd φj1MtTi1MGit
114 104 110 111 113 fsumsplit φj1MtTi=1MGit=i1MjGit+ijGit
115 52 114 syl φtTUj1M0<Gjti=1MGit=i1MjGit+ijGit
116 97 115 breqtrrd φtTUj1M0<Gjt0<i=1MGit
117 36 45 49 116 mulgt0d φtTUj1M0<Gjt0<1Mi=1MGit
118 31 32 35 117 exlimdd φtTU0<1Mi=1MGit
119 4 5 6 7 24 stoweidlem30 φtTPt=1Mi=1MGit
120 38 119 sylan2 φtTUPt=1Mi=1MGit
121 118 120 breqtrrd φtTU0<Pt
122 121 ex φtTU0<Pt
123 2 122 ralrimi φtTU0<Pt
124 28 29 123 3jca φtT0PtPt1PZ=0tTU0<Pt
125 eleq1 p=PpAPA
126 nfmpt1 _ttT1Mi=1MGit
127 5 126 nfcxfr _tP
128 127 nfeq2 tp=P
129 fveq1 p=Ppt=Pt
130 129 breq2d p=P0pt0Pt
131 129 breq1d p=Ppt1Pt1
132 130 131 anbi12d p=P0ptpt10PtPt1
133 128 132 ralbid p=PtT0ptpt1tT0PtPt1
134 fveq1 p=PpZ=PZ
135 134 eqeq1d p=PpZ=0PZ=0
136 129 breq2d p=P0<pt0<Pt
137 128 136 ralbid p=PtTU0<pttTU0<Pt
138 133 135 137 3anbi123d p=PtT0ptpt1pZ=0tTU0<pttT0PtPt1PZ=0tTU0<Pt
139 125 138 anbi12d p=PpAtT0ptpt1pZ=0tTU0<ptPAtT0PtPt1PZ=0tTU0<Pt
140 139 spcegv PAPAtT0PtPt1PZ=0tTU0<PtppAtT0ptpt1pZ=0tTU0<pt
141 25 140 syl φPAtT0PtPt1PZ=0tTU0<PtppAtT0ptpt1pZ=0tTU0<pt
142 25 124 141 mp2and φppAtT0ptpt1pZ=0tTU0<pt
143 df-rex pAtT0ptpt1pZ=0tTU0<ptppAtT0ptpt1pZ=0tTU0<pt
144 142 143 sylibr φpAtT0ptpt1pZ=0tTU0<pt