Metamath Proof Explorer


Theorem stoweidlem45

Description: This lemma proves that, given an appropriate K (in another theorem we prove such a K exists), there exists a function q_n as in the proof of Lemma 1 in BrosowskiDeutsh p. 91 ( at the top of page 91): 0 <= q_n <= 1 , q_n < ε on T \ U, and q_n > 1 - ε on V . We use y to represent the final q_n in the paper (the one with n large enough), N to represent n in the paper, K to represent k , D to represent δ, E to represent ε, and P to represent p . (Contributed by Glauco Siliprandi, 20-Apr-2017)

Ref Expression
Hypotheses stoweidlem45.1 _ t P
stoweidlem45.2 t φ
stoweidlem45.3 V = t T | P t < D 2
stoweidlem45.4 Q = t T 1 P t N K N
stoweidlem45.5 φ N
stoweidlem45.6 φ K
stoweidlem45.7 φ D +
stoweidlem45.8 φ D < 1
stoweidlem45.9 φ P A
stoweidlem45.10 φ P : T
stoweidlem45.11 φ t T 0 P t P t 1
stoweidlem45.12 φ t T U D P t
stoweidlem45.13 φ f A f : T
stoweidlem45.14 φ f A g A t T f t + g t A
stoweidlem45.15 φ f A g A t T f t g t A
stoweidlem45.16 φ x t T x A
stoweidlem45.17 φ E +
stoweidlem45.18 φ 1 E < 1 K D 2 N
stoweidlem45.19 φ 1 K D N < E
Assertion stoweidlem45 φ y A t T 0 y t y t 1 t V 1 E < y t t T U y t < E

Proof

Step Hyp Ref Expression
1 stoweidlem45.1 _ t P
2 stoweidlem45.2 t φ
3 stoweidlem45.3 V = t T | P t < D 2
4 stoweidlem45.4 Q = t T 1 P t N K N
5 stoweidlem45.5 φ N
6 stoweidlem45.6 φ K
7 stoweidlem45.7 φ D +
8 stoweidlem45.8 φ D < 1
9 stoweidlem45.9 φ P A
10 stoweidlem45.10 φ P : T
11 stoweidlem45.11 φ t T 0 P t P t 1
12 stoweidlem45.12 φ t T U D P t
13 stoweidlem45.13 φ f A f : T
14 stoweidlem45.14 φ f A g A t T f t + g t A
15 stoweidlem45.15 φ f A g A t T f t g t A
16 stoweidlem45.16 φ x t T x A
17 stoweidlem45.17 φ E +
18 stoweidlem45.18 φ 1 E < 1 K D 2 N
19 stoweidlem45.19 φ 1 K D N < E
20 eqid t T 1 P t N = t T 1 P t N
21 eqid t T 1 = t T 1
22 eqid t T P t N = t T P t N
23 5 nnnn0d φ N 0
24 6 23 nnexpcld φ K N
25 1 2 4 20 21 22 9 10 13 14 15 16 5 24 stoweidlem40 φ Q A
26 1red φ t T 1
27 10 ffvelrnda φ t T P t
28 23 adantr φ t T N 0
29 27 28 reexpcld φ t T P t N
30 26 29 resubcld φ t T 1 P t N
31 6 nnnn0d φ K 0
32 31 23 nn0expcld φ K N 0
33 32 adantr φ t T K N 0
34 1m1e0 1 1 = 0
35 11 r19.21bi φ t T 0 P t P t 1
36 35 simpld φ t T 0 P t
37 35 simprd φ t T P t 1
38 exple1 P t 0 P t P t 1 N 0 P t N 1
39 27 36 37 28 38 syl31anc φ t T P t N 1
40 29 26 26 39 lesub2dd φ t T 1 1 1 P t N
41 34 40 eqbrtrrid φ t T 0 1 P t N
42 30 33 41 expge0d φ t T 0 1 P t N K N
43 4 10 23 31 stoweidlem12 φ t T Q t = 1 P t N K N
44 42 43 breqtrrd φ t T 0 Q t
45 0red φ t T 0
46 27 28 36 expge0d φ t T 0 P t N
47 45 29 26 46 lesub2dd φ t T 1 P t N 1 0
48 1m0e1 1 0 = 1
49 47 48 breqtrdi φ t T 1 P t N 1
50 exple1 1 P t N 0 1 P t N 1 P t N 1 K N 0 1 P t N K N 1
51 30 41 49 33 50 syl31anc φ t T 1 P t N K N 1
52 43 51 eqbrtrd φ t T Q t 1
53 44 52 jca φ t T 0 Q t Q t 1
54 53 ex φ t T 0 Q t Q t 1
55 2 54 ralrimi φ t T 0 Q t Q t 1
56 3 4 10 23 31 7 17 18 11 stoweidlem24 φ t V 1 E < Q t
57 56 ex φ t V 1 E < Q t
58 2 57 ralrimi φ t V 1 E < Q t
59 4 5 6 7 10 11 12 17 19 stoweidlem25 φ t T U Q t < E
60 59 ex φ t T U Q t < E
61 2 60 ralrimi φ t T U Q t < E
62 nfmpt1 _ t t T 1 P t N K N
63 4 62 nfcxfr _ t Q
64 63 nfeq2 t y = Q
65 fveq1 y = Q y t = Q t
66 65 breq2d y = Q 0 y t 0 Q t
67 65 breq1d y = Q y t 1 Q t 1
68 66 67 anbi12d y = Q 0 y t y t 1 0 Q t Q t 1
69 64 68 ralbid y = Q t T 0 y t y t 1 t T 0 Q t Q t 1
70 65 breq2d y = Q 1 E < y t 1 E < Q t
71 64 70 ralbid y = Q t V 1 E < y t t V 1 E < Q t
72 65 breq1d y = Q y t < E Q t < E
73 64 72 ralbid y = Q t T U y t < E t T U Q t < E
74 69 71 73 3anbi123d y = Q t T 0 y t y t 1 t V 1 E < y t t T U y t < E t T 0 Q t Q t 1 t V 1 E < Q t t T U Q t < E
75 74 rspcev Q A t T 0 Q t Q t 1 t V 1 E < Q t t T U Q t < E y A t T 0 y t y t 1 t V 1 E < y t t T U y t < E
76 25 55 58 61 75 syl13anc φ y A t T 0 y t y t 1 t V 1 E < y t t T U y t < E