| Step |
Hyp |
Ref |
Expression |
| 1 |
|
stoweidlem53.1 |
|- F/_ t U |
| 2 |
|
stoweidlem53.2 |
|- F/ t ph |
| 3 |
|
stoweidlem53.3 |
|- K = ( topGen ` ran (,) ) |
| 4 |
|
stoweidlem53.4 |
|- Q = { h e. A | ( ( h ` Z ) = 0 /\ A. t e. T ( 0 <_ ( h ` t ) /\ ( h ` t ) <_ 1 ) ) } |
| 5 |
|
stoweidlem53.5 |
|- W = { w e. J | E. h e. Q w = { t e. T | 0 < ( h ` t ) } } |
| 6 |
|
stoweidlem53.6 |
|- T = U. J |
| 7 |
|
stoweidlem53.7 |
|- C = ( J Cn K ) |
| 8 |
|
stoweidlem53.8 |
|- ( ph -> J e. Comp ) |
| 9 |
|
stoweidlem53.9 |
|- ( ph -> A C_ C ) |
| 10 |
|
stoweidlem53.10 |
|- ( ( ph /\ f e. A /\ g e. A ) -> ( t e. T |-> ( ( f ` t ) + ( g ` t ) ) ) e. A ) |
| 11 |
|
stoweidlem53.11 |
|- ( ( ph /\ f e. A /\ g e. A ) -> ( t e. T |-> ( ( f ` t ) x. ( g ` t ) ) ) e. A ) |
| 12 |
|
stoweidlem53.12 |
|- ( ( ph /\ x e. RR ) -> ( t e. T |-> x ) e. A ) |
| 13 |
|
stoweidlem53.13 |
|- ( ( ph /\ ( r e. T /\ t e. T /\ r =/= t ) ) -> E. q e. A ( q ` r ) =/= ( q ` t ) ) |
| 14 |
|
stoweidlem53.14 |
|- ( ph -> U e. J ) |
| 15 |
|
stoweidlem53.15 |
|- ( ph -> ( T \ U ) =/= (/) ) |
| 16 |
|
stoweidlem53.16 |
|- ( ph -> Z e. U ) |
| 17 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 16
|
stoweidlem50 |
|- ( ph -> E. u ( u e. Fin /\ u C_ W /\ ( T \ U ) C_ U. u ) ) |
| 18 |
|
nfv |
|- F/ t u e. Fin |
| 19 |
|
nfcv |
|- F/_ t u |
| 20 |
|
nfv |
|- F/ t ( h ` Z ) = 0 |
| 21 |
|
nfra1 |
|- F/ t A. t e. T ( 0 <_ ( h ` t ) /\ ( h ` t ) <_ 1 ) |
| 22 |
20 21
|
nfan |
|- F/ t ( ( h ` Z ) = 0 /\ A. t e. T ( 0 <_ ( h ` t ) /\ ( h ` t ) <_ 1 ) ) |
| 23 |
|
nfcv |
|- F/_ t A |
| 24 |
22 23
|
nfrabw |
|- F/_ t { h e. A | ( ( h ` Z ) = 0 /\ A. t e. T ( 0 <_ ( h ` t ) /\ ( h ` t ) <_ 1 ) ) } |
| 25 |
4 24
|
nfcxfr |
|- F/_ t Q |
| 26 |
|
nfrab1 |
|- F/_ t { t e. T | 0 < ( h ` t ) } |
| 27 |
26
|
nfeq2 |
|- F/ t w = { t e. T | 0 < ( h ` t ) } |
| 28 |
25 27
|
nfrexw |
|- F/ t E. h e. Q w = { t e. T | 0 < ( h ` t ) } |
| 29 |
|
nfcv |
|- F/_ t J |
| 30 |
28 29
|
nfrabw |
|- F/_ t { w e. J | E. h e. Q w = { t e. T | 0 < ( h ` t ) } } |
| 31 |
5 30
|
nfcxfr |
|- F/_ t W |
| 32 |
19 31
|
nfss |
|- F/ t u C_ W |
| 33 |
|
nfcv |
|- F/_ t T |
| 34 |
33 1
|
nfdif |
|- F/_ t ( T \ U ) |
| 35 |
|
nfcv |
|- F/_ t U. u |
| 36 |
34 35
|
nfss |
|- F/ t ( T \ U ) C_ U. u |
| 37 |
18 32 36
|
nf3an |
|- F/ t ( u e. Fin /\ u C_ W /\ ( T \ U ) C_ U. u ) |
| 38 |
2 37
|
nfan |
|- F/ t ( ph /\ ( u e. Fin /\ u C_ W /\ ( T \ U ) C_ U. u ) ) |
| 39 |
|
nfv |
|- F/ w ph |
| 40 |
|
nfv |
|- F/ w u e. Fin |
| 41 |
|
nfcv |
|- F/_ w u |
| 42 |
|
nfrab1 |
|- F/_ w { w e. J | E. h e. Q w = { t e. T | 0 < ( h ` t ) } } |
| 43 |
5 42
|
nfcxfr |
|- F/_ w W |
| 44 |
41 43
|
nfss |
|- F/ w u C_ W |
| 45 |
|
nfv |
|- F/ w ( T \ U ) C_ U. u |
| 46 |
40 44 45
|
nf3an |
|- F/ w ( u e. Fin /\ u C_ W /\ ( T \ U ) C_ U. u ) |
| 47 |
39 46
|
nfan |
|- F/ w ( ph /\ ( u e. Fin /\ u C_ W /\ ( T \ U ) C_ U. u ) ) |
| 48 |
|
nfv |
|- F/ h ph |
| 49 |
|
nfv |
|- F/ h u e. Fin |
| 50 |
|
nfcv |
|- F/_ h u |
| 51 |
|
nfre1 |
|- F/ h E. h e. Q w = { t e. T | 0 < ( h ` t ) } |
| 52 |
|
nfcv |
|- F/_ h J |
| 53 |
51 52
|
nfrabw |
|- F/_ h { w e. J | E. h e. Q w = { t e. T | 0 < ( h ` t ) } } |
| 54 |
5 53
|
nfcxfr |
|- F/_ h W |
| 55 |
50 54
|
nfss |
|- F/ h u C_ W |
| 56 |
|
nfv |
|- F/ h ( T \ U ) C_ U. u |
| 57 |
49 55 56
|
nf3an |
|- F/ h ( u e. Fin /\ u C_ W /\ ( T \ U ) C_ U. u ) |
| 58 |
48 57
|
nfan |
|- F/ h ( ph /\ ( u e. Fin /\ u C_ W /\ ( T \ U ) C_ U. u ) ) |
| 59 |
|
eqid |
|- ( w e. u |-> { h e. Q | w = { t e. T | 0 < ( h ` t ) } } ) = ( w e. u |-> { h e. Q | w = { t e. T | 0 < ( h ` t ) } } ) |
| 60 |
|
cmptop |
|- ( J e. Comp -> J e. Top ) |
| 61 |
8 60
|
syl |
|- ( ph -> J e. Top ) |
| 62 |
|
retop |
|- ( topGen ` ran (,) ) e. Top |
| 63 |
3 62
|
eqeltri |
|- K e. Top |
| 64 |
|
cnfex |
|- ( ( J e. Top /\ K e. Top ) -> ( J Cn K ) e. _V ) |
| 65 |
61 63 64
|
sylancl |
|- ( ph -> ( J Cn K ) e. _V ) |
| 66 |
9 7
|
sseqtrdi |
|- ( ph -> A C_ ( J Cn K ) ) |
| 67 |
65 66
|
ssexd |
|- ( ph -> A e. _V ) |
| 68 |
67
|
adantr |
|- ( ( ph /\ ( u e. Fin /\ u C_ W /\ ( T \ U ) C_ U. u ) ) -> A e. _V ) |
| 69 |
|
simpr1 |
|- ( ( ph /\ ( u e. Fin /\ u C_ W /\ ( T \ U ) C_ U. u ) ) -> u e. Fin ) |
| 70 |
|
simpr2 |
|- ( ( ph /\ ( u e. Fin /\ u C_ W /\ ( T \ U ) C_ U. u ) ) -> u C_ W ) |
| 71 |
|
simpr3 |
|- ( ( ph /\ ( u e. Fin /\ u C_ W /\ ( T \ U ) C_ U. u ) ) -> ( T \ U ) C_ U. u ) |
| 72 |
15
|
adantr |
|- ( ( ph /\ ( u e. Fin /\ u C_ W /\ ( T \ U ) C_ U. u ) ) -> ( T \ U ) =/= (/) ) |
| 73 |
38 47 58 4 5 59 68 69 70 71 72
|
stoweidlem35 |
|- ( ( ph /\ ( u e. Fin /\ u C_ W /\ ( T \ U ) C_ U. u ) ) -> E. m E. q ( m e. NN /\ ( q : ( 1 ... m ) --> Q /\ A. t e. ( T \ U ) E. i e. ( 1 ... m ) 0 < ( ( q ` i ) ` t ) ) ) ) |
| 74 |
17 73
|
exlimddv |
|- ( ph -> E. m E. q ( m e. NN /\ ( q : ( 1 ... m ) --> Q /\ A. t e. ( T \ U ) E. i e. ( 1 ... m ) 0 < ( ( q ` i ) ` t ) ) ) ) |
| 75 |
|
nfv |
|- F/ i ph |
| 76 |
|
nfv |
|- F/ i m e. NN |
| 77 |
|
nfv |
|- F/ i q : ( 1 ... m ) --> Q |
| 78 |
|
nfcv |
|- F/_ i ( T \ U ) |
| 79 |
|
nfre1 |
|- F/ i E. i e. ( 1 ... m ) 0 < ( ( q ` i ) ` t ) |
| 80 |
78 79
|
nfralw |
|- F/ i A. t e. ( T \ U ) E. i e. ( 1 ... m ) 0 < ( ( q ` i ) ` t ) |
| 81 |
77 80
|
nfan |
|- F/ i ( q : ( 1 ... m ) --> Q /\ A. t e. ( T \ U ) E. i e. ( 1 ... m ) 0 < ( ( q ` i ) ` t ) ) |
| 82 |
76 81
|
nfan |
|- F/ i ( m e. NN /\ ( q : ( 1 ... m ) --> Q /\ A. t e. ( T \ U ) E. i e. ( 1 ... m ) 0 < ( ( q ` i ) ` t ) ) ) |
| 83 |
75 82
|
nfan |
|- F/ i ( ph /\ ( m e. NN /\ ( q : ( 1 ... m ) --> Q /\ A. t e. ( T \ U ) E. i e. ( 1 ... m ) 0 < ( ( q ` i ) ` t ) ) ) ) |
| 84 |
|
nfv |
|- F/ t m e. NN |
| 85 |
|
nfcv |
|- F/_ t q |
| 86 |
|
nfcv |
|- F/_ t ( 1 ... m ) |
| 87 |
85 86 25
|
nff |
|- F/ t q : ( 1 ... m ) --> Q |
| 88 |
|
nfra1 |
|- F/ t A. t e. ( T \ U ) E. i e. ( 1 ... m ) 0 < ( ( q ` i ) ` t ) |
| 89 |
87 88
|
nfan |
|- F/ t ( q : ( 1 ... m ) --> Q /\ A. t e. ( T \ U ) E. i e. ( 1 ... m ) 0 < ( ( q ` i ) ` t ) ) |
| 90 |
84 89
|
nfan |
|- F/ t ( m e. NN /\ ( q : ( 1 ... m ) --> Q /\ A. t e. ( T \ U ) E. i e. ( 1 ... m ) 0 < ( ( q ` i ) ` t ) ) ) |
| 91 |
2 90
|
nfan |
|- F/ t ( ph /\ ( m e. NN /\ ( q : ( 1 ... m ) --> Q /\ A. t e. ( T \ U ) E. i e. ( 1 ... m ) 0 < ( ( q ` i ) ` t ) ) ) ) |
| 92 |
|
eqid |
|- ( t e. T |-> ( ( 1 / m ) x. sum_ y e. ( 1 ... m ) ( ( q ` y ) ` t ) ) ) = ( t e. T |-> ( ( 1 / m ) x. sum_ y e. ( 1 ... m ) ( ( q ` y ) ` t ) ) ) |
| 93 |
|
simprl |
|- ( ( ph /\ ( m e. NN /\ ( q : ( 1 ... m ) --> Q /\ A. t e. ( T \ U ) E. i e. ( 1 ... m ) 0 < ( ( q ` i ) ` t ) ) ) ) -> m e. NN ) |
| 94 |
|
simprrl |
|- ( ( ph /\ ( m e. NN /\ ( q : ( 1 ... m ) --> Q /\ A. t e. ( T \ U ) E. i e. ( 1 ... m ) 0 < ( ( q ` i ) ` t ) ) ) ) -> q : ( 1 ... m ) --> Q ) |
| 95 |
|
simprrr |
|- ( ( ph /\ ( m e. NN /\ ( q : ( 1 ... m ) --> Q /\ A. t e. ( T \ U ) E. i e. ( 1 ... m ) 0 < ( ( q ` i ) ` t ) ) ) ) -> A. t e. ( T \ U ) E. i e. ( 1 ... m ) 0 < ( ( q ` i ) ` t ) ) |
| 96 |
66
|
adantr |
|- ( ( ph /\ ( m e. NN /\ ( q : ( 1 ... m ) --> Q /\ A. t e. ( T \ U ) E. i e. ( 1 ... m ) 0 < ( ( q ` i ) ` t ) ) ) ) -> A C_ ( J Cn K ) ) |
| 97 |
10
|
3adant1r |
|- ( ( ( ph /\ ( m e. NN /\ ( q : ( 1 ... m ) --> Q /\ A. t e. ( T \ U ) E. i e. ( 1 ... m ) 0 < ( ( q ` i ) ` t ) ) ) ) /\ f e. A /\ g e. A ) -> ( t e. T |-> ( ( f ` t ) + ( g ` t ) ) ) e. A ) |
| 98 |
11
|
3adant1r |
|- ( ( ( ph /\ ( m e. NN /\ ( q : ( 1 ... m ) --> Q /\ A. t e. ( T \ U ) E. i e. ( 1 ... m ) 0 < ( ( q ` i ) ` t ) ) ) ) /\ f e. A /\ g e. A ) -> ( t e. T |-> ( ( f ` t ) x. ( g ` t ) ) ) e. A ) |
| 99 |
12
|
adantlr |
|- ( ( ( ph /\ ( m e. NN /\ ( q : ( 1 ... m ) --> Q /\ A. t e. ( T \ U ) E. i e. ( 1 ... m ) 0 < ( ( q ` i ) ` t ) ) ) ) /\ x e. RR ) -> ( t e. T |-> x ) e. A ) |
| 100 |
|
elssuni |
|- ( U e. J -> U C_ U. J ) |
| 101 |
100 6
|
sseqtrrdi |
|- ( U e. J -> U C_ T ) |
| 102 |
14 101
|
syl |
|- ( ph -> U C_ T ) |
| 103 |
102 16
|
sseldd |
|- ( ph -> Z e. T ) |
| 104 |
103
|
adantr |
|- ( ( ph /\ ( m e. NN /\ ( q : ( 1 ... m ) --> Q /\ A. t e. ( T \ U ) E. i e. ( 1 ... m ) 0 < ( ( q ` i ) ` t ) ) ) ) -> Z e. T ) |
| 105 |
83 91 3 4 92 93 94 95 6 96 97 98 99 104
|
stoweidlem44 |
|- ( ( ph /\ ( m e. NN /\ ( q : ( 1 ... m ) --> Q /\ A. t e. ( T \ U ) E. i e. ( 1 ... m ) 0 < ( ( q ` i ) ` t ) ) ) ) -> E. p e. A ( A. t e. T ( 0 <_ ( p ` t ) /\ ( p ` t ) <_ 1 ) /\ ( p ` Z ) = 0 /\ A. t e. ( T \ U ) 0 < ( p ` t ) ) ) |
| 106 |
105
|
ex |
|- ( ph -> ( ( m e. NN /\ ( q : ( 1 ... m ) --> Q /\ A. t e. ( T \ U ) E. i e. ( 1 ... m ) 0 < ( ( q ` i ) ` t ) ) ) -> E. p e. A ( A. t e. T ( 0 <_ ( p ` t ) /\ ( p ` t ) <_ 1 ) /\ ( p ` Z ) = 0 /\ A. t e. ( T \ U ) 0 < ( p ` t ) ) ) ) |
| 107 |
106
|
exlimdvv |
|- ( ph -> ( E. m E. q ( m e. NN /\ ( q : ( 1 ... m ) --> Q /\ A. t e. ( T \ U ) E. i e. ( 1 ... m ) 0 < ( ( q ` i ) ` t ) ) ) -> E. p e. A ( A. t e. T ( 0 <_ ( p ` t ) /\ ( p ` t ) <_ 1 ) /\ ( p ` Z ) = 0 /\ A. t e. ( T \ U ) 0 < ( p ` t ) ) ) ) |
| 108 |
74 107
|
mpd |
|- ( ph -> E. p e. A ( A. t e. T ( 0 <_ ( p ` t ) /\ ( p ` t ) <_ 1 ) /\ ( p ` Z ) = 0 /\ A. t e. ( T \ U ) 0 < ( p ` t ) ) ) |