| Step | Hyp | Ref | Expression | 
						
							| 1 |  | stoweidlem49.1 | ⊢ Ⅎ 𝑡 𝑃 | 
						
							| 2 |  | stoweidlem49.2 | ⊢ Ⅎ 𝑡 𝜑 | 
						
							| 3 |  | stoweidlem49.3 | ⊢ 𝑉  =  { 𝑡  ∈  𝑇  ∣  ( 𝑃 ‘ 𝑡 )  <  ( 𝐷  /  2 ) } | 
						
							| 4 |  | stoweidlem49.4 | ⊢ ( 𝜑  →  𝐷  ∈  ℝ+ ) | 
						
							| 5 |  | stoweidlem49.5 | ⊢ ( 𝜑  →  𝐷  <  1 ) | 
						
							| 6 |  | stoweidlem49.6 | ⊢ ( 𝜑  →  𝑃  ∈  𝐴 ) | 
						
							| 7 |  | stoweidlem49.7 | ⊢ ( 𝜑  →  𝑃 : 𝑇 ⟶ ℝ ) | 
						
							| 8 |  | stoweidlem49.8 | ⊢ ( 𝜑  →  ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( 𝑃 ‘ 𝑡 )  ∧  ( 𝑃 ‘ 𝑡 )  ≤  1 ) ) | 
						
							| 9 |  | stoweidlem49.9 | ⊢ ( 𝜑  →  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) 𝐷  ≤  ( 𝑃 ‘ 𝑡 ) ) | 
						
							| 10 |  | stoweidlem49.10 | ⊢ ( ( 𝜑  ∧  𝑓  ∈  𝐴 )  →  𝑓 : 𝑇 ⟶ ℝ ) | 
						
							| 11 |  | stoweidlem49.11 | ⊢ ( ( 𝜑  ∧  𝑓  ∈  𝐴  ∧  𝑔  ∈  𝐴 )  →  ( 𝑡  ∈  𝑇  ↦  ( ( 𝑓 ‘ 𝑡 )  +  ( 𝑔 ‘ 𝑡 ) ) )  ∈  𝐴 ) | 
						
							| 12 |  | stoweidlem49.12 | ⊢ ( ( 𝜑  ∧  𝑓  ∈  𝐴  ∧  𝑔  ∈  𝐴 )  →  ( 𝑡  ∈  𝑇  ↦  ( ( 𝑓 ‘ 𝑡 )  ·  ( 𝑔 ‘ 𝑡 ) ) )  ∈  𝐴 ) | 
						
							| 13 |  | stoweidlem49.13 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ )  →  ( 𝑡  ∈  𝑇  ↦  𝑥 )  ∈  𝐴 ) | 
						
							| 14 |  | stoweidlem49.14 | ⊢ ( 𝜑  →  𝐸  ∈  ℝ+ ) | 
						
							| 15 |  | breq2 | ⊢ ( 𝑗  =  𝑖  →  ( ( 1  /  𝐷 )  <  𝑗  ↔  ( 1  /  𝐷 )  <  𝑖 ) ) | 
						
							| 16 | 15 | cbvrabv | ⊢ { 𝑗  ∈  ℕ  ∣  ( 1  /  𝐷 )  <  𝑗 }  =  { 𝑖  ∈  ℕ  ∣  ( 1  /  𝐷 )  <  𝑖 } | 
						
							| 17 | 16 4 5 | stoweidlem14 | ⊢ ( 𝜑  →  ∃ 𝑘  ∈  ℕ ( 1  <  ( 𝑘  ·  𝐷 )  ∧  ( ( 𝑘  ·  𝐷 )  /  2 )  <  1 ) ) | 
						
							| 18 |  | eqid | ⊢ ( 𝑖  ∈  ℕ0  ↦  ( ( 1  /  ( 𝑘  ·  𝐷 ) ) ↑ 𝑖 ) )  =  ( 𝑖  ∈  ℕ0  ↦  ( ( 1  /  ( 𝑘  ·  𝐷 ) ) ↑ 𝑖 ) ) | 
						
							| 19 |  | eqid | ⊢ ( 𝑖  ∈  ℕ0  ↦  ( ( ( 𝑘  ·  𝐷 )  /  2 ) ↑ 𝑖 ) )  =  ( 𝑖  ∈  ℕ0  ↦  ( ( ( 𝑘  ·  𝐷 )  /  2 ) ↑ 𝑖 ) ) | 
						
							| 20 |  | nnre | ⊢ ( 𝑘  ∈  ℕ  →  𝑘  ∈  ℝ ) | 
						
							| 21 | 20 | adantl | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  𝑘  ∈  ℝ ) | 
						
							| 22 | 4 | rpred | ⊢ ( 𝜑  →  𝐷  ∈  ℝ ) | 
						
							| 23 | 22 | adantr | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  𝐷  ∈  ℝ ) | 
						
							| 24 | 21 23 | remulcld | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  ( 𝑘  ·  𝐷 )  ∈  ℝ ) | 
						
							| 25 | 24 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ℕ )  ∧  ( 1  <  ( 𝑘  ·  𝐷 )  ∧  ( ( 𝑘  ·  𝐷 )  /  2 )  <  1 ) )  →  ( 𝑘  ·  𝐷 )  ∈  ℝ ) | 
						
							| 26 |  | simprl | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ℕ )  ∧  ( 1  <  ( 𝑘  ·  𝐷 )  ∧  ( ( 𝑘  ·  𝐷 )  /  2 )  <  1 ) )  →  1  <  ( 𝑘  ·  𝐷 ) ) | 
						
							| 27 | 24 | rehalfcld | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  ( ( 𝑘  ·  𝐷 )  /  2 )  ∈  ℝ ) | 
						
							| 28 |  | nngt0 | ⊢ ( 𝑘  ∈  ℕ  →  0  <  𝑘 ) | 
						
							| 29 | 28 | adantl | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  0  <  𝑘 ) | 
						
							| 30 | 4 | rpgt0d | ⊢ ( 𝜑  →  0  <  𝐷 ) | 
						
							| 31 | 30 | adantr | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  0  <  𝐷 ) | 
						
							| 32 | 21 23 29 31 | mulgt0d | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  0  <  ( 𝑘  ·  𝐷 ) ) | 
						
							| 33 |  | 2re | ⊢ 2  ∈  ℝ | 
						
							| 34 |  | 2pos | ⊢ 0  <  2 | 
						
							| 35 | 33 34 | pm3.2i | ⊢ ( 2  ∈  ℝ  ∧  0  <  2 ) | 
						
							| 36 | 35 | a1i | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  ( 2  ∈  ℝ  ∧  0  <  2 ) ) | 
						
							| 37 |  | divgt0 | ⊢ ( ( ( ( 𝑘  ·  𝐷 )  ∈  ℝ  ∧  0  <  ( 𝑘  ·  𝐷 ) )  ∧  ( 2  ∈  ℝ  ∧  0  <  2 ) )  →  0  <  ( ( 𝑘  ·  𝐷 )  /  2 ) ) | 
						
							| 38 | 24 32 36 37 | syl21anc | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  0  <  ( ( 𝑘  ·  𝐷 )  /  2 ) ) | 
						
							| 39 | 27 38 | elrpd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  ( ( 𝑘  ·  𝐷 )  /  2 )  ∈  ℝ+ ) | 
						
							| 40 | 39 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ℕ )  ∧  ( 1  <  ( 𝑘  ·  𝐷 )  ∧  ( ( 𝑘  ·  𝐷 )  /  2 )  <  1 ) )  →  ( ( 𝑘  ·  𝐷 )  /  2 )  ∈  ℝ+ ) | 
						
							| 41 |  | simprr | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ℕ )  ∧  ( 1  <  ( 𝑘  ·  𝐷 )  ∧  ( ( 𝑘  ·  𝐷 )  /  2 )  <  1 ) )  →  ( ( 𝑘  ·  𝐷 )  /  2 )  <  1 ) | 
						
							| 42 | 14 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ℕ )  ∧  ( 1  <  ( 𝑘  ·  𝐷 )  ∧  ( ( 𝑘  ·  𝐷 )  /  2 )  <  1 ) )  →  𝐸  ∈  ℝ+ ) | 
						
							| 43 | 18 19 25 26 40 41 42 | stoweidlem7 | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ℕ )  ∧  ( 1  <  ( 𝑘  ·  𝐷 )  ∧  ( ( 𝑘  ·  𝐷 )  /  2 )  <  1 ) )  →  ∃ 𝑛  ∈  ℕ ( ( 1  −  𝐸 )  <  ( 1  −  ( ( ( 𝑘  ·  𝐷 )  /  2 ) ↑ 𝑛 ) )  ∧  ( 1  /  ( ( 𝑘  ·  𝐷 ) ↑ 𝑛 ) )  <  𝐸 ) ) | 
						
							| 44 | 43 | ex | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  ( ( 1  <  ( 𝑘  ·  𝐷 )  ∧  ( ( 𝑘  ·  𝐷 )  /  2 )  <  1 )  →  ∃ 𝑛  ∈  ℕ ( ( 1  −  𝐸 )  <  ( 1  −  ( ( ( 𝑘  ·  𝐷 )  /  2 ) ↑ 𝑛 ) )  ∧  ( 1  /  ( ( 𝑘  ·  𝐷 ) ↑ 𝑛 ) )  <  𝐸 ) ) ) | 
						
							| 45 | 44 | reximdva | ⊢ ( 𝜑  →  ( ∃ 𝑘  ∈  ℕ ( 1  <  ( 𝑘  ·  𝐷 )  ∧  ( ( 𝑘  ·  𝐷 )  /  2 )  <  1 )  →  ∃ 𝑘  ∈  ℕ ∃ 𝑛  ∈  ℕ ( ( 1  −  𝐸 )  <  ( 1  −  ( ( ( 𝑘  ·  𝐷 )  /  2 ) ↑ 𝑛 ) )  ∧  ( 1  /  ( ( 𝑘  ·  𝐷 ) ↑ 𝑛 ) )  <  𝐸 ) ) ) | 
						
							| 46 | 17 45 | mpd | ⊢ ( 𝜑  →  ∃ 𝑘  ∈  ℕ ∃ 𝑛  ∈  ℕ ( ( 1  −  𝐸 )  <  ( 1  −  ( ( ( 𝑘  ·  𝐷 )  /  2 ) ↑ 𝑛 ) )  ∧  ( 1  /  ( ( 𝑘  ·  𝐷 ) ↑ 𝑛 ) )  <  𝐸 ) ) | 
						
							| 47 |  | nfv | ⊢ Ⅎ 𝑡 ( 𝑘  ∈  ℕ  ∧  𝑛  ∈  ℕ ) | 
						
							| 48 | 2 47 | nfan | ⊢ Ⅎ 𝑡 ( 𝜑  ∧  ( 𝑘  ∈  ℕ  ∧  𝑛  ∈  ℕ ) ) | 
						
							| 49 |  | nfv | ⊢ Ⅎ 𝑡 ( ( 1  −  𝐸 )  <  ( 1  −  ( ( ( 𝑘  ·  𝐷 )  /  2 ) ↑ 𝑛 ) )  ∧  ( 1  /  ( ( 𝑘  ·  𝐷 ) ↑ 𝑛 ) )  <  𝐸 ) | 
						
							| 50 | 48 49 | nfan | ⊢ Ⅎ 𝑡 ( ( 𝜑  ∧  ( 𝑘  ∈  ℕ  ∧  𝑛  ∈  ℕ ) )  ∧  ( ( 1  −  𝐸 )  <  ( 1  −  ( ( ( 𝑘  ·  𝐷 )  /  2 ) ↑ 𝑛 ) )  ∧  ( 1  /  ( ( 𝑘  ·  𝐷 ) ↑ 𝑛 ) )  <  𝐸 ) ) | 
						
							| 51 |  | eqid | ⊢ ( 𝑡  ∈  𝑇  ↦  ( ( 1  −  ( ( 𝑃 ‘ 𝑡 ) ↑ 𝑛 ) ) ↑ ( 𝑘 ↑ 𝑛 ) ) )  =  ( 𝑡  ∈  𝑇  ↦  ( ( 1  −  ( ( 𝑃 ‘ 𝑡 ) ↑ 𝑛 ) ) ↑ ( 𝑘 ↑ 𝑛 ) ) ) | 
						
							| 52 |  | simplrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑘  ∈  ℕ  ∧  𝑛  ∈  ℕ ) )  ∧  ( ( 1  −  𝐸 )  <  ( 1  −  ( ( ( 𝑘  ·  𝐷 )  /  2 ) ↑ 𝑛 ) )  ∧  ( 1  /  ( ( 𝑘  ·  𝐷 ) ↑ 𝑛 ) )  <  𝐸 ) )  →  𝑛  ∈  ℕ ) | 
						
							| 53 |  | simplrl | ⊢ ( ( ( 𝜑  ∧  ( 𝑘  ∈  ℕ  ∧  𝑛  ∈  ℕ ) )  ∧  ( ( 1  −  𝐸 )  <  ( 1  −  ( ( ( 𝑘  ·  𝐷 )  /  2 ) ↑ 𝑛 ) )  ∧  ( 1  /  ( ( 𝑘  ·  𝐷 ) ↑ 𝑛 ) )  <  𝐸 ) )  →  𝑘  ∈  ℕ ) | 
						
							| 54 | 4 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑘  ∈  ℕ  ∧  𝑛  ∈  ℕ ) )  ∧  ( ( 1  −  𝐸 )  <  ( 1  −  ( ( ( 𝑘  ·  𝐷 )  /  2 ) ↑ 𝑛 ) )  ∧  ( 1  /  ( ( 𝑘  ·  𝐷 ) ↑ 𝑛 ) )  <  𝐸 ) )  →  𝐷  ∈  ℝ+ ) | 
						
							| 55 | 5 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑘  ∈  ℕ  ∧  𝑛  ∈  ℕ ) )  ∧  ( ( 1  −  𝐸 )  <  ( 1  −  ( ( ( 𝑘  ·  𝐷 )  /  2 ) ↑ 𝑛 ) )  ∧  ( 1  /  ( ( 𝑘  ·  𝐷 ) ↑ 𝑛 ) )  <  𝐸 ) )  →  𝐷  <  1 ) | 
						
							| 56 | 6 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑘  ∈  ℕ  ∧  𝑛  ∈  ℕ ) )  ∧  ( ( 1  −  𝐸 )  <  ( 1  −  ( ( ( 𝑘  ·  𝐷 )  /  2 ) ↑ 𝑛 ) )  ∧  ( 1  /  ( ( 𝑘  ·  𝐷 ) ↑ 𝑛 ) )  <  𝐸 ) )  →  𝑃  ∈  𝐴 ) | 
						
							| 57 | 7 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑘  ∈  ℕ  ∧  𝑛  ∈  ℕ ) )  ∧  ( ( 1  −  𝐸 )  <  ( 1  −  ( ( ( 𝑘  ·  𝐷 )  /  2 ) ↑ 𝑛 ) )  ∧  ( 1  /  ( ( 𝑘  ·  𝐷 ) ↑ 𝑛 ) )  <  𝐸 ) )  →  𝑃 : 𝑇 ⟶ ℝ ) | 
						
							| 58 | 8 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑘  ∈  ℕ  ∧  𝑛  ∈  ℕ ) )  ∧  ( ( 1  −  𝐸 )  <  ( 1  −  ( ( ( 𝑘  ·  𝐷 )  /  2 ) ↑ 𝑛 ) )  ∧  ( 1  /  ( ( 𝑘  ·  𝐷 ) ↑ 𝑛 ) )  <  𝐸 ) )  →  ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( 𝑃 ‘ 𝑡 )  ∧  ( 𝑃 ‘ 𝑡 )  ≤  1 ) ) | 
						
							| 59 | 9 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑘  ∈  ℕ  ∧  𝑛  ∈  ℕ ) )  ∧  ( ( 1  −  𝐸 )  <  ( 1  −  ( ( ( 𝑘  ·  𝐷 )  /  2 ) ↑ 𝑛 ) )  ∧  ( 1  /  ( ( 𝑘  ·  𝐷 ) ↑ 𝑛 ) )  <  𝐸 ) )  →  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) 𝐷  ≤  ( 𝑃 ‘ 𝑡 ) ) | 
						
							| 60 | 10 | ad4ant14 | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑘  ∈  ℕ  ∧  𝑛  ∈  ℕ ) )  ∧  ( ( 1  −  𝐸 )  <  ( 1  −  ( ( ( 𝑘  ·  𝐷 )  /  2 ) ↑ 𝑛 ) )  ∧  ( 1  /  ( ( 𝑘  ·  𝐷 ) ↑ 𝑛 ) )  <  𝐸 ) )  ∧  𝑓  ∈  𝐴 )  →  𝑓 : 𝑇 ⟶ ℝ ) | 
						
							| 61 |  | simp1ll | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑘  ∈  ℕ  ∧  𝑛  ∈  ℕ ) )  ∧  ( ( 1  −  𝐸 )  <  ( 1  −  ( ( ( 𝑘  ·  𝐷 )  /  2 ) ↑ 𝑛 ) )  ∧  ( 1  /  ( ( 𝑘  ·  𝐷 ) ↑ 𝑛 ) )  <  𝐸 ) )  ∧  𝑓  ∈  𝐴  ∧  𝑔  ∈  𝐴 )  →  𝜑 ) | 
						
							| 62 | 61 11 | syld3an1 | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑘  ∈  ℕ  ∧  𝑛  ∈  ℕ ) )  ∧  ( ( 1  −  𝐸 )  <  ( 1  −  ( ( ( 𝑘  ·  𝐷 )  /  2 ) ↑ 𝑛 ) )  ∧  ( 1  /  ( ( 𝑘  ·  𝐷 ) ↑ 𝑛 ) )  <  𝐸 ) )  ∧  𝑓  ∈  𝐴  ∧  𝑔  ∈  𝐴 )  →  ( 𝑡  ∈  𝑇  ↦  ( ( 𝑓 ‘ 𝑡 )  +  ( 𝑔 ‘ 𝑡 ) ) )  ∈  𝐴 ) | 
						
							| 63 | 61 12 | syld3an1 | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑘  ∈  ℕ  ∧  𝑛  ∈  ℕ ) )  ∧  ( ( 1  −  𝐸 )  <  ( 1  −  ( ( ( 𝑘  ·  𝐷 )  /  2 ) ↑ 𝑛 ) )  ∧  ( 1  /  ( ( 𝑘  ·  𝐷 ) ↑ 𝑛 ) )  <  𝐸 ) )  ∧  𝑓  ∈  𝐴  ∧  𝑔  ∈  𝐴 )  →  ( 𝑡  ∈  𝑇  ↦  ( ( 𝑓 ‘ 𝑡 )  ·  ( 𝑔 ‘ 𝑡 ) ) )  ∈  𝐴 ) | 
						
							| 64 | 13 | ad4ant14 | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑘  ∈  ℕ  ∧  𝑛  ∈  ℕ ) )  ∧  ( ( 1  −  𝐸 )  <  ( 1  −  ( ( ( 𝑘  ·  𝐷 )  /  2 ) ↑ 𝑛 ) )  ∧  ( 1  /  ( ( 𝑘  ·  𝐷 ) ↑ 𝑛 ) )  <  𝐸 ) )  ∧  𝑥  ∈  ℝ )  →  ( 𝑡  ∈  𝑇  ↦  𝑥 )  ∈  𝐴 ) | 
						
							| 65 | 14 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑘  ∈  ℕ  ∧  𝑛  ∈  ℕ ) )  ∧  ( ( 1  −  𝐸 )  <  ( 1  −  ( ( ( 𝑘  ·  𝐷 )  /  2 ) ↑ 𝑛 ) )  ∧  ( 1  /  ( ( 𝑘  ·  𝐷 ) ↑ 𝑛 ) )  <  𝐸 ) )  →  𝐸  ∈  ℝ+ ) | 
						
							| 66 |  | simprl | ⊢ ( ( ( 𝜑  ∧  ( 𝑘  ∈  ℕ  ∧  𝑛  ∈  ℕ ) )  ∧  ( ( 1  −  𝐸 )  <  ( 1  −  ( ( ( 𝑘  ·  𝐷 )  /  2 ) ↑ 𝑛 ) )  ∧  ( 1  /  ( ( 𝑘  ·  𝐷 ) ↑ 𝑛 ) )  <  𝐸 ) )  →  ( 1  −  𝐸 )  <  ( 1  −  ( ( ( 𝑘  ·  𝐷 )  /  2 ) ↑ 𝑛 ) ) ) | 
						
							| 67 |  | simprr | ⊢ ( ( ( 𝜑  ∧  ( 𝑘  ∈  ℕ  ∧  𝑛  ∈  ℕ ) )  ∧  ( ( 1  −  𝐸 )  <  ( 1  −  ( ( ( 𝑘  ·  𝐷 )  /  2 ) ↑ 𝑛 ) )  ∧  ( 1  /  ( ( 𝑘  ·  𝐷 ) ↑ 𝑛 ) )  <  𝐸 ) )  →  ( 1  /  ( ( 𝑘  ·  𝐷 ) ↑ 𝑛 ) )  <  𝐸 ) | 
						
							| 68 | 1 50 3 51 52 53 54 55 56 57 58 59 60 62 63 64 65 66 67 | stoweidlem45 | ⊢ ( ( ( 𝜑  ∧  ( 𝑘  ∈  ℕ  ∧  𝑛  ∈  ℕ ) )  ∧  ( ( 1  −  𝐸 )  <  ( 1  −  ( ( ( 𝑘  ·  𝐷 )  /  2 ) ↑ 𝑛 ) )  ∧  ( 1  /  ( ( 𝑘  ·  𝐷 ) ↑ 𝑛 ) )  <  𝐸 ) )  →  ∃ 𝑦  ∈  𝐴 ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( 𝑦 ‘ 𝑡 )  ∧  ( 𝑦 ‘ 𝑡 )  ≤  1 )  ∧  ∀ 𝑡  ∈  𝑉 ( 1  −  𝐸 )  <  ( 𝑦 ‘ 𝑡 )  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) ( 𝑦 ‘ 𝑡 )  <  𝐸 ) ) | 
						
							| 69 | 68 | ex | ⊢ ( ( 𝜑  ∧  ( 𝑘  ∈  ℕ  ∧  𝑛  ∈  ℕ ) )  →  ( ( ( 1  −  𝐸 )  <  ( 1  −  ( ( ( 𝑘  ·  𝐷 )  /  2 ) ↑ 𝑛 ) )  ∧  ( 1  /  ( ( 𝑘  ·  𝐷 ) ↑ 𝑛 ) )  <  𝐸 )  →  ∃ 𝑦  ∈  𝐴 ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( 𝑦 ‘ 𝑡 )  ∧  ( 𝑦 ‘ 𝑡 )  ≤  1 )  ∧  ∀ 𝑡  ∈  𝑉 ( 1  −  𝐸 )  <  ( 𝑦 ‘ 𝑡 )  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) ( 𝑦 ‘ 𝑡 )  <  𝐸 ) ) ) | 
						
							| 70 | 69 | rexlimdvva | ⊢ ( 𝜑  →  ( ∃ 𝑘  ∈  ℕ ∃ 𝑛  ∈  ℕ ( ( 1  −  𝐸 )  <  ( 1  −  ( ( ( 𝑘  ·  𝐷 )  /  2 ) ↑ 𝑛 ) )  ∧  ( 1  /  ( ( 𝑘  ·  𝐷 ) ↑ 𝑛 ) )  <  𝐸 )  →  ∃ 𝑦  ∈  𝐴 ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( 𝑦 ‘ 𝑡 )  ∧  ( 𝑦 ‘ 𝑡 )  ≤  1 )  ∧  ∀ 𝑡  ∈  𝑉 ( 1  −  𝐸 )  <  ( 𝑦 ‘ 𝑡 )  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) ( 𝑦 ‘ 𝑡 )  <  𝐸 ) ) ) | 
						
							| 71 | 46 70 | mpd | ⊢ ( 𝜑  →  ∃ 𝑦  ∈  𝐴 ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( 𝑦 ‘ 𝑡 )  ∧  ( 𝑦 ‘ 𝑡 )  ≤  1 )  ∧  ∀ 𝑡  ∈  𝑉 ( 1  −  𝐸 )  <  ( 𝑦 ‘ 𝑡 )  ∧  ∀ 𝑡  ∈  ( 𝑇  ∖  𝑈 ) ( 𝑦 ‘ 𝑡 )  <  𝐸 ) ) |