| Step |
Hyp |
Ref |
Expression |
| 1 |
|
stoweidlem14.1 |
⊢ 𝐴 = { 𝑗 ∈ ℕ ∣ ( 1 / 𝐷 ) < 𝑗 } |
| 2 |
|
stoweidlem14.2 |
⊢ ( 𝜑 → 𝐷 ∈ ℝ+ ) |
| 3 |
|
stoweidlem14.3 |
⊢ ( 𝜑 → 𝐷 < 1 ) |
| 4 |
|
ssrab2 |
⊢ { 𝑗 ∈ ℕ ∣ ( 1 / 𝐷 ) < 𝑗 } ⊆ ℕ |
| 5 |
4
|
a1i |
⊢ ( 𝜑 → { 𝑗 ∈ ℕ ∣ ( 1 / 𝐷 ) < 𝑗 } ⊆ ℕ ) |
| 6 |
1 5
|
eqsstrid |
⊢ ( 𝜑 → 𝐴 ⊆ ℕ ) |
| 7 |
2
|
rprecred |
⊢ ( 𝜑 → ( 1 / 𝐷 ) ∈ ℝ ) |
| 8 |
|
arch |
⊢ ( ( 1 / 𝐷 ) ∈ ℝ → ∃ 𝑘 ∈ ℕ ( 1 / 𝐷 ) < 𝑘 ) |
| 9 |
|
breq2 |
⊢ ( 𝑗 = 𝑘 → ( ( 1 / 𝐷 ) < 𝑗 ↔ ( 1 / 𝐷 ) < 𝑘 ) ) |
| 10 |
9
|
elrab |
⊢ ( 𝑘 ∈ { 𝑗 ∈ ℕ ∣ ( 1 / 𝐷 ) < 𝑗 } ↔ ( 𝑘 ∈ ℕ ∧ ( 1 / 𝐷 ) < 𝑘 ) ) |
| 11 |
10
|
biimpri |
⊢ ( ( 𝑘 ∈ ℕ ∧ ( 1 / 𝐷 ) < 𝑘 ) → 𝑘 ∈ { 𝑗 ∈ ℕ ∣ ( 1 / 𝐷 ) < 𝑗 } ) |
| 12 |
11 1
|
eleqtrrdi |
⊢ ( ( 𝑘 ∈ ℕ ∧ ( 1 / 𝐷 ) < 𝑘 ) → 𝑘 ∈ 𝐴 ) |
| 13 |
|
simpr |
⊢ ( ( 𝑘 ∈ ℕ ∧ ( 1 / 𝐷 ) < 𝑘 ) → ( 1 / 𝐷 ) < 𝑘 ) |
| 14 |
12 13
|
jca |
⊢ ( ( 𝑘 ∈ ℕ ∧ ( 1 / 𝐷 ) < 𝑘 ) → ( 𝑘 ∈ 𝐴 ∧ ( 1 / 𝐷 ) < 𝑘 ) ) |
| 15 |
14
|
reximi2 |
⊢ ( ∃ 𝑘 ∈ ℕ ( 1 / 𝐷 ) < 𝑘 → ∃ 𝑘 ∈ 𝐴 ( 1 / 𝐷 ) < 𝑘 ) |
| 16 |
|
rexn0 |
⊢ ( ∃ 𝑘 ∈ 𝐴 ( 1 / 𝐷 ) < 𝑘 → 𝐴 ≠ ∅ ) |
| 17 |
7 8 15 16
|
4syl |
⊢ ( 𝜑 → 𝐴 ≠ ∅ ) |
| 18 |
|
nnwo |
⊢ ( ( 𝐴 ⊆ ℕ ∧ 𝐴 ≠ ∅ ) → ∃ 𝑘 ∈ 𝐴 ∀ 𝑧 ∈ 𝐴 𝑘 ≤ 𝑧 ) |
| 19 |
6 17 18
|
syl2anc |
⊢ ( 𝜑 → ∃ 𝑘 ∈ 𝐴 ∀ 𝑧 ∈ 𝐴 𝑘 ≤ 𝑧 ) |
| 20 |
|
df-rex |
⊢ ( ∃ 𝑘 ∈ 𝐴 ∀ 𝑧 ∈ 𝐴 𝑘 ≤ 𝑧 ↔ ∃ 𝑘 ( 𝑘 ∈ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 𝑘 ≤ 𝑧 ) ) |
| 21 |
19 20
|
sylib |
⊢ ( 𝜑 → ∃ 𝑘 ( 𝑘 ∈ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 𝑘 ≤ 𝑧 ) ) |
| 22 |
9 1
|
elrab2 |
⊢ ( 𝑘 ∈ 𝐴 ↔ ( 𝑘 ∈ ℕ ∧ ( 1 / 𝐷 ) < 𝑘 ) ) |
| 23 |
22
|
simplbi |
⊢ ( 𝑘 ∈ 𝐴 → 𝑘 ∈ ℕ ) |
| 24 |
23
|
ad2antrl |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 𝑘 ≤ 𝑧 ) ) → 𝑘 ∈ ℕ ) |
| 25 |
|
simpl |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 𝑘 ≤ 𝑧 ) ) → 𝜑 ) |
| 26 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 𝑘 ≤ 𝑧 ) ) → 𝑘 ∈ 𝐴 ) |
| 27 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 𝑘 ≤ 𝑧 ) ) → ∀ 𝑧 ∈ 𝐴 𝑘 ≤ 𝑧 ) |
| 28 |
|
nfcv |
⊢ Ⅎ 𝑧 𝐴 |
| 29 |
|
nfrab1 |
⊢ Ⅎ 𝑗 { 𝑗 ∈ ℕ ∣ ( 1 / 𝐷 ) < 𝑗 } |
| 30 |
1 29
|
nfcxfr |
⊢ Ⅎ 𝑗 𝐴 |
| 31 |
|
nfv |
⊢ Ⅎ 𝑗 𝑘 ≤ 𝑧 |
| 32 |
|
nfv |
⊢ Ⅎ 𝑧 𝑘 ≤ 𝑗 |
| 33 |
|
breq2 |
⊢ ( 𝑧 = 𝑗 → ( 𝑘 ≤ 𝑧 ↔ 𝑘 ≤ 𝑗 ) ) |
| 34 |
28 30 31 32 33
|
cbvralfw |
⊢ ( ∀ 𝑧 ∈ 𝐴 𝑘 ≤ 𝑧 ↔ ∀ 𝑗 ∈ 𝐴 𝑘 ≤ 𝑗 ) |
| 35 |
27 34
|
sylib |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 𝑘 ≤ 𝑧 ) ) → ∀ 𝑗 ∈ 𝐴 𝑘 ≤ 𝑗 ) |
| 36 |
22
|
simprbi |
⊢ ( 𝑘 ∈ 𝐴 → ( 1 / 𝐷 ) < 𝑘 ) |
| 37 |
36
|
ad2antrl |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ 𝐴 ∧ ∀ 𝑗 ∈ 𝐴 𝑘 ≤ 𝑗 ) ) → ( 1 / 𝐷 ) < 𝑘 ) |
| 38 |
23
|
ad2antrl |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ 𝐴 ∧ ∀ 𝑗 ∈ 𝐴 𝑘 ≤ 𝑗 ) ) → 𝑘 ∈ ℕ ) |
| 39 |
|
1red |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → 1 ∈ ℝ ) |
| 40 |
|
nnre |
⊢ ( 𝑘 ∈ ℕ → 𝑘 ∈ ℝ ) |
| 41 |
40
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → 𝑘 ∈ ℝ ) |
| 42 |
2
|
rpregt0d |
⊢ ( 𝜑 → ( 𝐷 ∈ ℝ ∧ 0 < 𝐷 ) ) |
| 43 |
42
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝐷 ∈ ℝ ∧ 0 < 𝐷 ) ) |
| 44 |
|
ltdivmul2 |
⊢ ( ( 1 ∈ ℝ ∧ 𝑘 ∈ ℝ ∧ ( 𝐷 ∈ ℝ ∧ 0 < 𝐷 ) ) → ( ( 1 / 𝐷 ) < 𝑘 ↔ 1 < ( 𝑘 · 𝐷 ) ) ) |
| 45 |
39 41 43 44
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( 1 / 𝐷 ) < 𝑘 ↔ 1 < ( 𝑘 · 𝐷 ) ) ) |
| 46 |
38 45
|
syldan |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ 𝐴 ∧ ∀ 𝑗 ∈ 𝐴 𝑘 ≤ 𝑗 ) ) → ( ( 1 / 𝐷 ) < 𝑘 ↔ 1 < ( 𝑘 · 𝐷 ) ) ) |
| 47 |
37 46
|
mpbid |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ 𝐴 ∧ ∀ 𝑗 ∈ 𝐴 𝑘 ≤ 𝑗 ) ) → 1 < ( 𝑘 · 𝐷 ) ) |
| 48 |
25 26 35 47
|
syl12anc |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 𝑘 ≤ 𝑧 ) ) → 1 < ( 𝑘 · 𝐷 ) ) |
| 49 |
|
oveq1 |
⊢ ( 𝑘 = 1 → ( 𝑘 · 𝐷 ) = ( 1 · 𝐷 ) ) |
| 50 |
49
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 = 1 ) → ( 𝑘 · 𝐷 ) = ( 1 · 𝐷 ) ) |
| 51 |
2
|
rpcnd |
⊢ ( 𝜑 → 𝐷 ∈ ℂ ) |
| 52 |
51
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 = 1 ) → 𝐷 ∈ ℂ ) |
| 53 |
52
|
mullidd |
⊢ ( ( 𝜑 ∧ 𝑘 = 1 ) → ( 1 · 𝐷 ) = 𝐷 ) |
| 54 |
50 53
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑘 = 1 ) → ( 𝑘 · 𝐷 ) = 𝐷 ) |
| 55 |
54
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑘 = 1 ) → ( ( 𝑘 · 𝐷 ) / 2 ) = ( 𝐷 / 2 ) ) |
| 56 |
2
|
rpred |
⊢ ( 𝜑 → 𝐷 ∈ ℝ ) |
| 57 |
56
|
rehalfcld |
⊢ ( 𝜑 → ( 𝐷 / 2 ) ∈ ℝ ) |
| 58 |
|
halfre |
⊢ ( 1 / 2 ) ∈ ℝ |
| 59 |
58
|
a1i |
⊢ ( 𝜑 → ( 1 / 2 ) ∈ ℝ ) |
| 60 |
|
1red |
⊢ ( 𝜑 → 1 ∈ ℝ ) |
| 61 |
|
2re |
⊢ 2 ∈ ℝ |
| 62 |
61
|
a1i |
⊢ ( 𝜑 → 2 ∈ ℝ ) |
| 63 |
|
2pos |
⊢ 0 < 2 |
| 64 |
63
|
a1i |
⊢ ( 𝜑 → 0 < 2 ) |
| 65 |
|
ltdiv1 |
⊢ ( ( 𝐷 ∈ ℝ ∧ 1 ∈ ℝ ∧ ( 2 ∈ ℝ ∧ 0 < 2 ) ) → ( 𝐷 < 1 ↔ ( 𝐷 / 2 ) < ( 1 / 2 ) ) ) |
| 66 |
56 60 62 64 65
|
syl112anc |
⊢ ( 𝜑 → ( 𝐷 < 1 ↔ ( 𝐷 / 2 ) < ( 1 / 2 ) ) ) |
| 67 |
3 66
|
mpbid |
⊢ ( 𝜑 → ( 𝐷 / 2 ) < ( 1 / 2 ) ) |
| 68 |
|
halflt1 |
⊢ ( 1 / 2 ) < 1 |
| 69 |
68
|
a1i |
⊢ ( 𝜑 → ( 1 / 2 ) < 1 ) |
| 70 |
57 59 60 67 69
|
lttrd |
⊢ ( 𝜑 → ( 𝐷 / 2 ) < 1 ) |
| 71 |
70
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 = 1 ) → ( 𝐷 / 2 ) < 1 ) |
| 72 |
55 71
|
eqbrtrd |
⊢ ( ( 𝜑 ∧ 𝑘 = 1 ) → ( ( 𝑘 · 𝐷 ) / 2 ) < 1 ) |
| 73 |
72
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 𝑘 ≤ 𝑧 ) ) ∧ 𝑘 = 1 ) → ( ( 𝑘 · 𝐷 ) / 2 ) < 1 ) |
| 74 |
|
simpll |
⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 𝑘 ≤ 𝑧 ) ) ∧ ¬ 𝑘 = 1 ) → 𝜑 ) |
| 75 |
|
simplrl |
⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 𝑘 ≤ 𝑧 ) ) ∧ ¬ 𝑘 = 1 ) → 𝑘 ∈ 𝐴 ) |
| 76 |
75 23
|
syl |
⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 𝑘 ≤ 𝑧 ) ) ∧ ¬ 𝑘 = 1 ) → 𝑘 ∈ ℕ ) |
| 77 |
|
neqne |
⊢ ( ¬ 𝑘 = 1 → 𝑘 ≠ 1 ) |
| 78 |
77
|
adantl |
⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 𝑘 ≤ 𝑧 ) ) ∧ ¬ 𝑘 = 1 ) → 𝑘 ≠ 1 ) |
| 79 |
|
eluz2b3 |
⊢ ( 𝑘 ∈ ( ℤ≥ ‘ 2 ) ↔ ( 𝑘 ∈ ℕ ∧ 𝑘 ≠ 1 ) ) |
| 80 |
76 78 79
|
sylanbrc |
⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 𝑘 ≤ 𝑧 ) ) ∧ ¬ 𝑘 = 1 ) → 𝑘 ∈ ( ℤ≥ ‘ 2 ) ) |
| 81 |
|
peano2rem |
⊢ ( 𝑘 ∈ ℝ → ( 𝑘 − 1 ) ∈ ℝ ) |
| 82 |
75 23 40 81
|
4syl |
⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 𝑘 ≤ 𝑧 ) ) ∧ ¬ 𝑘 = 1 ) → ( 𝑘 − 1 ) ∈ ℝ ) |
| 83 |
56
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 𝑘 ≤ 𝑧 ) ) ∧ ¬ 𝑘 = 1 ) → 𝐷 ∈ ℝ ) |
| 84 |
2
|
rpne0d |
⊢ ( 𝜑 → 𝐷 ≠ 0 ) |
| 85 |
84
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 𝑘 ≤ 𝑧 ) ) ∧ ¬ 𝑘 = 1 ) → 𝐷 ≠ 0 ) |
| 86 |
83 85
|
rereccld |
⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 𝑘 ≤ 𝑧 ) ) ∧ ¬ 𝑘 = 1 ) → ( 1 / 𝐷 ) ∈ ℝ ) |
| 87 |
|
1zzd |
⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 𝑘 ≤ 𝑧 ) ) ∧ ¬ 𝑘 = 1 ) → 1 ∈ ℤ ) |
| 88 |
|
df-2 |
⊢ 2 = ( 1 + 1 ) |
| 89 |
88
|
fveq2i |
⊢ ( ℤ≥ ‘ 2 ) = ( ℤ≥ ‘ ( 1 + 1 ) ) |
| 90 |
89
|
eleq2i |
⊢ ( 𝑘 ∈ ( ℤ≥ ‘ 2 ) ↔ 𝑘 ∈ ( ℤ≥ ‘ ( 1 + 1 ) ) ) |
| 91 |
|
eluzsub |
⊢ ( ( 1 ∈ ℤ ∧ 1 ∈ ℤ ∧ 𝑘 ∈ ( ℤ≥ ‘ ( 1 + 1 ) ) ) → ( 𝑘 − 1 ) ∈ ( ℤ≥ ‘ 1 ) ) |
| 92 |
90 91
|
syl3an3b |
⊢ ( ( 1 ∈ ℤ ∧ 1 ∈ ℤ ∧ 𝑘 ∈ ( ℤ≥ ‘ 2 ) ) → ( 𝑘 − 1 ) ∈ ( ℤ≥ ‘ 1 ) ) |
| 93 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
| 94 |
92 93
|
eleqtrrdi |
⊢ ( ( 1 ∈ ℤ ∧ 1 ∈ ℤ ∧ 𝑘 ∈ ( ℤ≥ ‘ 2 ) ) → ( 𝑘 − 1 ) ∈ ℕ ) |
| 95 |
87 87 80 94
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 𝑘 ≤ 𝑧 ) ) ∧ ¬ 𝑘 = 1 ) → ( 𝑘 − 1 ) ∈ ℕ ) |
| 96 |
23 40
|
syl |
⊢ ( 𝑘 ∈ 𝐴 → 𝑘 ∈ ℝ ) |
| 97 |
96
|
adantl |
⊢ ( ( ( 𝑘 − 1 ) ∈ 𝐴 ∧ 𝑘 ∈ 𝐴 ) → 𝑘 ∈ ℝ ) |
| 98 |
97 81
|
syl |
⊢ ( ( ( 𝑘 − 1 ) ∈ 𝐴 ∧ 𝑘 ∈ 𝐴 ) → ( 𝑘 − 1 ) ∈ ℝ ) |
| 99 |
|
simpr |
⊢ ( ( ( 𝑘 − 1 ) ∈ ℝ ∧ 𝑘 ∈ ℝ ) → 𝑘 ∈ ℝ ) |
| 100 |
99
|
ltm1d |
⊢ ( ( ( 𝑘 − 1 ) ∈ ℝ ∧ 𝑘 ∈ ℝ ) → ( 𝑘 − 1 ) < 𝑘 ) |
| 101 |
|
ltnle |
⊢ ( ( ( 𝑘 − 1 ) ∈ ℝ ∧ 𝑘 ∈ ℝ ) → ( ( 𝑘 − 1 ) < 𝑘 ↔ ¬ 𝑘 ≤ ( 𝑘 − 1 ) ) ) |
| 102 |
100 101
|
mpbid |
⊢ ( ( ( 𝑘 − 1 ) ∈ ℝ ∧ 𝑘 ∈ ℝ ) → ¬ 𝑘 ≤ ( 𝑘 − 1 ) ) |
| 103 |
98 97 102
|
syl2anc |
⊢ ( ( ( 𝑘 − 1 ) ∈ 𝐴 ∧ 𝑘 ∈ 𝐴 ) → ¬ 𝑘 ≤ ( 𝑘 − 1 ) ) |
| 104 |
|
breq2 |
⊢ ( 𝑧 = ( 𝑘 − 1 ) → ( 𝑘 ≤ 𝑧 ↔ 𝑘 ≤ ( 𝑘 − 1 ) ) ) |
| 105 |
104
|
notbid |
⊢ ( 𝑧 = ( 𝑘 − 1 ) → ( ¬ 𝑘 ≤ 𝑧 ↔ ¬ 𝑘 ≤ ( 𝑘 − 1 ) ) ) |
| 106 |
105
|
rspcev |
⊢ ( ( ( 𝑘 − 1 ) ∈ 𝐴 ∧ ¬ 𝑘 ≤ ( 𝑘 − 1 ) ) → ∃ 𝑧 ∈ 𝐴 ¬ 𝑘 ≤ 𝑧 ) |
| 107 |
103 106
|
syldan |
⊢ ( ( ( 𝑘 − 1 ) ∈ 𝐴 ∧ 𝑘 ∈ 𝐴 ) → ∃ 𝑧 ∈ 𝐴 ¬ 𝑘 ≤ 𝑧 ) |
| 108 |
|
rexnal |
⊢ ( ∃ 𝑧 ∈ 𝐴 ¬ 𝑘 ≤ 𝑧 ↔ ¬ ∀ 𝑧 ∈ 𝐴 𝑘 ≤ 𝑧 ) |
| 109 |
107 108
|
sylib |
⊢ ( ( ( 𝑘 − 1 ) ∈ 𝐴 ∧ 𝑘 ∈ 𝐴 ) → ¬ ∀ 𝑧 ∈ 𝐴 𝑘 ≤ 𝑧 ) |
| 110 |
109
|
ex |
⊢ ( ( 𝑘 − 1 ) ∈ 𝐴 → ( 𝑘 ∈ 𝐴 → ¬ ∀ 𝑧 ∈ 𝐴 𝑘 ≤ 𝑧 ) ) |
| 111 |
|
imnan |
⊢ ( ( 𝑘 ∈ 𝐴 → ¬ ∀ 𝑧 ∈ 𝐴 𝑘 ≤ 𝑧 ) ↔ ¬ ( 𝑘 ∈ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 𝑘 ≤ 𝑧 ) ) |
| 112 |
110 111
|
sylib |
⊢ ( ( 𝑘 − 1 ) ∈ 𝐴 → ¬ ( 𝑘 ∈ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 𝑘 ≤ 𝑧 ) ) |
| 113 |
112
|
con2i |
⊢ ( ( 𝑘 ∈ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 𝑘 ≤ 𝑧 ) → ¬ ( 𝑘 − 1 ) ∈ 𝐴 ) |
| 114 |
113
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 𝑘 ≤ 𝑧 ) ) ∧ ¬ 𝑘 = 1 ) → ¬ ( 𝑘 − 1 ) ∈ 𝐴 ) |
| 115 |
|
breq2 |
⊢ ( 𝑗 = ( 𝑘 − 1 ) → ( ( 1 / 𝐷 ) < 𝑗 ↔ ( 1 / 𝐷 ) < ( 𝑘 − 1 ) ) ) |
| 116 |
115 1
|
elrab2 |
⊢ ( ( 𝑘 − 1 ) ∈ 𝐴 ↔ ( ( 𝑘 − 1 ) ∈ ℕ ∧ ( 1 / 𝐷 ) < ( 𝑘 − 1 ) ) ) |
| 117 |
114 116
|
sylnib |
⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 𝑘 ≤ 𝑧 ) ) ∧ ¬ 𝑘 = 1 ) → ¬ ( ( 𝑘 − 1 ) ∈ ℕ ∧ ( 1 / 𝐷 ) < ( 𝑘 − 1 ) ) ) |
| 118 |
|
ianor |
⊢ ( ¬ ( ( 𝑘 − 1 ) ∈ ℕ ∧ ( 1 / 𝐷 ) < ( 𝑘 − 1 ) ) ↔ ( ¬ ( 𝑘 − 1 ) ∈ ℕ ∨ ¬ ( 1 / 𝐷 ) < ( 𝑘 − 1 ) ) ) |
| 119 |
117 118
|
sylib |
⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 𝑘 ≤ 𝑧 ) ) ∧ ¬ 𝑘 = 1 ) → ( ¬ ( 𝑘 − 1 ) ∈ ℕ ∨ ¬ ( 1 / 𝐷 ) < ( 𝑘 − 1 ) ) ) |
| 120 |
|
imor |
⊢ ( ( ( 𝑘 − 1 ) ∈ ℕ → ¬ ( 1 / 𝐷 ) < ( 𝑘 − 1 ) ) ↔ ( ¬ ( 𝑘 − 1 ) ∈ ℕ ∨ ¬ ( 1 / 𝐷 ) < ( 𝑘 − 1 ) ) ) |
| 121 |
119 120
|
sylibr |
⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 𝑘 ≤ 𝑧 ) ) ∧ ¬ 𝑘 = 1 ) → ( ( 𝑘 − 1 ) ∈ ℕ → ¬ ( 1 / 𝐷 ) < ( 𝑘 − 1 ) ) ) |
| 122 |
95 121
|
mpd |
⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 𝑘 ≤ 𝑧 ) ) ∧ ¬ 𝑘 = 1 ) → ¬ ( 1 / 𝐷 ) < ( 𝑘 − 1 ) ) |
| 123 |
82 86 122
|
nltled |
⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 𝑘 ≤ 𝑧 ) ) ∧ ¬ 𝑘 = 1 ) → ( 𝑘 − 1 ) ≤ ( 1 / 𝐷 ) ) |
| 124 |
|
eluzelre |
⊢ ( 𝑘 ∈ ( ℤ≥ ‘ 2 ) → 𝑘 ∈ ℝ ) |
| 125 |
124
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 2 ) ) → 𝑘 ∈ ℝ ) |
| 126 |
56
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 2 ) ) → 𝐷 ∈ ℝ ) |
| 127 |
125 126
|
remulcld |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 2 ) ) → ( 𝑘 · 𝐷 ) ∈ ℝ ) |
| 128 |
127
|
rehalfcld |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 2 ) ) → ( ( 𝑘 · 𝐷 ) / 2 ) ∈ ℝ ) |
| 129 |
128
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑘 − 1 ) ≤ ( 1 / 𝐷 ) ) → ( ( 𝑘 · 𝐷 ) / 2 ) ∈ ℝ ) |
| 130 |
60 56
|
readdcld |
⊢ ( 𝜑 → ( 1 + 𝐷 ) ∈ ℝ ) |
| 131 |
130
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 2 ) ) → ( 1 + 𝐷 ) ∈ ℝ ) |
| 132 |
131
|
rehalfcld |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 2 ) ) → ( ( 1 + 𝐷 ) / 2 ) ∈ ℝ ) |
| 133 |
132
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑘 − 1 ) ≤ ( 1 / 𝐷 ) ) → ( ( 1 + 𝐷 ) / 2 ) ∈ ℝ ) |
| 134 |
|
1red |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑘 − 1 ) ≤ ( 1 / 𝐷 ) ) → 1 ∈ ℝ ) |
| 135 |
|
eluzelcn |
⊢ ( 𝑘 ∈ ( ℤ≥ ‘ 2 ) → 𝑘 ∈ ℂ ) |
| 136 |
135
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 2 ) ) → 𝑘 ∈ ℂ ) |
| 137 |
51
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 2 ) ) → 𝐷 ∈ ℂ ) |
| 138 |
136 137
|
mulcld |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 2 ) ) → ( 𝑘 · 𝐷 ) ∈ ℂ ) |
| 139 |
138
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑘 − 1 ) ≤ ( 1 / 𝐷 ) ) → ( 𝑘 · 𝐷 ) ∈ ℂ ) |
| 140 |
51
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑘 − 1 ) ≤ ( 1 / 𝐷 ) ) → 𝐷 ∈ ℂ ) |
| 141 |
139 140
|
npcand |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑘 − 1 ) ≤ ( 1 / 𝐷 ) ) → ( ( ( 𝑘 · 𝐷 ) − 𝐷 ) + 𝐷 ) = ( 𝑘 · 𝐷 ) ) |
| 142 |
127 126
|
resubcld |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 2 ) ) → ( ( 𝑘 · 𝐷 ) − 𝐷 ) ∈ ℝ ) |
| 143 |
142
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑘 − 1 ) ≤ ( 1 / 𝐷 ) ) → ( ( 𝑘 · 𝐷 ) − 𝐷 ) ∈ ℝ ) |
| 144 |
56
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑘 − 1 ) ≤ ( 1 / 𝐷 ) ) → 𝐷 ∈ ℝ ) |
| 145 |
|
simp3 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑘 − 1 ) ≤ ( 1 / 𝐷 ) ) → ( 𝑘 − 1 ) ≤ ( 1 / 𝐷 ) ) |
| 146 |
|
1red |
⊢ ( 𝑘 ∈ ( ℤ≥ ‘ 2 ) → 1 ∈ ℝ ) |
| 147 |
124 146
|
resubcld |
⊢ ( 𝑘 ∈ ( ℤ≥ ‘ 2 ) → ( 𝑘 − 1 ) ∈ ℝ ) |
| 148 |
147
|
3ad2ant2 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑘 − 1 ) ≤ ( 1 / 𝐷 ) ) → ( 𝑘 − 1 ) ∈ ℝ ) |
| 149 |
7
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑘 − 1 ) ≤ ( 1 / 𝐷 ) ) → ( 1 / 𝐷 ) ∈ ℝ ) |
| 150 |
42
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑘 − 1 ) ≤ ( 1 / 𝐷 ) ) → ( 𝐷 ∈ ℝ ∧ 0 < 𝐷 ) ) |
| 151 |
|
lemul1 |
⊢ ( ( ( 𝑘 − 1 ) ∈ ℝ ∧ ( 1 / 𝐷 ) ∈ ℝ ∧ ( 𝐷 ∈ ℝ ∧ 0 < 𝐷 ) ) → ( ( 𝑘 − 1 ) ≤ ( 1 / 𝐷 ) ↔ ( ( 𝑘 − 1 ) · 𝐷 ) ≤ ( ( 1 / 𝐷 ) · 𝐷 ) ) ) |
| 152 |
148 149 150 151
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑘 − 1 ) ≤ ( 1 / 𝐷 ) ) → ( ( 𝑘 − 1 ) ≤ ( 1 / 𝐷 ) ↔ ( ( 𝑘 − 1 ) · 𝐷 ) ≤ ( ( 1 / 𝐷 ) · 𝐷 ) ) ) |
| 153 |
145 152
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑘 − 1 ) ≤ ( 1 / 𝐷 ) ) → ( ( 𝑘 − 1 ) · 𝐷 ) ≤ ( ( 1 / 𝐷 ) · 𝐷 ) ) |
| 154 |
|
1cnd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 2 ) ) → 1 ∈ ℂ ) |
| 155 |
136 154 137
|
subdird |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 2 ) ) → ( ( 𝑘 − 1 ) · 𝐷 ) = ( ( 𝑘 · 𝐷 ) − ( 1 · 𝐷 ) ) ) |
| 156 |
137
|
mullidd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 2 ) ) → ( 1 · 𝐷 ) = 𝐷 ) |
| 157 |
156
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 2 ) ) → ( ( 𝑘 · 𝐷 ) − ( 1 · 𝐷 ) ) = ( ( 𝑘 · 𝐷 ) − 𝐷 ) ) |
| 158 |
155 157
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 2 ) ) → ( ( 𝑘 − 1 ) · 𝐷 ) = ( ( 𝑘 · 𝐷 ) − 𝐷 ) ) |
| 159 |
158
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑘 − 1 ) ≤ ( 1 / 𝐷 ) ) → ( ( 𝑘 − 1 ) · 𝐷 ) = ( ( 𝑘 · 𝐷 ) − 𝐷 ) ) |
| 160 |
|
1cnd |
⊢ ( 𝜑 → 1 ∈ ℂ ) |
| 161 |
160 51 84
|
3jca |
⊢ ( 𝜑 → ( 1 ∈ ℂ ∧ 𝐷 ∈ ℂ ∧ 𝐷 ≠ 0 ) ) |
| 162 |
161
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑘 − 1 ) ≤ ( 1 / 𝐷 ) ) → ( 1 ∈ ℂ ∧ 𝐷 ∈ ℂ ∧ 𝐷 ≠ 0 ) ) |
| 163 |
|
divcan1 |
⊢ ( ( 1 ∈ ℂ ∧ 𝐷 ∈ ℂ ∧ 𝐷 ≠ 0 ) → ( ( 1 / 𝐷 ) · 𝐷 ) = 1 ) |
| 164 |
162 163
|
syl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑘 − 1 ) ≤ ( 1 / 𝐷 ) ) → ( ( 1 / 𝐷 ) · 𝐷 ) = 1 ) |
| 165 |
153 159 164
|
3brtr3d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑘 − 1 ) ≤ ( 1 / 𝐷 ) ) → ( ( 𝑘 · 𝐷 ) − 𝐷 ) ≤ 1 ) |
| 166 |
143 134 144 165
|
leadd1dd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑘 − 1 ) ≤ ( 1 / 𝐷 ) ) → ( ( ( 𝑘 · 𝐷 ) − 𝐷 ) + 𝐷 ) ≤ ( 1 + 𝐷 ) ) |
| 167 |
141 166
|
eqbrtrrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑘 − 1 ) ≤ ( 1 / 𝐷 ) ) → ( 𝑘 · 𝐷 ) ≤ ( 1 + 𝐷 ) ) |
| 168 |
127
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑘 − 1 ) ≤ ( 1 / 𝐷 ) ) → ( 𝑘 · 𝐷 ) ∈ ℝ ) |
| 169 |
130
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑘 − 1 ) ≤ ( 1 / 𝐷 ) ) → ( 1 + 𝐷 ) ∈ ℝ ) |
| 170 |
61 63
|
pm3.2i |
⊢ ( 2 ∈ ℝ ∧ 0 < 2 ) |
| 171 |
170
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑘 − 1 ) ≤ ( 1 / 𝐷 ) ) → ( 2 ∈ ℝ ∧ 0 < 2 ) ) |
| 172 |
|
lediv1 |
⊢ ( ( ( 𝑘 · 𝐷 ) ∈ ℝ ∧ ( 1 + 𝐷 ) ∈ ℝ ∧ ( 2 ∈ ℝ ∧ 0 < 2 ) ) → ( ( 𝑘 · 𝐷 ) ≤ ( 1 + 𝐷 ) ↔ ( ( 𝑘 · 𝐷 ) / 2 ) ≤ ( ( 1 + 𝐷 ) / 2 ) ) ) |
| 173 |
168 169 171 172
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑘 − 1 ) ≤ ( 1 / 𝐷 ) ) → ( ( 𝑘 · 𝐷 ) ≤ ( 1 + 𝐷 ) ↔ ( ( 𝑘 · 𝐷 ) / 2 ) ≤ ( ( 1 + 𝐷 ) / 2 ) ) ) |
| 174 |
167 173
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑘 − 1 ) ≤ ( 1 / 𝐷 ) ) → ( ( 𝑘 · 𝐷 ) / 2 ) ≤ ( ( 1 + 𝐷 ) / 2 ) ) |
| 175 |
56 60 60 3
|
ltadd2dd |
⊢ ( 𝜑 → ( 1 + 𝐷 ) < ( 1 + 1 ) ) |
| 176 |
|
1p1e2 |
⊢ ( 1 + 1 ) = 2 |
| 177 |
175 176
|
breqtrdi |
⊢ ( 𝜑 → ( 1 + 𝐷 ) < 2 ) |
| 178 |
|
ltdiv1 |
⊢ ( ( ( 1 + 𝐷 ) ∈ ℝ ∧ 2 ∈ ℝ ∧ ( 2 ∈ ℝ ∧ 0 < 2 ) ) → ( ( 1 + 𝐷 ) < 2 ↔ ( ( 1 + 𝐷 ) / 2 ) < ( 2 / 2 ) ) ) |
| 179 |
130 62 62 64 178
|
syl112anc |
⊢ ( 𝜑 → ( ( 1 + 𝐷 ) < 2 ↔ ( ( 1 + 𝐷 ) / 2 ) < ( 2 / 2 ) ) ) |
| 180 |
177 179
|
mpbid |
⊢ ( 𝜑 → ( ( 1 + 𝐷 ) / 2 ) < ( 2 / 2 ) ) |
| 181 |
|
2div2e1 |
⊢ ( 2 / 2 ) = 1 |
| 182 |
180 181
|
breqtrdi |
⊢ ( 𝜑 → ( ( 1 + 𝐷 ) / 2 ) < 1 ) |
| 183 |
182
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑘 − 1 ) ≤ ( 1 / 𝐷 ) ) → ( ( 1 + 𝐷 ) / 2 ) < 1 ) |
| 184 |
129 133 134 174 183
|
lelttrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑘 − 1 ) ≤ ( 1 / 𝐷 ) ) → ( ( 𝑘 · 𝐷 ) / 2 ) < 1 ) |
| 185 |
74 80 123 184
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 𝑘 ≤ 𝑧 ) ) ∧ ¬ 𝑘 = 1 ) → ( ( 𝑘 · 𝐷 ) / 2 ) < 1 ) |
| 186 |
73 185
|
pm2.61dan |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 𝑘 ≤ 𝑧 ) ) → ( ( 𝑘 · 𝐷 ) / 2 ) < 1 ) |
| 187 |
24 48 186
|
jca32 |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 𝑘 ≤ 𝑧 ) ) → ( 𝑘 ∈ ℕ ∧ ( 1 < ( 𝑘 · 𝐷 ) ∧ ( ( 𝑘 · 𝐷 ) / 2 ) < 1 ) ) ) |
| 188 |
187
|
ex |
⊢ ( 𝜑 → ( ( 𝑘 ∈ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 𝑘 ≤ 𝑧 ) → ( 𝑘 ∈ ℕ ∧ ( 1 < ( 𝑘 · 𝐷 ) ∧ ( ( 𝑘 · 𝐷 ) / 2 ) < 1 ) ) ) ) |
| 189 |
188
|
eximdv |
⊢ ( 𝜑 → ( ∃ 𝑘 ( 𝑘 ∈ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 𝑘 ≤ 𝑧 ) → ∃ 𝑘 ( 𝑘 ∈ ℕ ∧ ( 1 < ( 𝑘 · 𝐷 ) ∧ ( ( 𝑘 · 𝐷 ) / 2 ) < 1 ) ) ) ) |
| 190 |
21 189
|
mpd |
⊢ ( 𝜑 → ∃ 𝑘 ( 𝑘 ∈ ℕ ∧ ( 1 < ( 𝑘 · 𝐷 ) ∧ ( ( 𝑘 · 𝐷 ) / 2 ) < 1 ) ) ) |
| 191 |
|
df-rex |
⊢ ( ∃ 𝑘 ∈ ℕ ( 1 < ( 𝑘 · 𝐷 ) ∧ ( ( 𝑘 · 𝐷 ) / 2 ) < 1 ) ↔ ∃ 𝑘 ( 𝑘 ∈ ℕ ∧ ( 1 < ( 𝑘 · 𝐷 ) ∧ ( ( 𝑘 · 𝐷 ) / 2 ) < 1 ) ) ) |
| 192 |
190 191
|
sylibr |
⊢ ( 𝜑 → ∃ 𝑘 ∈ ℕ ( 1 < ( 𝑘 · 𝐷 ) ∧ ( ( 𝑘 · 𝐷 ) / 2 ) < 1 ) ) |