| Step |
Hyp |
Ref |
Expression |
| 1 |
|
stoweidlem14.1 |
|
| 2 |
|
stoweidlem14.2 |
|
| 3 |
|
stoweidlem14.3 |
|
| 4 |
|
ssrab2 |
|
| 5 |
4
|
a1i |
|
| 6 |
1 5
|
eqsstrid |
|
| 7 |
2
|
rprecred |
|
| 8 |
|
arch |
|
| 9 |
|
breq2 |
|
| 10 |
9
|
elrab |
|
| 11 |
10
|
biimpri |
|
| 12 |
11 1
|
eleqtrrdi |
|
| 13 |
|
simpr |
|
| 14 |
12 13
|
jca |
|
| 15 |
14
|
reximi2 |
|
| 16 |
|
rexn0 |
|
| 17 |
7 8 15 16
|
4syl |
|
| 18 |
|
nnwo |
|
| 19 |
6 17 18
|
syl2anc |
|
| 20 |
|
df-rex |
|
| 21 |
19 20
|
sylib |
|
| 22 |
9 1
|
elrab2 |
|
| 23 |
22
|
simplbi |
|
| 24 |
23
|
ad2antrl |
|
| 25 |
|
simpl |
|
| 26 |
|
simprl |
|
| 27 |
|
simprr |
|
| 28 |
|
nfcv |
|
| 29 |
|
nfrab1 |
|
| 30 |
1 29
|
nfcxfr |
|
| 31 |
|
nfv |
|
| 32 |
|
nfv |
|
| 33 |
|
breq2 |
|
| 34 |
28 30 31 32 33
|
cbvralfw |
|
| 35 |
27 34
|
sylib |
|
| 36 |
22
|
simprbi |
|
| 37 |
36
|
ad2antrl |
|
| 38 |
23
|
ad2antrl |
|
| 39 |
|
1red |
|
| 40 |
|
nnre |
|
| 41 |
40
|
adantl |
|
| 42 |
2
|
rpregt0d |
|
| 43 |
42
|
adantr |
|
| 44 |
|
ltdivmul2 |
|
| 45 |
39 41 43 44
|
syl3anc |
|
| 46 |
38 45
|
syldan |
|
| 47 |
37 46
|
mpbid |
|
| 48 |
25 26 35 47
|
syl12anc |
|
| 49 |
|
oveq1 |
|
| 50 |
49
|
adantl |
|
| 51 |
2
|
rpcnd |
|
| 52 |
51
|
adantr |
|
| 53 |
52
|
mullidd |
|
| 54 |
50 53
|
eqtrd |
|
| 55 |
54
|
oveq1d |
|
| 56 |
2
|
rpred |
|
| 57 |
56
|
rehalfcld |
|
| 58 |
|
halfre |
|
| 59 |
58
|
a1i |
|
| 60 |
|
1red |
|
| 61 |
|
2re |
|
| 62 |
61
|
a1i |
|
| 63 |
|
2pos |
|
| 64 |
63
|
a1i |
|
| 65 |
|
ltdiv1 |
|
| 66 |
56 60 62 64 65
|
syl112anc |
|
| 67 |
3 66
|
mpbid |
|
| 68 |
|
halflt1 |
|
| 69 |
68
|
a1i |
|
| 70 |
57 59 60 67 69
|
lttrd |
|
| 71 |
70
|
adantr |
|
| 72 |
55 71
|
eqbrtrd |
|
| 73 |
72
|
adantlr |
|
| 74 |
|
simpll |
|
| 75 |
|
simplrl |
|
| 76 |
75 23
|
syl |
|
| 77 |
|
neqne |
|
| 78 |
77
|
adantl |
|
| 79 |
|
eluz2b3 |
|
| 80 |
76 78 79
|
sylanbrc |
|
| 81 |
|
peano2rem |
|
| 82 |
75 23 40 81
|
4syl |
|
| 83 |
56
|
ad2antrr |
|
| 84 |
2
|
rpne0d |
|
| 85 |
84
|
ad2antrr |
|
| 86 |
83 85
|
rereccld |
|
| 87 |
|
1zzd |
|
| 88 |
|
df-2 |
|
| 89 |
88
|
fveq2i |
|
| 90 |
89
|
eleq2i |
|
| 91 |
|
eluzsub |
|
| 92 |
90 91
|
syl3an3b |
|
| 93 |
|
nnuz |
|
| 94 |
92 93
|
eleqtrrdi |
|
| 95 |
87 87 80 94
|
syl3anc |
|
| 96 |
23 40
|
syl |
|
| 97 |
96
|
adantl |
|
| 98 |
97 81
|
syl |
|
| 99 |
|
simpr |
|
| 100 |
99
|
ltm1d |
|
| 101 |
|
ltnle |
|
| 102 |
100 101
|
mpbid |
|
| 103 |
98 97 102
|
syl2anc |
|
| 104 |
|
breq2 |
|
| 105 |
104
|
notbid |
|
| 106 |
105
|
rspcev |
|
| 107 |
103 106
|
syldan |
|
| 108 |
|
rexnal |
|
| 109 |
107 108
|
sylib |
|
| 110 |
109
|
ex |
|
| 111 |
|
imnan |
|
| 112 |
110 111
|
sylib |
|
| 113 |
112
|
con2i |
|
| 114 |
113
|
ad2antlr |
|
| 115 |
|
breq2 |
|
| 116 |
115 1
|
elrab2 |
|
| 117 |
114 116
|
sylnib |
|
| 118 |
|
ianor |
|
| 119 |
117 118
|
sylib |
|
| 120 |
|
imor |
|
| 121 |
119 120
|
sylibr |
|
| 122 |
95 121
|
mpd |
|
| 123 |
82 86 122
|
nltled |
|
| 124 |
|
eluzelre |
|
| 125 |
124
|
adantl |
|
| 126 |
56
|
adantr |
|
| 127 |
125 126
|
remulcld |
|
| 128 |
127
|
rehalfcld |
|
| 129 |
128
|
3adant3 |
|
| 130 |
60 56
|
readdcld |
|
| 131 |
130
|
adantr |
|
| 132 |
131
|
rehalfcld |
|
| 133 |
132
|
3adant3 |
|
| 134 |
|
1red |
|
| 135 |
|
eluzelcn |
|
| 136 |
135
|
adantl |
|
| 137 |
51
|
adantr |
|
| 138 |
136 137
|
mulcld |
|
| 139 |
138
|
3adant3 |
|
| 140 |
51
|
3ad2ant1 |
|
| 141 |
139 140
|
npcand |
|
| 142 |
127 126
|
resubcld |
|
| 143 |
142
|
3adant3 |
|
| 144 |
56
|
3ad2ant1 |
|
| 145 |
|
simp3 |
|
| 146 |
|
1red |
|
| 147 |
124 146
|
resubcld |
|
| 148 |
147
|
3ad2ant2 |
|
| 149 |
7
|
3ad2ant1 |
|
| 150 |
42
|
3ad2ant1 |
|
| 151 |
|
lemul1 |
|
| 152 |
148 149 150 151
|
syl3anc |
|
| 153 |
145 152
|
mpbid |
|
| 154 |
|
1cnd |
|
| 155 |
136 154 137
|
subdird |
|
| 156 |
137
|
mullidd |
|
| 157 |
156
|
oveq2d |
|
| 158 |
155 157
|
eqtrd |
|
| 159 |
158
|
3adant3 |
|
| 160 |
|
1cnd |
|
| 161 |
160 51 84
|
3jca |
|
| 162 |
161
|
3ad2ant1 |
|
| 163 |
|
divcan1 |
|
| 164 |
162 163
|
syl |
|
| 165 |
153 159 164
|
3brtr3d |
|
| 166 |
143 134 144 165
|
leadd1dd |
|
| 167 |
141 166
|
eqbrtrrd |
|
| 168 |
127
|
3adant3 |
|
| 169 |
130
|
3ad2ant1 |
|
| 170 |
61 63
|
pm3.2i |
|
| 171 |
170
|
a1i |
|
| 172 |
|
lediv1 |
|
| 173 |
168 169 171 172
|
syl3anc |
|
| 174 |
167 173
|
mpbid |
|
| 175 |
56 60 60 3
|
ltadd2dd |
|
| 176 |
|
1p1e2 |
|
| 177 |
175 176
|
breqtrdi |
|
| 178 |
|
ltdiv1 |
|
| 179 |
130 62 62 64 178
|
syl112anc |
|
| 180 |
177 179
|
mpbid |
|
| 181 |
|
2div2e1 |
|
| 182 |
180 181
|
breqtrdi |
|
| 183 |
182
|
3ad2ant1 |
|
| 184 |
129 133 134 174 183
|
lelttrd |
|
| 185 |
74 80 123 184
|
syl3anc |
|
| 186 |
73 185
|
pm2.61dan |
|
| 187 |
24 48 186
|
jca32 |
|
| 188 |
187
|
ex |
|
| 189 |
188
|
eximdv |
|
| 190 |
21 189
|
mpd |
|
| 191 |
|
df-rex |
|
| 192 |
190 191
|
sylibr |
|