Metamath Proof Explorer


Theorem stoweidlem14

Description: There exists a k as in the proof of Lemma 1 in BrosowskiDeutsh p. 90: k is an integer and 1 < k * δ < 2. D is used to represent δ in the paper. (Contributed by Glauco Siliprandi, 20-Apr-2017)

Ref Expression
Hypotheses stoweidlem14.1 A = j | 1 D < j
stoweidlem14.2 φ D +
stoweidlem14.3 φ D < 1
Assertion stoweidlem14 φ k 1 < k D k D 2 < 1

Proof

Step Hyp Ref Expression
1 stoweidlem14.1 A = j | 1 D < j
2 stoweidlem14.2 φ D +
3 stoweidlem14.3 φ D < 1
4 ssrab2 j | 1 D < j
5 4 a1i φ j | 1 D < j
6 1 5 eqsstrid φ A
7 2 rprecred φ 1 D
8 arch 1 D k 1 D < k
9 breq2 j = k 1 D < j 1 D < k
10 9 elrab k j | 1 D < j k 1 D < k
11 10 biimpri k 1 D < k k j | 1 D < j
12 11 1 eleqtrrdi k 1 D < k k A
13 simpr k 1 D < k 1 D < k
14 12 13 jca k 1 D < k k A 1 D < k
15 14 reximi2 k 1 D < k k A 1 D < k
16 rexn0 k A 1 D < k A
17 7 8 15 16 4syl φ A
18 nnwo A A k A z A k z
19 6 17 18 syl2anc φ k A z A k z
20 df-rex k A z A k z k k A z A k z
21 19 20 sylib φ k k A z A k z
22 9 1 elrab2 k A k 1 D < k
23 22 simplbi k A k
24 23 ad2antrl φ k A z A k z k
25 simpl φ k A z A k z φ
26 simprl φ k A z A k z k A
27 simprr φ k A z A k z z A k z
28 nfcv _ z A
29 nfrab1 _ j j | 1 D < j
30 1 29 nfcxfr _ j A
31 nfv j k z
32 nfv z k j
33 breq2 z = j k z k j
34 28 30 31 32 33 cbvralfw z A k z j A k j
35 27 34 sylib φ k A z A k z j A k j
36 22 simprbi k A 1 D < k
37 36 ad2antrl φ k A j A k j 1 D < k
38 23 ad2antrl φ k A j A k j k
39 1red φ k 1
40 nnre k k
41 40 adantl φ k k
42 2 rpregt0d φ D 0 < D
43 42 adantr φ k D 0 < D
44 ltdivmul2 1 k D 0 < D 1 D < k 1 < k D
45 39 41 43 44 syl3anc φ k 1 D < k 1 < k D
46 38 45 syldan φ k A j A k j 1 D < k 1 < k D
47 37 46 mpbid φ k A j A k j 1 < k D
48 25 26 35 47 syl12anc φ k A z A k z 1 < k D
49 oveq1 k = 1 k D = 1 D
50 49 adantl φ k = 1 k D = 1 D
51 2 rpcnd φ D
52 51 adantr φ k = 1 D
53 52 mulid2d φ k = 1 1 D = D
54 50 53 eqtrd φ k = 1 k D = D
55 54 oveq1d φ k = 1 k D 2 = D 2
56 2 rpred φ D
57 56 rehalfcld φ D 2
58 halfre 1 2
59 58 a1i φ 1 2
60 1red φ 1
61 2re 2
62 61 a1i φ 2
63 2pos 0 < 2
64 63 a1i φ 0 < 2
65 ltdiv1 D 1 2 0 < 2 D < 1 D 2 < 1 2
66 56 60 62 64 65 syl112anc φ D < 1 D 2 < 1 2
67 3 66 mpbid φ D 2 < 1 2
68 halflt1 1 2 < 1
69 68 a1i φ 1 2 < 1
70 57 59 60 67 69 lttrd φ D 2 < 1
71 70 adantr φ k = 1 D 2 < 1
72 55 71 eqbrtrd φ k = 1 k D 2 < 1
73 72 adantlr φ k A z A k z k = 1 k D 2 < 1
74 simpll φ k A z A k z ¬ k = 1 φ
75 simplrl φ k A z A k z ¬ k = 1 k A
76 75 23 syl φ k A z A k z ¬ k = 1 k
77 neqne ¬ k = 1 k 1
78 77 adantl φ k A z A k z ¬ k = 1 k 1
79 eluz2b3 k 2 k k 1
80 76 78 79 sylanbrc φ k A z A k z ¬ k = 1 k 2
81 peano2rem k k 1
82 75 23 40 81 4syl φ k A z A k z ¬ k = 1 k 1
83 56 ad2antrr φ k A z A k z ¬ k = 1 D
84 2 rpne0d φ D 0
85 84 ad2antrr φ k A z A k z ¬ k = 1 D 0
86 83 85 rereccld φ k A z A k z ¬ k = 1 1 D
87 1zzd φ k A z A k z ¬ k = 1 1
88 df-2 2 = 1 + 1
89 88 fveq2i 2 = 1 + 1
90 89 eleq2i k 2 k 1 + 1
91 eluzsub 1 1 k 1 + 1 k 1 1
92 90 91 syl3an3b 1 1 k 2 k 1 1
93 nnuz = 1
94 92 93 eleqtrrdi 1 1 k 2 k 1
95 87 87 80 94 syl3anc φ k A z A k z ¬ k = 1 k 1
96 23 40 syl k A k
97 96 adantl k 1 A k A k
98 97 81 syl k 1 A k A k 1
99 simpr k 1 k k
100 99 ltm1d k 1 k k 1 < k
101 ltnle k 1 k k 1 < k ¬ k k 1
102 100 101 mpbid k 1 k ¬ k k 1
103 98 97 102 syl2anc k 1 A k A ¬ k k 1
104 breq2 z = k 1 k z k k 1
105 104 notbid z = k 1 ¬ k z ¬ k k 1
106 105 rspcev k 1 A ¬ k k 1 z A ¬ k z
107 103 106 syldan k 1 A k A z A ¬ k z
108 rexnal z A ¬ k z ¬ z A k z
109 107 108 sylib k 1 A k A ¬ z A k z
110 109 ex k 1 A k A ¬ z A k z
111 imnan k A ¬ z A k z ¬ k A z A k z
112 110 111 sylib k 1 A ¬ k A z A k z
113 112 con2i k A z A k z ¬ k 1 A
114 113 ad2antlr φ k A z A k z ¬ k = 1 ¬ k 1 A
115 breq2 j = k 1 1 D < j 1 D < k 1
116 115 1 elrab2 k 1 A k 1 1 D < k 1
117 114 116 sylnib φ k A z A k z ¬ k = 1 ¬ k 1 1 D < k 1
118 ianor ¬ k 1 1 D < k 1 ¬ k 1 ¬ 1 D < k 1
119 117 118 sylib φ k A z A k z ¬ k = 1 ¬ k 1 ¬ 1 D < k 1
120 imor k 1 ¬ 1 D < k 1 ¬ k 1 ¬ 1 D < k 1
121 119 120 sylibr φ k A z A k z ¬ k = 1 k 1 ¬ 1 D < k 1
122 95 121 mpd φ k A z A k z ¬ k = 1 ¬ 1 D < k 1
123 82 86 122 nltled φ k A z A k z ¬ k = 1 k 1 1 D
124 eluzelre k 2 k
125 124 adantl φ k 2 k
126 56 adantr φ k 2 D
127 125 126 remulcld φ k 2 k D
128 127 rehalfcld φ k 2 k D 2
129 128 3adant3 φ k 2 k 1 1 D k D 2
130 60 56 readdcld φ 1 + D
131 130 adantr φ k 2 1 + D
132 131 rehalfcld φ k 2 1 + D 2
133 132 3adant3 φ k 2 k 1 1 D 1 + D 2
134 1red φ k 2 k 1 1 D 1
135 eluzelcn k 2 k
136 135 adantl φ k 2 k
137 51 adantr φ k 2 D
138 136 137 mulcld φ k 2 k D
139 138 3adant3 φ k 2 k 1 1 D k D
140 51 3ad2ant1 φ k 2 k 1 1 D D
141 139 140 npcand φ k 2 k 1 1 D k D - D + D = k D
142 127 126 resubcld φ k 2 k D D
143 142 3adant3 φ k 2 k 1 1 D k D D
144 56 3ad2ant1 φ k 2 k 1 1 D D
145 simp3 φ k 2 k 1 1 D k 1 1 D
146 1red k 2 1
147 124 146 resubcld k 2 k 1
148 147 3ad2ant2 φ k 2 k 1 1 D k 1
149 7 3ad2ant1 φ k 2 k 1 1 D 1 D
150 42 3ad2ant1 φ k 2 k 1 1 D D 0 < D
151 lemul1 k 1 1 D D 0 < D k 1 1 D k 1 D 1 D D
152 148 149 150 151 syl3anc φ k 2 k 1 1 D k 1 1 D k 1 D 1 D D
153 145 152 mpbid φ k 2 k 1 1 D k 1 D 1 D D
154 1cnd φ k 2 1
155 136 154 137 subdird φ k 2 k 1 D = k D 1 D
156 137 mulid2d φ k 2 1 D = D
157 156 oveq2d φ k 2 k D 1 D = k D D
158 155 157 eqtrd φ k 2 k 1 D = k D D
159 158 3adant3 φ k 2 k 1 1 D k 1 D = k D D
160 1cnd φ 1
161 160 51 84 3jca φ 1 D D 0
162 161 3ad2ant1 φ k 2 k 1 1 D 1 D D 0
163 divcan1 1 D D 0 1 D D = 1
164 162 163 syl φ k 2 k 1 1 D 1 D D = 1
165 153 159 164 3brtr3d φ k 2 k 1 1 D k D D 1
166 143 134 144 165 leadd1dd φ k 2 k 1 1 D k D - D + D 1 + D
167 141 166 eqbrtrrd φ k 2 k 1 1 D k D 1 + D
168 127 3adant3 φ k 2 k 1 1 D k D
169 130 3ad2ant1 φ k 2 k 1 1 D 1 + D
170 61 63 pm3.2i 2 0 < 2
171 170 a1i φ k 2 k 1 1 D 2 0 < 2
172 lediv1 k D 1 + D 2 0 < 2 k D 1 + D k D 2 1 + D 2
173 168 169 171 172 syl3anc φ k 2 k 1 1 D k D 1 + D k D 2 1 + D 2
174 167 173 mpbid φ k 2 k 1 1 D k D 2 1 + D 2
175 56 60 60 3 ltadd2dd φ 1 + D < 1 + 1
176 1p1e2 1 + 1 = 2
177 175 176 breqtrdi φ 1 + D < 2
178 ltdiv1 1 + D 2 2 0 < 2 1 + D < 2 1 + D 2 < 2 2
179 130 62 62 64 178 syl112anc φ 1 + D < 2 1 + D 2 < 2 2
180 177 179 mpbid φ 1 + D 2 < 2 2
181 2div2e1 2 2 = 1
182 180 181 breqtrdi φ 1 + D 2 < 1
183 182 3ad2ant1 φ k 2 k 1 1 D 1 + D 2 < 1
184 129 133 134 174 183 lelttrd φ k 2 k 1 1 D k D 2 < 1
185 74 80 123 184 syl3anc φ k A z A k z ¬ k = 1 k D 2 < 1
186 73 185 pm2.61dan φ k A z A k z k D 2 < 1
187 24 48 186 jca32 φ k A z A k z k 1 < k D k D 2 < 1
188 187 ex φ k A z A k z k 1 < k D k D 2 < 1
189 188 eximdv φ k k A z A k z k k 1 < k D k D 2 < 1
190 21 189 mpd φ k k 1 < k D k D 2 < 1
191 df-rex k 1 < k D k D 2 < 1 k k 1 < k D k D 2 < 1
192 190 191 sylibr φ k 1 < k D k D 2 < 1