Metamath Proof Explorer


Theorem ltdivmul2

Description: 'Less than' relationship between division and multiplication. (Contributed by NM, 24-Feb-2005)

Ref Expression
Assertion ltdivmul2 ABC0<CAC<BA<BC

Proof

Step Hyp Ref Expression
1 ltdivmul ABC0<CAC<BA<CB
2 recn BB
3 recn CC
4 mulcom BCBC=CB
5 2 3 4 syl2an BCBC=CB
6 5 adantrr BC0<CBC=CB
7 6 3adant1 ABC0<CBC=CB
8 7 breq2d ABC0<CA<BCA<CB
9 1 8 bitr4d ABC0<CAC<BA<BC