Metamath Proof Explorer


Theorem rfcnpre2

Description: If F is a continuous function with respect to the standard topology, then the preimage A of the values smaller than a given extended real B , is an open set. (Contributed by Glauco Siliprandi, 20-Apr-2017)

Ref Expression
Hypotheses rfcnpre2.1 𝑥 𝐵
rfcnpre2.2 𝑥 𝐹
rfcnpre2.3 𝑥 𝜑
rfcnpre2.4 𝐾 = ( topGen ‘ ran (,) )
rfcnpre2.5 𝑋 = 𝐽
rfcnpre2.6 𝐴 = { 𝑥𝑋 ∣ ( 𝐹𝑥 ) < 𝐵 }
rfcnpre2.7 ( 𝜑𝐵 ∈ ℝ* )
rfcnpre2.8 ( 𝜑𝐹 ∈ ( 𝐽 Cn 𝐾 ) )
Assertion rfcnpre2 ( 𝜑𝐴𝐽 )

Proof

Step Hyp Ref Expression
1 rfcnpre2.1 𝑥 𝐵
2 rfcnpre2.2 𝑥 𝐹
3 rfcnpre2.3 𝑥 𝜑
4 rfcnpre2.4 𝐾 = ( topGen ‘ ran (,) )
5 rfcnpre2.5 𝑋 = 𝐽
6 rfcnpre2.6 𝐴 = { 𝑥𝑋 ∣ ( 𝐹𝑥 ) < 𝐵 }
7 rfcnpre2.7 ( 𝜑𝐵 ∈ ℝ* )
8 rfcnpre2.8 ( 𝜑𝐹 ∈ ( 𝐽 Cn 𝐾 ) )
9 2 nfcnv 𝑥 𝐹
10 nfcv 𝑥 -∞
11 nfcv 𝑥 (,)
12 10 11 1 nfov 𝑥 ( -∞ (,) 𝐵 )
13 9 12 nfima 𝑥 ( 𝐹 “ ( -∞ (,) 𝐵 ) )
14 nfrab1 𝑥 { 𝑥𝑋 ∣ ( 𝐹𝑥 ) < 𝐵 }
15 eqid ( 𝐽 Cn 𝐾 ) = ( 𝐽 Cn 𝐾 )
16 4 5 15 8 fcnre ( 𝜑𝐹 : 𝑋 ⟶ ℝ )
17 16 ffvelrnda ( ( 𝜑𝑥𝑋 ) → ( 𝐹𝑥 ) ∈ ℝ )
18 elioomnf ( 𝐵 ∈ ℝ* → ( ( 𝐹𝑥 ) ∈ ( -∞ (,) 𝐵 ) ↔ ( ( 𝐹𝑥 ) ∈ ℝ ∧ ( 𝐹𝑥 ) < 𝐵 ) ) )
19 7 18 syl ( 𝜑 → ( ( 𝐹𝑥 ) ∈ ( -∞ (,) 𝐵 ) ↔ ( ( 𝐹𝑥 ) ∈ ℝ ∧ ( 𝐹𝑥 ) < 𝐵 ) ) )
20 19 baibd ( ( 𝜑 ∧ ( 𝐹𝑥 ) ∈ ℝ ) → ( ( 𝐹𝑥 ) ∈ ( -∞ (,) 𝐵 ) ↔ ( 𝐹𝑥 ) < 𝐵 ) )
21 17 20 syldan ( ( 𝜑𝑥𝑋 ) → ( ( 𝐹𝑥 ) ∈ ( -∞ (,) 𝐵 ) ↔ ( 𝐹𝑥 ) < 𝐵 ) )
22 21 pm5.32da ( 𝜑 → ( ( 𝑥𝑋 ∧ ( 𝐹𝑥 ) ∈ ( -∞ (,) 𝐵 ) ) ↔ ( 𝑥𝑋 ∧ ( 𝐹𝑥 ) < 𝐵 ) ) )
23 ffn ( 𝐹 : 𝑋 ⟶ ℝ → 𝐹 Fn 𝑋 )
24 elpreima ( 𝐹 Fn 𝑋 → ( 𝑥 ∈ ( 𝐹 “ ( -∞ (,) 𝐵 ) ) ↔ ( 𝑥𝑋 ∧ ( 𝐹𝑥 ) ∈ ( -∞ (,) 𝐵 ) ) ) )
25 16 23 24 3syl ( 𝜑 → ( 𝑥 ∈ ( 𝐹 “ ( -∞ (,) 𝐵 ) ) ↔ ( 𝑥𝑋 ∧ ( 𝐹𝑥 ) ∈ ( -∞ (,) 𝐵 ) ) ) )
26 rabid ( 𝑥 ∈ { 𝑥𝑋 ∣ ( 𝐹𝑥 ) < 𝐵 } ↔ ( 𝑥𝑋 ∧ ( 𝐹𝑥 ) < 𝐵 ) )
27 26 a1i ( 𝜑 → ( 𝑥 ∈ { 𝑥𝑋 ∣ ( 𝐹𝑥 ) < 𝐵 } ↔ ( 𝑥𝑋 ∧ ( 𝐹𝑥 ) < 𝐵 ) ) )
28 22 25 27 3bitr4d ( 𝜑 → ( 𝑥 ∈ ( 𝐹 “ ( -∞ (,) 𝐵 ) ) ↔ 𝑥 ∈ { 𝑥𝑋 ∣ ( 𝐹𝑥 ) < 𝐵 } ) )
29 3 13 14 28 eqrd ( 𝜑 → ( 𝐹 “ ( -∞ (,) 𝐵 ) ) = { 𝑥𝑋 ∣ ( 𝐹𝑥 ) < 𝐵 } )
30 29 6 eqtr4di ( 𝜑 → ( 𝐹 “ ( -∞ (,) 𝐵 ) ) = 𝐴 )
31 iooretop ( -∞ (,) 𝐵 ) ∈ ( topGen ‘ ran (,) )
32 31 a1i ( 𝜑 → ( -∞ (,) 𝐵 ) ∈ ( topGen ‘ ran (,) ) )
33 32 4 eleqtrrdi ( 𝜑 → ( -∞ (,) 𝐵 ) ∈ 𝐾 )
34 cnima ( ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ∧ ( -∞ (,) 𝐵 ) ∈ 𝐾 ) → ( 𝐹 “ ( -∞ (,) 𝐵 ) ) ∈ 𝐽 )
35 8 33 34 syl2anc ( 𝜑 → ( 𝐹 “ ( -∞ (,) 𝐵 ) ) ∈ 𝐽 )
36 30 35 eqeltrrd ( 𝜑𝐴𝐽 )