| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rfcnpre2.1 |
|- F/_ x B |
| 2 |
|
rfcnpre2.2 |
|- F/_ x F |
| 3 |
|
rfcnpre2.3 |
|- F/ x ph |
| 4 |
|
rfcnpre2.4 |
|- K = ( topGen ` ran (,) ) |
| 5 |
|
rfcnpre2.5 |
|- X = U. J |
| 6 |
|
rfcnpre2.6 |
|- A = { x e. X | ( F ` x ) < B } |
| 7 |
|
rfcnpre2.7 |
|- ( ph -> B e. RR* ) |
| 8 |
|
rfcnpre2.8 |
|- ( ph -> F e. ( J Cn K ) ) |
| 9 |
2
|
nfcnv |
|- F/_ x `' F |
| 10 |
|
nfcv |
|- F/_ x -oo |
| 11 |
|
nfcv |
|- F/_ x (,) |
| 12 |
10 11 1
|
nfov |
|- F/_ x ( -oo (,) B ) |
| 13 |
9 12
|
nfima |
|- F/_ x ( `' F " ( -oo (,) B ) ) |
| 14 |
|
nfrab1 |
|- F/_ x { x e. X | ( F ` x ) < B } |
| 15 |
|
eqid |
|- ( J Cn K ) = ( J Cn K ) |
| 16 |
4 5 15 8
|
fcnre |
|- ( ph -> F : X --> RR ) |
| 17 |
16
|
ffvelcdmda |
|- ( ( ph /\ x e. X ) -> ( F ` x ) e. RR ) |
| 18 |
|
elioomnf |
|- ( B e. RR* -> ( ( F ` x ) e. ( -oo (,) B ) <-> ( ( F ` x ) e. RR /\ ( F ` x ) < B ) ) ) |
| 19 |
7 18
|
syl |
|- ( ph -> ( ( F ` x ) e. ( -oo (,) B ) <-> ( ( F ` x ) e. RR /\ ( F ` x ) < B ) ) ) |
| 20 |
19
|
baibd |
|- ( ( ph /\ ( F ` x ) e. RR ) -> ( ( F ` x ) e. ( -oo (,) B ) <-> ( F ` x ) < B ) ) |
| 21 |
17 20
|
syldan |
|- ( ( ph /\ x e. X ) -> ( ( F ` x ) e. ( -oo (,) B ) <-> ( F ` x ) < B ) ) |
| 22 |
21
|
pm5.32da |
|- ( ph -> ( ( x e. X /\ ( F ` x ) e. ( -oo (,) B ) ) <-> ( x e. X /\ ( F ` x ) < B ) ) ) |
| 23 |
|
ffn |
|- ( F : X --> RR -> F Fn X ) |
| 24 |
|
elpreima |
|- ( F Fn X -> ( x e. ( `' F " ( -oo (,) B ) ) <-> ( x e. X /\ ( F ` x ) e. ( -oo (,) B ) ) ) ) |
| 25 |
16 23 24
|
3syl |
|- ( ph -> ( x e. ( `' F " ( -oo (,) B ) ) <-> ( x e. X /\ ( F ` x ) e. ( -oo (,) B ) ) ) ) |
| 26 |
|
rabid |
|- ( x e. { x e. X | ( F ` x ) < B } <-> ( x e. X /\ ( F ` x ) < B ) ) |
| 27 |
26
|
a1i |
|- ( ph -> ( x e. { x e. X | ( F ` x ) < B } <-> ( x e. X /\ ( F ` x ) < B ) ) ) |
| 28 |
22 25 27
|
3bitr4d |
|- ( ph -> ( x e. ( `' F " ( -oo (,) B ) ) <-> x e. { x e. X | ( F ` x ) < B } ) ) |
| 29 |
3 13 14 28
|
eqrd |
|- ( ph -> ( `' F " ( -oo (,) B ) ) = { x e. X | ( F ` x ) < B } ) |
| 30 |
29 6
|
eqtr4di |
|- ( ph -> ( `' F " ( -oo (,) B ) ) = A ) |
| 31 |
|
iooretop |
|- ( -oo (,) B ) e. ( topGen ` ran (,) ) |
| 32 |
31
|
a1i |
|- ( ph -> ( -oo (,) B ) e. ( topGen ` ran (,) ) ) |
| 33 |
32 4
|
eleqtrrdi |
|- ( ph -> ( -oo (,) B ) e. K ) |
| 34 |
|
cnima |
|- ( ( F e. ( J Cn K ) /\ ( -oo (,) B ) e. K ) -> ( `' F " ( -oo (,) B ) ) e. J ) |
| 35 |
8 33 34
|
syl2anc |
|- ( ph -> ( `' F " ( -oo (,) B ) ) e. J ) |
| 36 |
30 35
|
eqeltrrd |
|- ( ph -> A e. J ) |