Description: This lemma is used to prove that there exists x as in Lemma 1 of BrosowskiDeutsh p. 90: 0 <= x(t) <= 1 for all t in T, x(t) < epsilon for all t in V, x(t) > 1 - epsilon for all t in T \ U. Here we prove the very last step of the proof of Lemma 1: "The result follows from taking x = 1 - q_n". Here E is used to represent ε in the paper, and y to represent q_n in the paper. (Contributed by Glauco Siliprandi, 20-Apr-2017)
Ref | Expression | ||
---|---|---|---|
Hypotheses | stoweidlem41.1 | |
|
stoweidlem41.2 | |
||
stoweidlem41.3 | |
||
stoweidlem41.4 | |
||
stoweidlem41.5 | |
||
stoweidlem41.6 | |
||
stoweidlem41.7 | |
||
stoweidlem41.8 | |
||
stoweidlem41.9 | |
||
stoweidlem41.10 | |
||
stoweidlem41.11 | |
||
stoweidlem41.12 | |
||
stoweidlem41.13 | |
||
stoweidlem41.14 | |
||
Assertion | stoweidlem41 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | stoweidlem41.1 | |
|
2 | stoweidlem41.2 | |
|
3 | stoweidlem41.3 | |
|
4 | stoweidlem41.4 | |
|
5 | stoweidlem41.5 | |
|
6 | stoweidlem41.6 | |
|
7 | stoweidlem41.7 | |
|
8 | stoweidlem41.8 | |
|
9 | stoweidlem41.9 | |
|
10 | stoweidlem41.10 | |
|
11 | stoweidlem41.11 | |
|
12 | stoweidlem41.12 | |
|
13 | stoweidlem41.13 | |
|
14 | stoweidlem41.14 | |
|
15 | 1re | |
|
16 | 3 | fvmpt2 | |
17 | 15 16 | mpan2 | |
18 | 17 | adantl | |
19 | 18 | oveq1d | |
20 | 1 19 | mpteq2da | |
21 | 20 2 | eqtr4di | |
22 | 10 | stoweidlem4 | |
23 | 15 22 | mpan2 | |
24 | 3 23 | eqeltrid | |
25 | nfmpt1 | |
|
26 | 3 25 | nfcxfr | |
27 | nfcv | |
|
28 | 26 27 1 7 8 9 10 | stoweidlem33 | |
29 | 24 5 28 | mpd3an23 | |
30 | 21 29 | eqeltrrd | |
31 | 6 | ffvelcdmda | |
32 | 1red | |
|
33 | 0red | |
|
34 | 12 | r19.21bi | |
35 | 34 | simprd | |
36 | 1m0e1 | |
|
37 | 35 36 | breqtrrdi | |
38 | 31 32 33 37 | lesubd | |
39 | simpr | |
|
40 | 32 31 | resubcld | |
41 | 2 | fvmpt2 | |
42 | 39 40 41 | syl2anc | |
43 | 38 42 | breqtrrd | |
44 | 34 | simpld | |
45 | 33 31 32 44 | lesub2dd | |
46 | 45 36 | breqtrdi | |
47 | 42 46 | eqbrtrd | |
48 | 43 47 | jca | |
49 | 48 | ex | |
50 | 1 49 | ralrimi | |
51 | 4 | sseli | |
52 | 51 42 | sylan2 | |
53 | 1red | |
|
54 | 11 | rpred | |
55 | 54 | adantr | |
56 | 51 31 | sylan2 | |
57 | 13 | r19.21bi | |
58 | 53 55 56 57 | ltsub23d | |
59 | 52 58 | eqbrtrd | |
60 | 59 | ex | |
61 | 1 60 | ralrimi | |
62 | eldifi | |
|
63 | 62 31 | sylan2 | |
64 | 54 | adantr | |
65 | 1red | |
|
66 | 14 | r19.21bi | |
67 | 63 64 65 66 | ltsub2dd | |
68 | 62 42 | sylan2 | |
69 | 67 68 | breqtrrd | |
70 | 69 | ex | |
71 | 1 70 | ralrimi | |
72 | nfmpt1 | |
|
73 | 2 72 | nfcxfr | |
74 | 73 | nfeq2 | |
75 | fveq1 | |
|
76 | 75 | breq2d | |
77 | 75 | breq1d | |
78 | 76 77 | anbi12d | |
79 | 74 78 | ralbid | |
80 | 75 | breq1d | |
81 | 74 80 | ralbid | |
82 | 75 | breq2d | |
83 | 74 82 | ralbid | |
84 | 79 81 83 | 3anbi123d | |
85 | 84 | rspcev | |
86 | 30 50 61 71 85 | syl13anc | |