Metamath Proof Explorer


Theorem stoweidlem41

Description: This lemma is used to prove that there exists x as in Lemma 1 of BrosowskiDeutsh p. 90: 0 <= x(t) <= 1 for all t in T, x(t) < epsilon for all t in V, x(t) > 1 - epsilon for all t in T \ U. Here we prove the very last step of the proof of Lemma 1: "The result follows from taking x = 1 - q_n". Here E is used to represent ε in the paper, and y to represent q_n in the paper. (Contributed by Glauco Siliprandi, 20-Apr-2017)

Ref Expression
Hypotheses stoweidlem41.1 tφ
stoweidlem41.2 X=tT1yt
stoweidlem41.3 F=tT1
stoweidlem41.4 VT
stoweidlem41.5 φyA
stoweidlem41.6 φy:T
stoweidlem41.7 φfAf:T
stoweidlem41.8 φfAgAtTft+gtA
stoweidlem41.9 φfAgAtTftgtA
stoweidlem41.10 φwtTwA
stoweidlem41.11 φE+
stoweidlem41.12 φtT0ytyt1
stoweidlem41.13 φtV1E<yt
stoweidlem41.14 φtTUyt<E
Assertion stoweidlem41 φxAtT0xtxt1tVxt<EtTU1E<xt

Proof

Step Hyp Ref Expression
1 stoweidlem41.1 tφ
2 stoweidlem41.2 X=tT1yt
3 stoweidlem41.3 F=tT1
4 stoweidlem41.4 VT
5 stoweidlem41.5 φyA
6 stoweidlem41.6 φy:T
7 stoweidlem41.7 φfAf:T
8 stoweidlem41.8 φfAgAtTft+gtA
9 stoweidlem41.9 φfAgAtTftgtA
10 stoweidlem41.10 φwtTwA
11 stoweidlem41.11 φE+
12 stoweidlem41.12 φtT0ytyt1
13 stoweidlem41.13 φtV1E<yt
14 stoweidlem41.14 φtTUyt<E
15 1re 1
16 3 fvmpt2 tT1Ft=1
17 15 16 mpan2 tTFt=1
18 17 adantl φtTFt=1
19 18 oveq1d φtTFtyt=1yt
20 1 19 mpteq2da φtTFtyt=tT1yt
21 20 2 eqtr4di φtTFtyt=X
22 10 stoweidlem4 φ1tT1A
23 15 22 mpan2 φtT1A
24 3 23 eqeltrid φFA
25 nfmpt1 _ttT1
26 3 25 nfcxfr _tF
27 nfcv _ty
28 26 27 1 7 8 9 10 stoweidlem33 φFAyAtTFtytA
29 24 5 28 mpd3an23 φtTFtytA
30 21 29 eqeltrrd φXA
31 6 ffvelcdmda φtTyt
32 1red φtT1
33 0red φtT0
34 12 r19.21bi φtT0ytyt1
35 34 simprd φtTyt1
36 1m0e1 10=1
37 35 36 breqtrrdi φtTyt10
38 31 32 33 37 lesubd φtT01yt
39 simpr φtTtT
40 32 31 resubcld φtT1yt
41 2 fvmpt2 tT1ytXt=1yt
42 39 40 41 syl2anc φtTXt=1yt
43 38 42 breqtrrd φtT0Xt
44 34 simpld φtT0yt
45 33 31 32 44 lesub2dd φtT1yt10
46 45 36 breqtrdi φtT1yt1
47 42 46 eqbrtrd φtTXt1
48 43 47 jca φtT0XtXt1
49 48 ex φtT0XtXt1
50 1 49 ralrimi φtT0XtXt1
51 4 sseli tVtT
52 51 42 sylan2 φtVXt=1yt
53 1red φtV1
54 11 rpred φE
55 54 adantr φtVE
56 51 31 sylan2 φtVyt
57 13 r19.21bi φtV1E<yt
58 53 55 56 57 ltsub23d φtV1yt<E
59 52 58 eqbrtrd φtVXt<E
60 59 ex φtVXt<E
61 1 60 ralrimi φtVXt<E
62 eldifi tTUtT
63 62 31 sylan2 φtTUyt
64 54 adantr φtTUE
65 1red φtTU1
66 14 r19.21bi φtTUyt<E
67 63 64 65 66 ltsub2dd φtTU1E<1yt
68 62 42 sylan2 φtTUXt=1yt
69 67 68 breqtrrd φtTU1E<Xt
70 69 ex φtTU1E<Xt
71 1 70 ralrimi φtTU1E<Xt
72 nfmpt1 _ttT1yt
73 2 72 nfcxfr _tX
74 73 nfeq2 tx=X
75 fveq1 x=Xxt=Xt
76 75 breq2d x=X0xt0Xt
77 75 breq1d x=Xxt1Xt1
78 76 77 anbi12d x=X0xtxt10XtXt1
79 74 78 ralbid x=XtT0xtxt1tT0XtXt1
80 75 breq1d x=Xxt<EXt<E
81 74 80 ralbid x=XtVxt<EtVXt<E
82 75 breq2d x=X1E<xt1E<Xt
83 74 82 ralbid x=XtTU1E<xttTU1E<Xt
84 79 81 83 3anbi123d x=XtT0xtxt1tVxt<EtTU1E<xttT0XtXt1tVXt<EtTU1E<Xt
85 84 rspcev XAtT0XtXt1tVXt<EtTU1E<XtxAtT0xtxt1tVxt<EtTU1E<xt
86 30 50 61 71 85 syl13anc φxAtT0xtxt1tVxt<EtTU1E<xt