| Step | Hyp | Ref | Expression | 
						
							| 1 |  | stoweidlem48.1 | ⊢ Ⅎ 𝑖 𝜑 | 
						
							| 2 |  | stoweidlem48.2 | ⊢ Ⅎ 𝑡 𝜑 | 
						
							| 3 |  | stoweidlem48.3 | ⊢ 𝑌  =  { ℎ  ∈  𝐴  ∣  ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ℎ ‘ 𝑡 )  ∧  ( ℎ ‘ 𝑡 )  ≤  1 ) } | 
						
							| 4 |  | stoweidlem48.4 | ⊢ 𝑃  =  ( 𝑓  ∈  𝑌 ,  𝑔  ∈  𝑌  ↦  ( 𝑡  ∈  𝑇  ↦  ( ( 𝑓 ‘ 𝑡 )  ·  ( 𝑔 ‘ 𝑡 ) ) ) ) | 
						
							| 5 |  | stoweidlem48.5 | ⊢ 𝑋  =  ( seq 1 ( 𝑃 ,  𝑈 ) ‘ 𝑀 ) | 
						
							| 6 |  | stoweidlem48.6 | ⊢ 𝐹  =  ( 𝑡  ∈  𝑇  ↦  ( 𝑖  ∈  ( 1 ... 𝑀 )  ↦  ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑡 ) ) ) | 
						
							| 7 |  | stoweidlem48.7 | ⊢ 𝑍  =  ( 𝑡  ∈  𝑇  ↦  ( seq 1 (  ·  ,  ( 𝐹 ‘ 𝑡 ) ) ‘ 𝑀 ) ) | 
						
							| 8 |  | stoweidlem48.8 | ⊢ ( 𝜑  →  𝑀  ∈  ℕ ) | 
						
							| 9 |  | stoweidlem48.9 | ⊢ ( 𝜑  →  𝑊 : ( 1 ... 𝑀 ) ⟶ 𝑉 ) | 
						
							| 10 |  | stoweidlem48.10 | ⊢ ( 𝜑  →  𝑈 : ( 1 ... 𝑀 ) ⟶ 𝑌 ) | 
						
							| 11 |  | stoweidlem48.11 | ⊢ ( 𝜑  →  𝐷  ⊆  ∪  ran  𝑊 ) | 
						
							| 12 |  | stoweidlem48.12 | ⊢ ( 𝜑  →  𝐷  ⊆  𝑇 ) | 
						
							| 13 |  | stoweidlem48.13 | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... 𝑀 ) )  →  ∀ 𝑡  ∈  ( 𝑊 ‘ 𝑖 ) ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑡 )  <  𝐸 ) | 
						
							| 14 |  | stoweidlem48.14 | ⊢ ( 𝜑  →  𝑇  ∈  V ) | 
						
							| 15 |  | stoweidlem48.15 | ⊢ ( ( 𝜑  ∧  𝑓  ∈  𝐴 )  →  𝑓 : 𝑇 ⟶ ℝ ) | 
						
							| 16 |  | stoweidlem48.16 | ⊢ ( ( 𝜑  ∧  𝑓  ∈  𝐴  ∧  𝑔  ∈  𝐴 )  →  ( 𝑡  ∈  𝑇  ↦  ( ( 𝑓 ‘ 𝑡 )  ·  ( 𝑔 ‘ 𝑡 ) ) )  ∈  𝐴 ) | 
						
							| 17 |  | stoweidlem48.17 | ⊢ ( 𝜑  →  𝐸  ∈  ℝ+ ) | 
						
							| 18 | 12 | sselda | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝐷 )  →  𝑡  ∈  𝑇 ) | 
						
							| 19 |  | nfra1 | ⊢ Ⅎ 𝑡 ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ℎ ‘ 𝑡 )  ∧  ( ℎ ‘ 𝑡 )  ≤  1 ) | 
						
							| 20 |  | nfcv | ⊢ Ⅎ 𝑡 𝐴 | 
						
							| 21 | 19 20 | nfrabw | ⊢ Ⅎ 𝑡 { ℎ  ∈  𝐴  ∣  ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ℎ ‘ 𝑡 )  ∧  ( ℎ ‘ 𝑡 )  ≤  1 ) } | 
						
							| 22 | 3 21 | nfcxfr | ⊢ Ⅎ 𝑡 𝑌 | 
						
							| 23 | 3 | eleq2i | ⊢ ( 𝑓  ∈  𝑌  ↔  𝑓  ∈  { ℎ  ∈  𝐴  ∣  ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ℎ ‘ 𝑡 )  ∧  ( ℎ ‘ 𝑡 )  ≤  1 ) } ) | 
						
							| 24 |  | fveq1 | ⊢ ( ℎ  =  𝑓  →  ( ℎ ‘ 𝑡 )  =  ( 𝑓 ‘ 𝑡 ) ) | 
						
							| 25 | 24 | breq2d | ⊢ ( ℎ  =  𝑓  →  ( 0  ≤  ( ℎ ‘ 𝑡 )  ↔  0  ≤  ( 𝑓 ‘ 𝑡 ) ) ) | 
						
							| 26 | 24 | breq1d | ⊢ ( ℎ  =  𝑓  →  ( ( ℎ ‘ 𝑡 )  ≤  1  ↔  ( 𝑓 ‘ 𝑡 )  ≤  1 ) ) | 
						
							| 27 | 25 26 | anbi12d | ⊢ ( ℎ  =  𝑓  →  ( ( 0  ≤  ( ℎ ‘ 𝑡 )  ∧  ( ℎ ‘ 𝑡 )  ≤  1 )  ↔  ( 0  ≤  ( 𝑓 ‘ 𝑡 )  ∧  ( 𝑓 ‘ 𝑡 )  ≤  1 ) ) ) | 
						
							| 28 | 27 | ralbidv | ⊢ ( ℎ  =  𝑓  →  ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ℎ ‘ 𝑡 )  ∧  ( ℎ ‘ 𝑡 )  ≤  1 )  ↔  ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( 𝑓 ‘ 𝑡 )  ∧  ( 𝑓 ‘ 𝑡 )  ≤  1 ) ) ) | 
						
							| 29 | 28 | elrab | ⊢ ( 𝑓  ∈  { ℎ  ∈  𝐴  ∣  ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ℎ ‘ 𝑡 )  ∧  ( ℎ ‘ 𝑡 )  ≤  1 ) }  ↔  ( 𝑓  ∈  𝐴  ∧  ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( 𝑓 ‘ 𝑡 )  ∧  ( 𝑓 ‘ 𝑡 )  ≤  1 ) ) ) | 
						
							| 30 | 23 29 | sylbb | ⊢ ( 𝑓  ∈  𝑌  →  ( 𝑓  ∈  𝐴  ∧  ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( 𝑓 ‘ 𝑡 )  ∧  ( 𝑓 ‘ 𝑡 )  ≤  1 ) ) ) | 
						
							| 31 | 30 | simpld | ⊢ ( 𝑓  ∈  𝑌  →  𝑓  ∈  𝐴 ) | 
						
							| 32 | 31 15 | sylan2 | ⊢ ( ( 𝜑  ∧  𝑓  ∈  𝑌 )  →  𝑓 : 𝑇 ⟶ ℝ ) | 
						
							| 33 |  | eqid | ⊢ ( 𝑡  ∈  𝑇  ↦  ( ( 𝑓 ‘ 𝑡 )  ·  ( 𝑔 ‘ 𝑡 ) ) )  =  ( 𝑡  ∈  𝑇  ↦  ( ( 𝑓 ‘ 𝑡 )  ·  ( 𝑔 ‘ 𝑡 ) ) ) | 
						
							| 34 | 2 3 33 15 16 | stoweidlem16 | ⊢ ( ( 𝜑  ∧  𝑓  ∈  𝑌  ∧  𝑔  ∈  𝑌 )  →  ( 𝑡  ∈  𝑇  ↦  ( ( 𝑓 ‘ 𝑡 )  ·  ( 𝑔 ‘ 𝑡 ) ) )  ∈  𝑌 ) | 
						
							| 35 | 1 22 4 5 6 7 14 8 10 32 34 | fmuldfeq | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  →  ( 𝑋 ‘ 𝑡 )  =  ( 𝑍 ‘ 𝑡 ) ) | 
						
							| 36 | 18 35 | syldan | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝐷 )  →  ( 𝑋 ‘ 𝑡 )  =  ( 𝑍 ‘ 𝑡 ) ) | 
						
							| 37 |  | elnnuz | ⊢ ( 𝑀  ∈  ℕ  ↔  𝑀  ∈  ( ℤ≥ ‘ 1 ) ) | 
						
							| 38 | 8 37 | sylib | ⊢ ( 𝜑  →  𝑀  ∈  ( ℤ≥ ‘ 1 ) ) | 
						
							| 39 | 38 | adantr | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝐷 )  →  𝑀  ∈  ( ℤ≥ ‘ 1 ) ) | 
						
							| 40 |  | nfv | ⊢ Ⅎ 𝑖 𝑡  ∈  𝑇 | 
						
							| 41 | 1 40 | nfan | ⊢ Ⅎ 𝑖 ( 𝜑  ∧  𝑡  ∈  𝑇 ) | 
						
							| 42 | 10 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... 𝑀 ) )  →  ( 𝑈 ‘ 𝑖 )  ∈  𝑌 ) | 
						
							| 43 |  | fveq1 | ⊢ ( ℎ  =  ( 𝑈 ‘ 𝑖 )  →  ( ℎ ‘ 𝑡 )  =  ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑡 ) ) | 
						
							| 44 | 43 | breq2d | ⊢ ( ℎ  =  ( 𝑈 ‘ 𝑖 )  →  ( 0  ≤  ( ℎ ‘ 𝑡 )  ↔  0  ≤  ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑡 ) ) ) | 
						
							| 45 | 43 | breq1d | ⊢ ( ℎ  =  ( 𝑈 ‘ 𝑖 )  →  ( ( ℎ ‘ 𝑡 )  ≤  1  ↔  ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑡 )  ≤  1 ) ) | 
						
							| 46 | 44 45 | anbi12d | ⊢ ( ℎ  =  ( 𝑈 ‘ 𝑖 )  →  ( ( 0  ≤  ( ℎ ‘ 𝑡 )  ∧  ( ℎ ‘ 𝑡 )  ≤  1 )  ↔  ( 0  ≤  ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑡 )  ∧  ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑡 )  ≤  1 ) ) ) | 
						
							| 47 | 46 | ralbidv | ⊢ ( ℎ  =  ( 𝑈 ‘ 𝑖 )  →  ( ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ℎ ‘ 𝑡 )  ∧  ( ℎ ‘ 𝑡 )  ≤  1 )  ↔  ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑡 )  ∧  ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑡 )  ≤  1 ) ) ) | 
						
							| 48 | 47 3 | elrab2 | ⊢ ( ( 𝑈 ‘ 𝑖 )  ∈  𝑌  ↔  ( ( 𝑈 ‘ 𝑖 )  ∈  𝐴  ∧  ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑡 )  ∧  ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑡 )  ≤  1 ) ) ) | 
						
							| 49 | 42 48 | sylib | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... 𝑀 ) )  →  ( ( 𝑈 ‘ 𝑖 )  ∈  𝐴  ∧  ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑡 )  ∧  ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑡 )  ≤  1 ) ) ) | 
						
							| 50 | 49 | simpld | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... 𝑀 ) )  →  ( 𝑈 ‘ 𝑖 )  ∈  𝐴 ) | 
						
							| 51 |  | simpl | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... 𝑀 ) )  →  𝜑 ) | 
						
							| 52 | 51 50 | jca | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... 𝑀 ) )  →  ( 𝜑  ∧  ( 𝑈 ‘ 𝑖 )  ∈  𝐴 ) ) | 
						
							| 53 |  | eleq1 | ⊢ ( 𝑓  =  ( 𝑈 ‘ 𝑖 )  →  ( 𝑓  ∈  𝐴  ↔  ( 𝑈 ‘ 𝑖 )  ∈  𝐴 ) ) | 
						
							| 54 | 53 | anbi2d | ⊢ ( 𝑓  =  ( 𝑈 ‘ 𝑖 )  →  ( ( 𝜑  ∧  𝑓  ∈  𝐴 )  ↔  ( 𝜑  ∧  ( 𝑈 ‘ 𝑖 )  ∈  𝐴 ) ) ) | 
						
							| 55 |  | feq1 | ⊢ ( 𝑓  =  ( 𝑈 ‘ 𝑖 )  →  ( 𝑓 : 𝑇 ⟶ ℝ  ↔  ( 𝑈 ‘ 𝑖 ) : 𝑇 ⟶ ℝ ) ) | 
						
							| 56 | 54 55 | imbi12d | ⊢ ( 𝑓  =  ( 𝑈 ‘ 𝑖 )  →  ( ( ( 𝜑  ∧  𝑓  ∈  𝐴 )  →  𝑓 : 𝑇 ⟶ ℝ )  ↔  ( ( 𝜑  ∧  ( 𝑈 ‘ 𝑖 )  ∈  𝐴 )  →  ( 𝑈 ‘ 𝑖 ) : 𝑇 ⟶ ℝ ) ) ) | 
						
							| 57 | 56 15 | vtoclg | ⊢ ( ( 𝑈 ‘ 𝑖 )  ∈  𝐴  →  ( ( 𝜑  ∧  ( 𝑈 ‘ 𝑖 )  ∈  𝐴 )  →  ( 𝑈 ‘ 𝑖 ) : 𝑇 ⟶ ℝ ) ) | 
						
							| 58 | 50 52 57 | sylc | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... 𝑀 ) )  →  ( 𝑈 ‘ 𝑖 ) : 𝑇 ⟶ ℝ ) | 
						
							| 59 | 58 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  ∧  𝑖  ∈  ( 1 ... 𝑀 ) )  →  ( 𝑈 ‘ 𝑖 ) : 𝑇 ⟶ ℝ ) | 
						
							| 60 |  | simplr | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  ∧  𝑖  ∈  ( 1 ... 𝑀 ) )  →  𝑡  ∈  𝑇 ) | 
						
							| 61 | 59 60 | ffvelcdmd | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  ∧  𝑖  ∈  ( 1 ... 𝑀 ) )  →  ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑡 )  ∈  ℝ ) | 
						
							| 62 |  | eqid | ⊢ ( 𝑖  ∈  ( 1 ... 𝑀 )  ↦  ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑡 ) )  =  ( 𝑖  ∈  ( 1 ... 𝑀 )  ↦  ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑡 ) ) | 
						
							| 63 | 41 61 62 | fmptdf | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  →  ( 𝑖  ∈  ( 1 ... 𝑀 )  ↦  ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑡 ) ) : ( 1 ... 𝑀 ) ⟶ ℝ ) | 
						
							| 64 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  →  𝑡  ∈  𝑇 ) | 
						
							| 65 |  | ovex | ⊢ ( 1 ... 𝑀 )  ∈  V | 
						
							| 66 |  | mptexg | ⊢ ( ( 1 ... 𝑀 )  ∈  V  →  ( 𝑖  ∈  ( 1 ... 𝑀 )  ↦  ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑡 ) )  ∈  V ) | 
						
							| 67 | 65 66 | mp1i | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  →  ( 𝑖  ∈  ( 1 ... 𝑀 )  ↦  ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑡 ) )  ∈  V ) | 
						
							| 68 | 6 | fvmpt2 | ⊢ ( ( 𝑡  ∈  𝑇  ∧  ( 𝑖  ∈  ( 1 ... 𝑀 )  ↦  ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑡 ) )  ∈  V )  →  ( 𝐹 ‘ 𝑡 )  =  ( 𝑖  ∈  ( 1 ... 𝑀 )  ↦  ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑡 ) ) ) | 
						
							| 69 | 64 67 68 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  →  ( 𝐹 ‘ 𝑡 )  =  ( 𝑖  ∈  ( 1 ... 𝑀 )  ↦  ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑡 ) ) ) | 
						
							| 70 | 69 | feq1d | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  →  ( ( 𝐹 ‘ 𝑡 ) : ( 1 ... 𝑀 ) ⟶ ℝ  ↔  ( 𝑖  ∈  ( 1 ... 𝑀 )  ↦  ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑡 ) ) : ( 1 ... 𝑀 ) ⟶ ℝ ) ) | 
						
							| 71 | 63 70 | mpbird | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  →  ( 𝐹 ‘ 𝑡 ) : ( 1 ... 𝑀 ) ⟶ ℝ ) | 
						
							| 72 | 18 71 | syldan | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝐷 )  →  ( 𝐹 ‘ 𝑡 ) : ( 1 ... 𝑀 ) ⟶ ℝ ) | 
						
							| 73 | 72 | ffvelcdmda | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  𝐷 )  ∧  𝑘  ∈  ( 1 ... 𝑀 ) )  →  ( ( 𝐹 ‘ 𝑡 ) ‘ 𝑘 )  ∈  ℝ ) | 
						
							| 74 |  | remulcl | ⊢ ( ( 𝑘  ∈  ℝ  ∧  𝑗  ∈  ℝ )  →  ( 𝑘  ·  𝑗 )  ∈  ℝ ) | 
						
							| 75 | 74 | adantl | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  𝐷 )  ∧  ( 𝑘  ∈  ℝ  ∧  𝑗  ∈  ℝ ) )  →  ( 𝑘  ·  𝑗 )  ∈  ℝ ) | 
						
							| 76 | 39 73 75 | seqcl | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝐷 )  →  ( seq 1 (  ·  ,  ( 𝐹 ‘ 𝑡 ) ) ‘ 𝑀 )  ∈  ℝ ) | 
						
							| 77 | 7 | fvmpt2 | ⊢ ( ( 𝑡  ∈  𝑇  ∧  ( seq 1 (  ·  ,  ( 𝐹 ‘ 𝑡 ) ) ‘ 𝑀 )  ∈  ℝ )  →  ( 𝑍 ‘ 𝑡 )  =  ( seq 1 (  ·  ,  ( 𝐹 ‘ 𝑡 ) ) ‘ 𝑀 ) ) | 
						
							| 78 | 18 76 77 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝐷 )  →  ( 𝑍 ‘ 𝑡 )  =  ( seq 1 (  ·  ,  ( 𝐹 ‘ 𝑡 ) ) ‘ 𝑀 ) ) | 
						
							| 79 |  | nfcv | ⊢ Ⅎ 𝑖 𝑇 | 
						
							| 80 |  | nfmpt1 | ⊢ Ⅎ 𝑖 ( 𝑖  ∈  ( 1 ... 𝑀 )  ↦  ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑡 ) ) | 
						
							| 81 | 79 80 | nfmpt | ⊢ Ⅎ 𝑖 ( 𝑡  ∈  𝑇  ↦  ( 𝑖  ∈  ( 1 ... 𝑀 )  ↦  ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑡 ) ) ) | 
						
							| 82 | 6 81 | nfcxfr | ⊢ Ⅎ 𝑖 𝐹 | 
						
							| 83 |  | nfcv | ⊢ Ⅎ 𝑖 𝑡 | 
						
							| 84 | 82 83 | nffv | ⊢ Ⅎ 𝑖 ( 𝐹 ‘ 𝑡 ) | 
						
							| 85 |  | nfv | ⊢ Ⅎ 𝑖 𝑡  ∈  𝐷 | 
						
							| 86 | 1 85 | nfan | ⊢ Ⅎ 𝑖 ( 𝜑  ∧  𝑡  ∈  𝐷 ) | 
						
							| 87 |  | nfcv | ⊢ Ⅎ 𝑗 seq 1 (  ·  ,  ( 𝐹 ‘ 𝑡 ) ) | 
						
							| 88 |  | eqid | ⊢ seq 1 (  ·  ,  ( 𝐹 ‘ 𝑡 ) )  =  seq 1 (  ·  ,  ( 𝐹 ‘ 𝑡 ) ) | 
						
							| 89 | 8 | adantr | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝐷 )  →  𝑀  ∈  ℕ ) | 
						
							| 90 |  | simpll | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  𝐷 )  ∧  𝑖  ∈  ( 1 ... 𝑀 ) )  →  𝜑 ) | 
						
							| 91 |  | simpr | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  𝐷 )  ∧  𝑖  ∈  ( 1 ... 𝑀 ) )  →  𝑖  ∈  ( 1 ... 𝑀 ) ) | 
						
							| 92 | 18 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  𝐷 )  ∧  𝑖  ∈  ( 1 ... 𝑀 ) )  →  𝑡  ∈  𝑇 ) | 
						
							| 93 | 49 | simprd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... 𝑀 ) )  →  ∀ 𝑡  ∈  𝑇 ( 0  ≤  ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑡 )  ∧  ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑡 )  ≤  1 ) ) | 
						
							| 94 | 93 | r19.21bi | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... 𝑀 ) )  ∧  𝑡  ∈  𝑇 )  →  ( 0  ≤  ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑡 )  ∧  ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑡 )  ≤  1 ) ) | 
						
							| 95 | 94 | simpld | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... 𝑀 ) )  ∧  𝑡  ∈  𝑇 )  →  0  ≤  ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑡 ) ) | 
						
							| 96 | 90 91 92 95 | syl21anc | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  𝐷 )  ∧  𝑖  ∈  ( 1 ... 𝑀 ) )  →  0  ≤  ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑡 ) ) | 
						
							| 97 | 69 | fveq1d | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  →  ( ( 𝐹 ‘ 𝑡 ) ‘ 𝑖 )  =  ( ( 𝑖  ∈  ( 1 ... 𝑀 )  ↦  ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑡 ) ) ‘ 𝑖 ) ) | 
						
							| 98 | 90 92 97 | syl2anc | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  𝐷 )  ∧  𝑖  ∈  ( 1 ... 𝑀 ) )  →  ( ( 𝐹 ‘ 𝑡 ) ‘ 𝑖 )  =  ( ( 𝑖  ∈  ( 1 ... 𝑀 )  ↦  ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑡 ) ) ‘ 𝑖 ) ) | 
						
							| 99 | 90 92 91 61 | syl21anc | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  𝐷 )  ∧  𝑖  ∈  ( 1 ... 𝑀 ) )  →  ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑡 )  ∈  ℝ ) | 
						
							| 100 | 62 | fvmpt2 | ⊢ ( ( 𝑖  ∈  ( 1 ... 𝑀 )  ∧  ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑡 )  ∈  ℝ )  →  ( ( 𝑖  ∈  ( 1 ... 𝑀 )  ↦  ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑡 ) ) ‘ 𝑖 )  =  ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑡 ) ) | 
						
							| 101 | 91 99 100 | syl2anc | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  𝐷 )  ∧  𝑖  ∈  ( 1 ... 𝑀 ) )  →  ( ( 𝑖  ∈  ( 1 ... 𝑀 )  ↦  ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑡 ) ) ‘ 𝑖 )  =  ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑡 ) ) | 
						
							| 102 | 98 101 | eqtrd | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  𝐷 )  ∧  𝑖  ∈  ( 1 ... 𝑀 ) )  →  ( ( 𝐹 ‘ 𝑡 ) ‘ 𝑖 )  =  ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑡 ) ) | 
						
							| 103 | 96 102 | breqtrrd | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  𝐷 )  ∧  𝑖  ∈  ( 1 ... 𝑀 ) )  →  0  ≤  ( ( 𝐹 ‘ 𝑡 ) ‘ 𝑖 ) ) | 
						
							| 104 | 94 | simprd | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... 𝑀 ) )  ∧  𝑡  ∈  𝑇 )  →  ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑡 )  ≤  1 ) | 
						
							| 105 | 90 91 92 104 | syl21anc | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  𝐷 )  ∧  𝑖  ∈  ( 1 ... 𝑀 ) )  →  ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑡 )  ≤  1 ) | 
						
							| 106 | 102 105 | eqbrtrd | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  𝐷 )  ∧  𝑖  ∈  ( 1 ... 𝑀 ) )  →  ( ( 𝐹 ‘ 𝑡 ) ‘ 𝑖 )  ≤  1 ) | 
						
							| 107 | 17 | adantr | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝐷 )  →  𝐸  ∈  ℝ+ ) | 
						
							| 108 | 11 | sselda | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝐷 )  →  𝑡  ∈  ∪  ran  𝑊 ) | 
						
							| 109 |  | eluni | ⊢ ( 𝑡  ∈  ∪  ran  𝑊  ↔  ∃ 𝑤 ( 𝑡  ∈  𝑤  ∧  𝑤  ∈  ran  𝑊 ) ) | 
						
							| 110 | 108 109 | sylib | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝐷 )  →  ∃ 𝑤 ( 𝑡  ∈  𝑤  ∧  𝑤  ∈  ran  𝑊 ) ) | 
						
							| 111 |  | ffn | ⊢ ( 𝑊 : ( 1 ... 𝑀 ) ⟶ 𝑉  →  𝑊  Fn  ( 1 ... 𝑀 ) ) | 
						
							| 112 |  | fvelrnb | ⊢ ( 𝑊  Fn  ( 1 ... 𝑀 )  →  ( 𝑤  ∈  ran  𝑊  ↔  ∃ 𝑗  ∈  ( 1 ... 𝑀 ) ( 𝑊 ‘ 𝑗 )  =  𝑤 ) ) | 
						
							| 113 | 9 111 112 | 3syl | ⊢ ( 𝜑  →  ( 𝑤  ∈  ran  𝑊  ↔  ∃ 𝑗  ∈  ( 1 ... 𝑀 ) ( 𝑊 ‘ 𝑗 )  =  𝑤 ) ) | 
						
							| 114 | 113 | biimpa | ⊢ ( ( 𝜑  ∧  𝑤  ∈  ran  𝑊 )  →  ∃ 𝑗  ∈  ( 1 ... 𝑀 ) ( 𝑊 ‘ 𝑗 )  =  𝑤 ) | 
						
							| 115 | 114 | adantrl | ⊢ ( ( 𝜑  ∧  ( 𝑡  ∈  𝑤  ∧  𝑤  ∈  ran  𝑊 ) )  →  ∃ 𝑗  ∈  ( 1 ... 𝑀 ) ( 𝑊 ‘ 𝑗 )  =  𝑤 ) | 
						
							| 116 |  | simplr | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  𝑤 )  ∧  ( 𝑊 ‘ 𝑗 )  =  𝑤 )  →  𝑡  ∈  𝑤 ) | 
						
							| 117 |  | simpr | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  𝑤 )  ∧  ( 𝑊 ‘ 𝑗 )  =  𝑤 )  →  ( 𝑊 ‘ 𝑗 )  =  𝑤 ) | 
						
							| 118 | 116 117 | eleqtrrd | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  𝑤 )  ∧  ( 𝑊 ‘ 𝑗 )  =  𝑤 )  →  𝑡  ∈  ( 𝑊 ‘ 𝑗 ) ) | 
						
							| 119 | 118 | ex | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑤 )  →  ( ( 𝑊 ‘ 𝑗 )  =  𝑤  →  𝑡  ∈  ( 𝑊 ‘ 𝑗 ) ) ) | 
						
							| 120 | 119 | reximdv | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑤 )  →  ( ∃ 𝑗  ∈  ( 1 ... 𝑀 ) ( 𝑊 ‘ 𝑗 )  =  𝑤  →  ∃ 𝑗  ∈  ( 1 ... 𝑀 ) 𝑡  ∈  ( 𝑊 ‘ 𝑗 ) ) ) | 
						
							| 121 | 120 | adantrr | ⊢ ( ( 𝜑  ∧  ( 𝑡  ∈  𝑤  ∧  𝑤  ∈  ran  𝑊 ) )  →  ( ∃ 𝑗  ∈  ( 1 ... 𝑀 ) ( 𝑊 ‘ 𝑗 )  =  𝑤  →  ∃ 𝑗  ∈  ( 1 ... 𝑀 ) 𝑡  ∈  ( 𝑊 ‘ 𝑗 ) ) ) | 
						
							| 122 | 115 121 | mpd | ⊢ ( ( 𝜑  ∧  ( 𝑡  ∈  𝑤  ∧  𝑤  ∈  ran  𝑊 ) )  →  ∃ 𝑗  ∈  ( 1 ... 𝑀 ) 𝑡  ∈  ( 𝑊 ‘ 𝑗 ) ) | 
						
							| 123 | 122 | ex | ⊢ ( 𝜑  →  ( ( 𝑡  ∈  𝑤  ∧  𝑤  ∈  ran  𝑊 )  →  ∃ 𝑗  ∈  ( 1 ... 𝑀 ) 𝑡  ∈  ( 𝑊 ‘ 𝑗 ) ) ) | 
						
							| 124 | 123 | exlimdv | ⊢ ( 𝜑  →  ( ∃ 𝑤 ( 𝑡  ∈  𝑤  ∧  𝑤  ∈  ran  𝑊 )  →  ∃ 𝑗  ∈  ( 1 ... 𝑀 ) 𝑡  ∈  ( 𝑊 ‘ 𝑗 ) ) ) | 
						
							| 125 | 124 | adantr | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝐷 )  →  ( ∃ 𝑤 ( 𝑡  ∈  𝑤  ∧  𝑤  ∈  ran  𝑊 )  →  ∃ 𝑗  ∈  ( 1 ... 𝑀 ) 𝑡  ∈  ( 𝑊 ‘ 𝑗 ) ) ) | 
						
							| 126 | 110 125 | mpd | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝐷 )  →  ∃ 𝑗  ∈  ( 1 ... 𝑀 ) 𝑡  ∈  ( 𝑊 ‘ 𝑗 ) ) | 
						
							| 127 |  | simplll | ⊢ ( ( ( ( 𝜑  ∧  𝑡  ∈  𝐷 )  ∧  𝑗  ∈  ( 1 ... 𝑀 ) )  ∧  𝑡  ∈  ( 𝑊 ‘ 𝑗 ) )  →  𝜑 ) | 
						
							| 128 |  | simplr | ⊢ ( ( ( ( 𝜑  ∧  𝑡  ∈  𝐷 )  ∧  𝑗  ∈  ( 1 ... 𝑀 ) )  ∧  𝑡  ∈  ( 𝑊 ‘ 𝑗 ) )  →  𝑗  ∈  ( 1 ... 𝑀 ) ) | 
						
							| 129 |  | simpr | ⊢ ( ( ( ( 𝜑  ∧  𝑡  ∈  𝐷 )  ∧  𝑗  ∈  ( 1 ... 𝑀 ) )  ∧  𝑡  ∈  ( 𝑊 ‘ 𝑗 ) )  →  𝑡  ∈  ( 𝑊 ‘ 𝑗 ) ) | 
						
							| 130 |  | nfv | ⊢ Ⅎ 𝑖 𝑗  ∈  ( 1 ... 𝑀 ) | 
						
							| 131 |  | nfv | ⊢ Ⅎ 𝑖 𝑡  ∈  ( 𝑊 ‘ 𝑗 ) | 
						
							| 132 | 1 130 131 | nf3an | ⊢ Ⅎ 𝑖 ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑀 )  ∧  𝑡  ∈  ( 𝑊 ‘ 𝑗 ) ) | 
						
							| 133 |  | nfv | ⊢ Ⅎ 𝑖 ( ( 𝑈 ‘ 𝑗 ) ‘ 𝑡 )  <  𝐸 | 
						
							| 134 | 132 133 | nfim | ⊢ Ⅎ 𝑖 ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑀 )  ∧  𝑡  ∈  ( 𝑊 ‘ 𝑗 ) )  →  ( ( 𝑈 ‘ 𝑗 ) ‘ 𝑡 )  <  𝐸 ) | 
						
							| 135 |  | eleq1 | ⊢ ( 𝑖  =  𝑗  →  ( 𝑖  ∈  ( 1 ... 𝑀 )  ↔  𝑗  ∈  ( 1 ... 𝑀 ) ) ) | 
						
							| 136 |  | fveq2 | ⊢ ( 𝑖  =  𝑗  →  ( 𝑊 ‘ 𝑖 )  =  ( 𝑊 ‘ 𝑗 ) ) | 
						
							| 137 | 136 | eleq2d | ⊢ ( 𝑖  =  𝑗  →  ( 𝑡  ∈  ( 𝑊 ‘ 𝑖 )  ↔  𝑡  ∈  ( 𝑊 ‘ 𝑗 ) ) ) | 
						
							| 138 | 135 137 | 3anbi23d | ⊢ ( 𝑖  =  𝑗  →  ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... 𝑀 )  ∧  𝑡  ∈  ( 𝑊 ‘ 𝑖 ) )  ↔  ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑀 )  ∧  𝑡  ∈  ( 𝑊 ‘ 𝑗 ) ) ) ) | 
						
							| 139 |  | fveq2 | ⊢ ( 𝑖  =  𝑗  →  ( 𝑈 ‘ 𝑖 )  =  ( 𝑈 ‘ 𝑗 ) ) | 
						
							| 140 | 139 | fveq1d | ⊢ ( 𝑖  =  𝑗  →  ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑡 )  =  ( ( 𝑈 ‘ 𝑗 ) ‘ 𝑡 ) ) | 
						
							| 141 | 140 | breq1d | ⊢ ( 𝑖  =  𝑗  →  ( ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑡 )  <  𝐸  ↔  ( ( 𝑈 ‘ 𝑗 ) ‘ 𝑡 )  <  𝐸 ) ) | 
						
							| 142 | 138 141 | imbi12d | ⊢ ( 𝑖  =  𝑗  →  ( ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... 𝑀 )  ∧  𝑡  ∈  ( 𝑊 ‘ 𝑖 ) )  →  ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑡 )  <  𝐸 )  ↔  ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑀 )  ∧  𝑡  ∈  ( 𝑊 ‘ 𝑗 ) )  →  ( ( 𝑈 ‘ 𝑗 ) ‘ 𝑡 )  <  𝐸 ) ) ) | 
						
							| 143 | 13 | r19.21bi | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... 𝑀 ) )  ∧  𝑡  ∈  ( 𝑊 ‘ 𝑖 ) )  →  ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑡 )  <  𝐸 ) | 
						
							| 144 | 143 | 3impa | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... 𝑀 )  ∧  𝑡  ∈  ( 𝑊 ‘ 𝑖 ) )  →  ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑡 )  <  𝐸 ) | 
						
							| 145 | 134 142 144 | chvarfv | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑀 )  ∧  𝑡  ∈  ( 𝑊 ‘ 𝑗 ) )  →  ( ( 𝑈 ‘ 𝑗 ) ‘ 𝑡 )  <  𝐸 ) | 
						
							| 146 | 127 128 129 145 | syl3anc | ⊢ ( ( ( ( 𝜑  ∧  𝑡  ∈  𝐷 )  ∧  𝑗  ∈  ( 1 ... 𝑀 ) )  ∧  𝑡  ∈  ( 𝑊 ‘ 𝑗 ) )  →  ( ( 𝑈 ‘ 𝑗 ) ‘ 𝑡 )  <  𝐸 ) | 
						
							| 147 | 146 | ex | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  𝐷 )  ∧  𝑗  ∈  ( 1 ... 𝑀 ) )  →  ( 𝑡  ∈  ( 𝑊 ‘ 𝑗 )  →  ( ( 𝑈 ‘ 𝑗 ) ‘ 𝑡 )  <  𝐸 ) ) | 
						
							| 148 | 147 | reximdva | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝐷 )  →  ( ∃ 𝑗  ∈  ( 1 ... 𝑀 ) 𝑡  ∈  ( 𝑊 ‘ 𝑗 )  →  ∃ 𝑗  ∈  ( 1 ... 𝑀 ) ( ( 𝑈 ‘ 𝑗 ) ‘ 𝑡 )  <  𝐸 ) ) | 
						
							| 149 | 126 148 | mpd | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝐷 )  →  ∃ 𝑗  ∈  ( 1 ... 𝑀 ) ( ( 𝑈 ‘ 𝑗 ) ‘ 𝑡 )  <  𝐸 ) | 
						
							| 150 | 86 130 | nfan | ⊢ Ⅎ 𝑖 ( ( 𝜑  ∧  𝑡  ∈  𝐷 )  ∧  𝑗  ∈  ( 1 ... 𝑀 ) ) | 
						
							| 151 |  | nfcv | ⊢ Ⅎ 𝑖 𝑗 | 
						
							| 152 | 84 151 | nffv | ⊢ Ⅎ 𝑖 ( ( 𝐹 ‘ 𝑡 ) ‘ 𝑗 ) | 
						
							| 153 | 152 | nfeq1 | ⊢ Ⅎ 𝑖 ( ( 𝐹 ‘ 𝑡 ) ‘ 𝑗 )  =  ( ( 𝑈 ‘ 𝑗 ) ‘ 𝑡 ) | 
						
							| 154 | 150 153 | nfim | ⊢ Ⅎ 𝑖 ( ( ( 𝜑  ∧  𝑡  ∈  𝐷 )  ∧  𝑗  ∈  ( 1 ... 𝑀 ) )  →  ( ( 𝐹 ‘ 𝑡 ) ‘ 𝑗 )  =  ( ( 𝑈 ‘ 𝑗 ) ‘ 𝑡 ) ) | 
						
							| 155 | 135 | anbi2d | ⊢ ( 𝑖  =  𝑗  →  ( ( ( 𝜑  ∧  𝑡  ∈  𝐷 )  ∧  𝑖  ∈  ( 1 ... 𝑀 ) )  ↔  ( ( 𝜑  ∧  𝑡  ∈  𝐷 )  ∧  𝑗  ∈  ( 1 ... 𝑀 ) ) ) ) | 
						
							| 156 |  | fveq2 | ⊢ ( 𝑖  =  𝑗  →  ( ( 𝐹 ‘ 𝑡 ) ‘ 𝑖 )  =  ( ( 𝐹 ‘ 𝑡 ) ‘ 𝑗 ) ) | 
						
							| 157 | 156 140 | eqeq12d | ⊢ ( 𝑖  =  𝑗  →  ( ( ( 𝐹 ‘ 𝑡 ) ‘ 𝑖 )  =  ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑡 )  ↔  ( ( 𝐹 ‘ 𝑡 ) ‘ 𝑗 )  =  ( ( 𝑈 ‘ 𝑗 ) ‘ 𝑡 ) ) ) | 
						
							| 158 | 155 157 | imbi12d | ⊢ ( 𝑖  =  𝑗  →  ( ( ( ( 𝜑  ∧  𝑡  ∈  𝐷 )  ∧  𝑖  ∈  ( 1 ... 𝑀 ) )  →  ( ( 𝐹 ‘ 𝑡 ) ‘ 𝑖 )  =  ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑡 ) )  ↔  ( ( ( 𝜑  ∧  𝑡  ∈  𝐷 )  ∧  𝑗  ∈  ( 1 ... 𝑀 ) )  →  ( ( 𝐹 ‘ 𝑡 ) ‘ 𝑗 )  =  ( ( 𝑈 ‘ 𝑗 ) ‘ 𝑡 ) ) ) ) | 
						
							| 159 | 154 158 102 | chvarfv | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  𝐷 )  ∧  𝑗  ∈  ( 1 ... 𝑀 ) )  →  ( ( 𝐹 ‘ 𝑡 ) ‘ 𝑗 )  =  ( ( 𝑈 ‘ 𝑗 ) ‘ 𝑡 ) ) | 
						
							| 160 | 159 | breq1d | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  𝐷 )  ∧  𝑗  ∈  ( 1 ... 𝑀 ) )  →  ( ( ( 𝐹 ‘ 𝑡 ) ‘ 𝑗 )  <  𝐸  ↔  ( ( 𝑈 ‘ 𝑗 ) ‘ 𝑡 )  <  𝐸 ) ) | 
						
							| 161 | 160 | biimprd | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  𝐷 )  ∧  𝑗  ∈  ( 1 ... 𝑀 ) )  →  ( ( ( 𝑈 ‘ 𝑗 ) ‘ 𝑡 )  <  𝐸  →  ( ( 𝐹 ‘ 𝑡 ) ‘ 𝑗 )  <  𝐸 ) ) | 
						
							| 162 | 161 | reximdva | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝐷 )  →  ( ∃ 𝑗  ∈  ( 1 ... 𝑀 ) ( ( 𝑈 ‘ 𝑗 ) ‘ 𝑡 )  <  𝐸  →  ∃ 𝑗  ∈  ( 1 ... 𝑀 ) ( ( 𝐹 ‘ 𝑡 ) ‘ 𝑗 )  <  𝐸 ) ) | 
						
							| 163 | 149 162 | mpd | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝐷 )  →  ∃ 𝑗  ∈  ( 1 ... 𝑀 ) ( ( 𝐹 ‘ 𝑡 ) ‘ 𝑗 )  <  𝐸 ) | 
						
							| 164 | 84 86 87 88 89 72 103 106 107 163 | fmul01lt1 | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝐷 )  →  ( seq 1 (  ·  ,  ( 𝐹 ‘ 𝑡 ) ) ‘ 𝑀 )  <  𝐸 ) | 
						
							| 165 | 78 164 | eqbrtrd | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝐷 )  →  ( 𝑍 ‘ 𝑡 )  <  𝐸 ) | 
						
							| 166 | 36 165 | eqbrtrd | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝐷 )  →  ( 𝑋 ‘ 𝑡 )  <  𝐸 ) | 
						
							| 167 | 166 | ex | ⊢ ( 𝜑  →  ( 𝑡  ∈  𝐷  →  ( 𝑋 ‘ 𝑡 )  <  𝐸 ) ) | 
						
							| 168 | 2 167 | ralrimi | ⊢ ( 𝜑  →  ∀ 𝑡  ∈  𝐷 ( 𝑋 ‘ 𝑡 )  <  𝐸 ) |