Metamath Proof Explorer


Theorem fmuldfeq

Description: X and Z are two equivalent definitions of the finite product of real functions. Y is a set of real functions from a common domain T, Y is closed under function multiplication and U is a finite sequence of functions in Y. M is the number of functions multiplied together. (Contributed by Glauco Siliprandi, 20-Apr-2017)

Ref Expression
Hypotheses fmuldfeq.1 𝑖 𝜑
fmuldfeq.2 𝑡 𝑌
fmuldfeq.3 𝑃 = ( 𝑓𝑌 , 𝑔𝑌 ↦ ( 𝑡𝑇 ↦ ( ( 𝑓𝑡 ) · ( 𝑔𝑡 ) ) ) )
fmuldfeq.4 𝑋 = ( seq 1 ( 𝑃 , 𝑈 ) ‘ 𝑀 )
fmuldfeq.5 𝐹 = ( 𝑡𝑇 ↦ ( 𝑖 ∈ ( 1 ... 𝑀 ) ↦ ( ( 𝑈𝑖 ) ‘ 𝑡 ) ) )
fmuldfeq.6 𝑍 = ( 𝑡𝑇 ↦ ( seq 1 ( · , ( 𝐹𝑡 ) ) ‘ 𝑀 ) )
fmuldfeq.7 ( 𝜑𝑇 ∈ V )
fmuldfeq.8 ( 𝜑𝑀 ∈ ℕ )
fmuldfeq.9 ( 𝜑𝑈 : ( 1 ... 𝑀 ) ⟶ 𝑌 )
fmuldfeq.10 ( ( 𝜑𝑓𝑌 ) → 𝑓 : 𝑇 ⟶ ℝ )
fmuldfeq.11 ( ( 𝜑𝑓𝑌𝑔𝑌 ) → ( 𝑡𝑇 ↦ ( ( 𝑓𝑡 ) · ( 𝑔𝑡 ) ) ) ∈ 𝑌 )
Assertion fmuldfeq ( ( 𝜑𝑡𝑇 ) → ( 𝑋𝑡 ) = ( 𝑍𝑡 ) )

Proof

Step Hyp Ref Expression
1 fmuldfeq.1 𝑖 𝜑
2 fmuldfeq.2 𝑡 𝑌
3 fmuldfeq.3 𝑃 = ( 𝑓𝑌 , 𝑔𝑌 ↦ ( 𝑡𝑇 ↦ ( ( 𝑓𝑡 ) · ( 𝑔𝑡 ) ) ) )
4 fmuldfeq.4 𝑋 = ( seq 1 ( 𝑃 , 𝑈 ) ‘ 𝑀 )
5 fmuldfeq.5 𝐹 = ( 𝑡𝑇 ↦ ( 𝑖 ∈ ( 1 ... 𝑀 ) ↦ ( ( 𝑈𝑖 ) ‘ 𝑡 ) ) )
6 fmuldfeq.6 𝑍 = ( 𝑡𝑇 ↦ ( seq 1 ( · , ( 𝐹𝑡 ) ) ‘ 𝑀 ) )
7 fmuldfeq.7 ( 𝜑𝑇 ∈ V )
8 fmuldfeq.8 ( 𝜑𝑀 ∈ ℕ )
9 fmuldfeq.9 ( 𝜑𝑈 : ( 1 ... 𝑀 ) ⟶ 𝑌 )
10 fmuldfeq.10 ( ( 𝜑𝑓𝑌 ) → 𝑓 : 𝑇 ⟶ ℝ )
11 fmuldfeq.11 ( ( 𝜑𝑓𝑌𝑔𝑌 ) → ( 𝑡𝑇 ↦ ( ( 𝑓𝑡 ) · ( 𝑔𝑡 ) ) ) ∈ 𝑌 )
12 8 nnge1d ( 𝜑 → 1 ≤ 𝑀 )
13 12 adantr ( ( 𝜑𝑡𝑇 ) → 1 ≤ 𝑀 )
14 nnre ( 𝑀 ∈ ℕ → 𝑀 ∈ ℝ )
15 leid ( 𝑀 ∈ ℝ → 𝑀𝑀 )
16 8 14 15 3syl ( 𝜑𝑀𝑀 )
17 16 adantr ( ( 𝜑𝑡𝑇 ) → 𝑀𝑀 )
18 8 nnzd ( 𝜑𝑀 ∈ ℤ )
19 18 adantr ( ( 𝜑𝑡𝑇 ) → 𝑀 ∈ ℤ )
20 1zzd ( ( 𝜑𝑡𝑇 ) → 1 ∈ ℤ )
21 elfz ( ( 𝑀 ∈ ℤ ∧ 1 ∈ ℤ ∧ 𝑀 ∈ ℤ ) → ( 𝑀 ∈ ( 1 ... 𝑀 ) ↔ ( 1 ≤ 𝑀𝑀𝑀 ) ) )
22 19 20 19 21 syl3anc ( ( 𝜑𝑡𝑇 ) → ( 𝑀 ∈ ( 1 ... 𝑀 ) ↔ ( 1 ≤ 𝑀𝑀𝑀 ) ) )
23 13 17 22 mpbir2and ( ( 𝜑𝑡𝑇 ) → 𝑀 ∈ ( 1 ... 𝑀 ) )
24 8 3ad2ant1 ( ( 𝜑𝑡𝑇𝑀 ∈ ( 1 ... 𝑀 ) ) → 𝑀 ∈ ℕ )
25 eleq1 ( 𝑚 = 1 → ( 𝑚 ∈ ( 1 ... 𝑀 ) ↔ 1 ∈ ( 1 ... 𝑀 ) ) )
26 25 3anbi3d ( 𝑚 = 1 → ( ( 𝜑𝑡𝑇𝑚 ∈ ( 1 ... 𝑀 ) ) ↔ ( 𝜑𝑡𝑇 ∧ 1 ∈ ( 1 ... 𝑀 ) ) ) )
27 fveq2 ( 𝑚 = 1 → ( seq 1 ( 𝑃 , 𝑈 ) ‘ 𝑚 ) = ( seq 1 ( 𝑃 , 𝑈 ) ‘ 1 ) )
28 27 fveq1d ( 𝑚 = 1 → ( ( seq 1 ( 𝑃 , 𝑈 ) ‘ 𝑚 ) ‘ 𝑡 ) = ( ( seq 1 ( 𝑃 , 𝑈 ) ‘ 1 ) ‘ 𝑡 ) )
29 fveq2 ( 𝑚 = 1 → ( seq 1 ( · , ( 𝐹𝑡 ) ) ‘ 𝑚 ) = ( seq 1 ( · , ( 𝐹𝑡 ) ) ‘ 1 ) )
30 28 29 eqeq12d ( 𝑚 = 1 → ( ( ( seq 1 ( 𝑃 , 𝑈 ) ‘ 𝑚 ) ‘ 𝑡 ) = ( seq 1 ( · , ( 𝐹𝑡 ) ) ‘ 𝑚 ) ↔ ( ( seq 1 ( 𝑃 , 𝑈 ) ‘ 1 ) ‘ 𝑡 ) = ( seq 1 ( · , ( 𝐹𝑡 ) ) ‘ 1 ) ) )
31 26 30 imbi12d ( 𝑚 = 1 → ( ( ( 𝜑𝑡𝑇𝑚 ∈ ( 1 ... 𝑀 ) ) → ( ( seq 1 ( 𝑃 , 𝑈 ) ‘ 𝑚 ) ‘ 𝑡 ) = ( seq 1 ( · , ( 𝐹𝑡 ) ) ‘ 𝑚 ) ) ↔ ( ( 𝜑𝑡𝑇 ∧ 1 ∈ ( 1 ... 𝑀 ) ) → ( ( seq 1 ( 𝑃 , 𝑈 ) ‘ 1 ) ‘ 𝑡 ) = ( seq 1 ( · , ( 𝐹𝑡 ) ) ‘ 1 ) ) ) )
32 eleq1 ( 𝑚 = 𝑛 → ( 𝑚 ∈ ( 1 ... 𝑀 ) ↔ 𝑛 ∈ ( 1 ... 𝑀 ) ) )
33 32 3anbi3d ( 𝑚 = 𝑛 → ( ( 𝜑𝑡𝑇𝑚 ∈ ( 1 ... 𝑀 ) ) ↔ ( 𝜑𝑡𝑇𝑛 ∈ ( 1 ... 𝑀 ) ) ) )
34 fveq2 ( 𝑚 = 𝑛 → ( seq 1 ( 𝑃 , 𝑈 ) ‘ 𝑚 ) = ( seq 1 ( 𝑃 , 𝑈 ) ‘ 𝑛 ) )
35 34 fveq1d ( 𝑚 = 𝑛 → ( ( seq 1 ( 𝑃 , 𝑈 ) ‘ 𝑚 ) ‘ 𝑡 ) = ( ( seq 1 ( 𝑃 , 𝑈 ) ‘ 𝑛 ) ‘ 𝑡 ) )
36 fveq2 ( 𝑚 = 𝑛 → ( seq 1 ( · , ( 𝐹𝑡 ) ) ‘ 𝑚 ) = ( seq 1 ( · , ( 𝐹𝑡 ) ) ‘ 𝑛 ) )
37 35 36 eqeq12d ( 𝑚 = 𝑛 → ( ( ( seq 1 ( 𝑃 , 𝑈 ) ‘ 𝑚 ) ‘ 𝑡 ) = ( seq 1 ( · , ( 𝐹𝑡 ) ) ‘ 𝑚 ) ↔ ( ( seq 1 ( 𝑃 , 𝑈 ) ‘ 𝑛 ) ‘ 𝑡 ) = ( seq 1 ( · , ( 𝐹𝑡 ) ) ‘ 𝑛 ) ) )
38 33 37 imbi12d ( 𝑚 = 𝑛 → ( ( ( 𝜑𝑡𝑇𝑚 ∈ ( 1 ... 𝑀 ) ) → ( ( seq 1 ( 𝑃 , 𝑈 ) ‘ 𝑚 ) ‘ 𝑡 ) = ( seq 1 ( · , ( 𝐹𝑡 ) ) ‘ 𝑚 ) ) ↔ ( ( 𝜑𝑡𝑇𝑛 ∈ ( 1 ... 𝑀 ) ) → ( ( seq 1 ( 𝑃 , 𝑈 ) ‘ 𝑛 ) ‘ 𝑡 ) = ( seq 1 ( · , ( 𝐹𝑡 ) ) ‘ 𝑛 ) ) ) )
39 eleq1 ( 𝑚 = ( 𝑛 + 1 ) → ( 𝑚 ∈ ( 1 ... 𝑀 ) ↔ ( 𝑛 + 1 ) ∈ ( 1 ... 𝑀 ) ) )
40 39 3anbi3d ( 𝑚 = ( 𝑛 + 1 ) → ( ( 𝜑𝑡𝑇𝑚 ∈ ( 1 ... 𝑀 ) ) ↔ ( 𝜑𝑡𝑇 ∧ ( 𝑛 + 1 ) ∈ ( 1 ... 𝑀 ) ) ) )
41 fveq2 ( 𝑚 = ( 𝑛 + 1 ) → ( seq 1 ( 𝑃 , 𝑈 ) ‘ 𝑚 ) = ( seq 1 ( 𝑃 , 𝑈 ) ‘ ( 𝑛 + 1 ) ) )
42 41 fveq1d ( 𝑚 = ( 𝑛 + 1 ) → ( ( seq 1 ( 𝑃 , 𝑈 ) ‘ 𝑚 ) ‘ 𝑡 ) = ( ( seq 1 ( 𝑃 , 𝑈 ) ‘ ( 𝑛 + 1 ) ) ‘ 𝑡 ) )
43 fveq2 ( 𝑚 = ( 𝑛 + 1 ) → ( seq 1 ( · , ( 𝐹𝑡 ) ) ‘ 𝑚 ) = ( seq 1 ( · , ( 𝐹𝑡 ) ) ‘ ( 𝑛 + 1 ) ) )
44 42 43 eqeq12d ( 𝑚 = ( 𝑛 + 1 ) → ( ( ( seq 1 ( 𝑃 , 𝑈 ) ‘ 𝑚 ) ‘ 𝑡 ) = ( seq 1 ( · , ( 𝐹𝑡 ) ) ‘ 𝑚 ) ↔ ( ( seq 1 ( 𝑃 , 𝑈 ) ‘ ( 𝑛 + 1 ) ) ‘ 𝑡 ) = ( seq 1 ( · , ( 𝐹𝑡 ) ) ‘ ( 𝑛 + 1 ) ) ) )
45 40 44 imbi12d ( 𝑚 = ( 𝑛 + 1 ) → ( ( ( 𝜑𝑡𝑇𝑚 ∈ ( 1 ... 𝑀 ) ) → ( ( seq 1 ( 𝑃 , 𝑈 ) ‘ 𝑚 ) ‘ 𝑡 ) = ( seq 1 ( · , ( 𝐹𝑡 ) ) ‘ 𝑚 ) ) ↔ ( ( 𝜑𝑡𝑇 ∧ ( 𝑛 + 1 ) ∈ ( 1 ... 𝑀 ) ) → ( ( seq 1 ( 𝑃 , 𝑈 ) ‘ ( 𝑛 + 1 ) ) ‘ 𝑡 ) = ( seq 1 ( · , ( 𝐹𝑡 ) ) ‘ ( 𝑛 + 1 ) ) ) ) )
46 eleq1 ( 𝑚 = 𝑀 → ( 𝑚 ∈ ( 1 ... 𝑀 ) ↔ 𝑀 ∈ ( 1 ... 𝑀 ) ) )
47 46 3anbi3d ( 𝑚 = 𝑀 → ( ( 𝜑𝑡𝑇𝑚 ∈ ( 1 ... 𝑀 ) ) ↔ ( 𝜑𝑡𝑇𝑀 ∈ ( 1 ... 𝑀 ) ) ) )
48 fveq2 ( 𝑚 = 𝑀 → ( seq 1 ( 𝑃 , 𝑈 ) ‘ 𝑚 ) = ( seq 1 ( 𝑃 , 𝑈 ) ‘ 𝑀 ) )
49 48 fveq1d ( 𝑚 = 𝑀 → ( ( seq 1 ( 𝑃 , 𝑈 ) ‘ 𝑚 ) ‘ 𝑡 ) = ( ( seq 1 ( 𝑃 , 𝑈 ) ‘ 𝑀 ) ‘ 𝑡 ) )
50 fveq2 ( 𝑚 = 𝑀 → ( seq 1 ( · , ( 𝐹𝑡 ) ) ‘ 𝑚 ) = ( seq 1 ( · , ( 𝐹𝑡 ) ) ‘ 𝑀 ) )
51 49 50 eqeq12d ( 𝑚 = 𝑀 → ( ( ( seq 1 ( 𝑃 , 𝑈 ) ‘ 𝑚 ) ‘ 𝑡 ) = ( seq 1 ( · , ( 𝐹𝑡 ) ) ‘ 𝑚 ) ↔ ( ( seq 1 ( 𝑃 , 𝑈 ) ‘ 𝑀 ) ‘ 𝑡 ) = ( seq 1 ( · , ( 𝐹𝑡 ) ) ‘ 𝑀 ) ) )
52 47 51 imbi12d ( 𝑚 = 𝑀 → ( ( ( 𝜑𝑡𝑇𝑚 ∈ ( 1 ... 𝑀 ) ) → ( ( seq 1 ( 𝑃 , 𝑈 ) ‘ 𝑚 ) ‘ 𝑡 ) = ( seq 1 ( · , ( 𝐹𝑡 ) ) ‘ 𝑚 ) ) ↔ ( ( 𝜑𝑡𝑇𝑀 ∈ ( 1 ... 𝑀 ) ) → ( ( seq 1 ( 𝑃 , 𝑈 ) ‘ 𝑀 ) ‘ 𝑡 ) = ( seq 1 ( · , ( 𝐹𝑡 ) ) ‘ 𝑀 ) ) ) )
53 1z 1 ∈ ℤ
54 seq1 ( 1 ∈ ℤ → ( seq 1 ( · , ( 𝐹𝑡 ) ) ‘ 1 ) = ( ( 𝐹𝑡 ) ‘ 1 ) )
55 53 54 ax-mp ( seq 1 ( · , ( 𝐹𝑡 ) ) ‘ 1 ) = ( ( 𝐹𝑡 ) ‘ 1 )
56 1le1 1 ≤ 1
57 56 a1i ( 𝜑 → 1 ≤ 1 )
58 1zzd ( 𝜑 → 1 ∈ ℤ )
59 elfz ( ( 1 ∈ ℤ ∧ 1 ∈ ℤ ∧ 𝑀 ∈ ℤ ) → ( 1 ∈ ( 1 ... 𝑀 ) ↔ ( 1 ≤ 1 ∧ 1 ≤ 𝑀 ) ) )
60 58 58 18 59 syl3anc ( 𝜑 → ( 1 ∈ ( 1 ... 𝑀 ) ↔ ( 1 ≤ 1 ∧ 1 ≤ 𝑀 ) ) )
61 57 12 60 mpbir2and ( 𝜑 → 1 ∈ ( 1 ... 𝑀 ) )
62 nfv 𝑖 𝑡𝑇
63 nfcv 𝑖 𝑇
64 nfmpt1 𝑖 ( 𝑖 ∈ ( 1 ... 𝑀 ) ↦ ( ( 𝑈𝑖 ) ‘ 𝑡 ) )
65 63 64 nfmpt 𝑖 ( 𝑡𝑇 ↦ ( 𝑖 ∈ ( 1 ... 𝑀 ) ↦ ( ( 𝑈𝑖 ) ‘ 𝑡 ) ) )
66 5 65 nfcxfr 𝑖 𝐹
67 nfcv 𝑖 𝑡
68 66 67 nffv 𝑖 ( 𝐹𝑡 )
69 nfcv 𝑖 1
70 68 69 nffv 𝑖 ( ( 𝐹𝑡 ) ‘ 1 )
71 nffvmpt1 𝑖 ( ( 𝑖 ∈ ( 1 ... 𝑀 ) ↦ ( ( 𝑈𝑖 ) ‘ 𝑡 ) ) ‘ 1 )
72 70 71 nfeq 𝑖 ( ( 𝐹𝑡 ) ‘ 1 ) = ( ( 𝑖 ∈ ( 1 ... 𝑀 ) ↦ ( ( 𝑈𝑖 ) ‘ 𝑡 ) ) ‘ 1 )
73 62 72 nfim 𝑖 ( 𝑡𝑇 → ( ( 𝐹𝑡 ) ‘ 1 ) = ( ( 𝑖 ∈ ( 1 ... 𝑀 ) ↦ ( ( 𝑈𝑖 ) ‘ 𝑡 ) ) ‘ 1 ) )
74 fveq2 ( 𝑖 = 1 → ( ( 𝐹𝑡 ) ‘ 𝑖 ) = ( ( 𝐹𝑡 ) ‘ 1 ) )
75 fveq2 ( 𝑖 = 1 → ( ( 𝑖 ∈ ( 1 ... 𝑀 ) ↦ ( ( 𝑈𝑖 ) ‘ 𝑡 ) ) ‘ 𝑖 ) = ( ( 𝑖 ∈ ( 1 ... 𝑀 ) ↦ ( ( 𝑈𝑖 ) ‘ 𝑡 ) ) ‘ 1 ) )
76 74 75 eqeq12d ( 𝑖 = 1 → ( ( ( 𝐹𝑡 ) ‘ 𝑖 ) = ( ( 𝑖 ∈ ( 1 ... 𝑀 ) ↦ ( ( 𝑈𝑖 ) ‘ 𝑡 ) ) ‘ 𝑖 ) ↔ ( ( 𝐹𝑡 ) ‘ 1 ) = ( ( 𝑖 ∈ ( 1 ... 𝑀 ) ↦ ( ( 𝑈𝑖 ) ‘ 𝑡 ) ) ‘ 1 ) ) )
77 76 imbi2d ( 𝑖 = 1 → ( ( 𝑡𝑇 → ( ( 𝐹𝑡 ) ‘ 𝑖 ) = ( ( 𝑖 ∈ ( 1 ... 𝑀 ) ↦ ( ( 𝑈𝑖 ) ‘ 𝑡 ) ) ‘ 𝑖 ) ) ↔ ( 𝑡𝑇 → ( ( 𝐹𝑡 ) ‘ 1 ) = ( ( 𝑖 ∈ ( 1 ... 𝑀 ) ↦ ( ( 𝑈𝑖 ) ‘ 𝑡 ) ) ‘ 1 ) ) ) )
78 ovex ( 1 ... 𝑀 ) ∈ V
79 78 mptex ( 𝑖 ∈ ( 1 ... 𝑀 ) ↦ ( ( 𝑈𝑖 ) ‘ 𝑡 ) ) ∈ V
80 5 fvmpt2 ( ( 𝑡𝑇 ∧ ( 𝑖 ∈ ( 1 ... 𝑀 ) ↦ ( ( 𝑈𝑖 ) ‘ 𝑡 ) ) ∈ V ) → ( 𝐹𝑡 ) = ( 𝑖 ∈ ( 1 ... 𝑀 ) ↦ ( ( 𝑈𝑖 ) ‘ 𝑡 ) ) )
81 79 80 mpan2 ( 𝑡𝑇 → ( 𝐹𝑡 ) = ( 𝑖 ∈ ( 1 ... 𝑀 ) ↦ ( ( 𝑈𝑖 ) ‘ 𝑡 ) ) )
82 81 fveq1d ( 𝑡𝑇 → ( ( 𝐹𝑡 ) ‘ 𝑖 ) = ( ( 𝑖 ∈ ( 1 ... 𝑀 ) ↦ ( ( 𝑈𝑖 ) ‘ 𝑡 ) ) ‘ 𝑖 ) )
83 73 77 82 vtoclg1f ( 1 ∈ ( 1 ... 𝑀 ) → ( 𝑡𝑇 → ( ( 𝐹𝑡 ) ‘ 1 ) = ( ( 𝑖 ∈ ( 1 ... 𝑀 ) ↦ ( ( 𝑈𝑖 ) ‘ 𝑡 ) ) ‘ 1 ) ) )
84 61 83 syl ( 𝜑 → ( 𝑡𝑇 → ( ( 𝐹𝑡 ) ‘ 1 ) = ( ( 𝑖 ∈ ( 1 ... 𝑀 ) ↦ ( ( 𝑈𝑖 ) ‘ 𝑡 ) ) ‘ 1 ) ) )
85 84 imp ( ( 𝜑𝑡𝑇 ) → ( ( 𝐹𝑡 ) ‘ 1 ) = ( ( 𝑖 ∈ ( 1 ... 𝑀 ) ↦ ( ( 𝑈𝑖 ) ‘ 𝑡 ) ) ‘ 1 ) )
86 eqid ( 𝑖 ∈ ( 1 ... 𝑀 ) ↦ ( ( 𝑈𝑖 ) ‘ 𝑡 ) ) = ( 𝑖 ∈ ( 1 ... 𝑀 ) ↦ ( ( 𝑈𝑖 ) ‘ 𝑡 ) )
87 fveq2 ( 𝑖 = 1 → ( 𝑈𝑖 ) = ( 𝑈 ‘ 1 ) )
88 87 fveq1d ( 𝑖 = 1 → ( ( 𝑈𝑖 ) ‘ 𝑡 ) = ( ( 𝑈 ‘ 1 ) ‘ 𝑡 ) )
89 61 adantr ( ( 𝜑𝑡𝑇 ) → 1 ∈ ( 1 ... 𝑀 ) )
90 9 61 ffvelrnd ( 𝜑 → ( 𝑈 ‘ 1 ) ∈ 𝑌 )
91 90 ancli ( 𝜑 → ( 𝜑 ∧ ( 𝑈 ‘ 1 ) ∈ 𝑌 ) )
92 eleq1 ( 𝑓 = ( 𝑈 ‘ 1 ) → ( 𝑓𝑌 ↔ ( 𝑈 ‘ 1 ) ∈ 𝑌 ) )
93 92 anbi2d ( 𝑓 = ( 𝑈 ‘ 1 ) → ( ( 𝜑𝑓𝑌 ) ↔ ( 𝜑 ∧ ( 𝑈 ‘ 1 ) ∈ 𝑌 ) ) )
94 feq1 ( 𝑓 = ( 𝑈 ‘ 1 ) → ( 𝑓 : 𝑇 ⟶ ℝ ↔ ( 𝑈 ‘ 1 ) : 𝑇 ⟶ ℝ ) )
95 93 94 imbi12d ( 𝑓 = ( 𝑈 ‘ 1 ) → ( ( ( 𝜑𝑓𝑌 ) → 𝑓 : 𝑇 ⟶ ℝ ) ↔ ( ( 𝜑 ∧ ( 𝑈 ‘ 1 ) ∈ 𝑌 ) → ( 𝑈 ‘ 1 ) : 𝑇 ⟶ ℝ ) ) )
96 10 a1i ( 𝑓𝑌 → ( ( 𝜑𝑓𝑌 ) → 𝑓 : 𝑇 ⟶ ℝ ) )
97 95 96 vtoclga ( ( 𝑈 ‘ 1 ) ∈ 𝑌 → ( ( 𝜑 ∧ ( 𝑈 ‘ 1 ) ∈ 𝑌 ) → ( 𝑈 ‘ 1 ) : 𝑇 ⟶ ℝ ) )
98 90 91 97 sylc ( 𝜑 → ( 𝑈 ‘ 1 ) : 𝑇 ⟶ ℝ )
99 98 ffvelrnda ( ( 𝜑𝑡𝑇 ) → ( ( 𝑈 ‘ 1 ) ‘ 𝑡 ) ∈ ℝ )
100 86 88 89 99 fvmptd3 ( ( 𝜑𝑡𝑇 ) → ( ( 𝑖 ∈ ( 1 ... 𝑀 ) ↦ ( ( 𝑈𝑖 ) ‘ 𝑡 ) ) ‘ 1 ) = ( ( 𝑈 ‘ 1 ) ‘ 𝑡 ) )
101 85 100 eqtrd ( ( 𝜑𝑡𝑇 ) → ( ( 𝐹𝑡 ) ‘ 1 ) = ( ( 𝑈 ‘ 1 ) ‘ 𝑡 ) )
102 seq1 ( 1 ∈ ℤ → ( seq 1 ( 𝑃 , 𝑈 ) ‘ 1 ) = ( 𝑈 ‘ 1 ) )
103 53 102 ax-mp ( seq 1 ( 𝑃 , 𝑈 ) ‘ 1 ) = ( 𝑈 ‘ 1 )
104 103 fveq1i ( ( seq 1 ( 𝑃 , 𝑈 ) ‘ 1 ) ‘ 𝑡 ) = ( ( 𝑈 ‘ 1 ) ‘ 𝑡 )
105 101 104 eqtr4di ( ( 𝜑𝑡𝑇 ) → ( ( 𝐹𝑡 ) ‘ 1 ) = ( ( seq 1 ( 𝑃 , 𝑈 ) ‘ 1 ) ‘ 𝑡 ) )
106 55 105 syl5req ( ( 𝜑𝑡𝑇 ) → ( ( seq 1 ( 𝑃 , 𝑈 ) ‘ 1 ) ‘ 𝑡 ) = ( seq 1 ( · , ( 𝐹𝑡 ) ) ‘ 1 ) )
107 106 3adant3 ( ( 𝜑𝑡𝑇 ∧ 1 ∈ ( 1 ... 𝑀 ) ) → ( ( seq 1 ( 𝑃 , 𝑈 ) ‘ 1 ) ‘ 𝑡 ) = ( seq 1 ( · , ( 𝐹𝑡 ) ) ‘ 1 ) )
108 simp31 ( ( 𝑛 ∈ ℕ ∧ ( ( 𝜑𝑡𝑇𝑛 ∈ ( 1 ... 𝑀 ) ) → ( ( seq 1 ( 𝑃 , 𝑈 ) ‘ 𝑛 ) ‘ 𝑡 ) = ( seq 1 ( · , ( 𝐹𝑡 ) ) ‘ 𝑛 ) ) ∧ ( 𝜑𝑡𝑇 ∧ ( 𝑛 + 1 ) ∈ ( 1 ... 𝑀 ) ) ) → 𝜑 )
109 simp1 ( ( 𝑛 ∈ ℕ ∧ ( ( 𝜑𝑡𝑇𝑛 ∈ ( 1 ... 𝑀 ) ) → ( ( seq 1 ( 𝑃 , 𝑈 ) ‘ 𝑛 ) ‘ 𝑡 ) = ( seq 1 ( · , ( 𝐹𝑡 ) ) ‘ 𝑛 ) ) ∧ ( 𝜑𝑡𝑇 ∧ ( 𝑛 + 1 ) ∈ ( 1 ... 𝑀 ) ) ) → 𝑛 ∈ ℕ )
110 simp33 ( ( 𝑛 ∈ ℕ ∧ ( ( 𝜑𝑡𝑇𝑛 ∈ ( 1 ... 𝑀 ) ) → ( ( seq 1 ( 𝑃 , 𝑈 ) ‘ 𝑛 ) ‘ 𝑡 ) = ( seq 1 ( · , ( 𝐹𝑡 ) ) ‘ 𝑛 ) ) ∧ ( 𝜑𝑡𝑇 ∧ ( 𝑛 + 1 ) ∈ ( 1 ... 𝑀 ) ) ) → ( 𝑛 + 1 ) ∈ ( 1 ... 𝑀 ) )
111 109 110 jca ( ( 𝑛 ∈ ℕ ∧ ( ( 𝜑𝑡𝑇𝑛 ∈ ( 1 ... 𝑀 ) ) → ( ( seq 1 ( 𝑃 , 𝑈 ) ‘ 𝑛 ) ‘ 𝑡 ) = ( seq 1 ( · , ( 𝐹𝑡 ) ) ‘ 𝑛 ) ) ∧ ( 𝜑𝑡𝑇 ∧ ( 𝑛 + 1 ) ∈ ( 1 ... 𝑀 ) ) ) → ( 𝑛 ∈ ℕ ∧ ( 𝑛 + 1 ) ∈ ( 1 ... 𝑀 ) ) )
112 elnnuz ( 𝑛 ∈ ℕ ↔ 𝑛 ∈ ( ℤ ‘ 1 ) )
113 112 biimpi ( 𝑛 ∈ ℕ → 𝑛 ∈ ( ℤ ‘ 1 ) )
114 113 anim1i ( ( 𝑛 ∈ ℕ ∧ ( 𝑛 + 1 ) ∈ ( 1 ... 𝑀 ) ) → ( 𝑛 ∈ ( ℤ ‘ 1 ) ∧ ( 𝑛 + 1 ) ∈ ( 1 ... 𝑀 ) ) )
115 peano2fzr ( ( 𝑛 ∈ ( ℤ ‘ 1 ) ∧ ( 𝑛 + 1 ) ∈ ( 1 ... 𝑀 ) ) → 𝑛 ∈ ( 1 ... 𝑀 ) )
116 111 114 115 3syl ( ( 𝑛 ∈ ℕ ∧ ( ( 𝜑𝑡𝑇𝑛 ∈ ( 1 ... 𝑀 ) ) → ( ( seq 1 ( 𝑃 , 𝑈 ) ‘ 𝑛 ) ‘ 𝑡 ) = ( seq 1 ( · , ( 𝐹𝑡 ) ) ‘ 𝑛 ) ) ∧ ( 𝜑𝑡𝑇 ∧ ( 𝑛 + 1 ) ∈ ( 1 ... 𝑀 ) ) ) → 𝑛 ∈ ( 1 ... 𝑀 ) )
117 simp32 ( ( 𝑛 ∈ ℕ ∧ ( ( 𝜑𝑡𝑇𝑛 ∈ ( 1 ... 𝑀 ) ) → ( ( seq 1 ( 𝑃 , 𝑈 ) ‘ 𝑛 ) ‘ 𝑡 ) = ( seq 1 ( · , ( 𝐹𝑡 ) ) ‘ 𝑛 ) ) ∧ ( 𝜑𝑡𝑇 ∧ ( 𝑛 + 1 ) ∈ ( 1 ... 𝑀 ) ) ) → 𝑡𝑇 )
118 simp2 ( ( 𝑛 ∈ ℕ ∧ ( ( 𝜑𝑡𝑇𝑛 ∈ ( 1 ... 𝑀 ) ) → ( ( seq 1 ( 𝑃 , 𝑈 ) ‘ 𝑛 ) ‘ 𝑡 ) = ( seq 1 ( · , ( 𝐹𝑡 ) ) ‘ 𝑛 ) ) ∧ ( 𝜑𝑡𝑇 ∧ ( 𝑛 + 1 ) ∈ ( 1 ... 𝑀 ) ) ) → ( ( 𝜑𝑡𝑇𝑛 ∈ ( 1 ... 𝑀 ) ) → ( ( seq 1 ( 𝑃 , 𝑈 ) ‘ 𝑛 ) ‘ 𝑡 ) = ( seq 1 ( · , ( 𝐹𝑡 ) ) ‘ 𝑛 ) ) )
119 108 117 116 118 mp3and ( ( 𝑛 ∈ ℕ ∧ ( ( 𝜑𝑡𝑇𝑛 ∈ ( 1 ... 𝑀 ) ) → ( ( seq 1 ( 𝑃 , 𝑈 ) ‘ 𝑛 ) ‘ 𝑡 ) = ( seq 1 ( · , ( 𝐹𝑡 ) ) ‘ 𝑛 ) ) ∧ ( 𝜑𝑡𝑇 ∧ ( 𝑛 + 1 ) ∈ ( 1 ... 𝑀 ) ) ) → ( ( seq 1 ( 𝑃 , 𝑈 ) ‘ 𝑛 ) ‘ 𝑡 ) = ( seq 1 ( · , ( 𝐹𝑡 ) ) ‘ 𝑛 ) )
120 116 110 119 3jca ( ( 𝑛 ∈ ℕ ∧ ( ( 𝜑𝑡𝑇𝑛 ∈ ( 1 ... 𝑀 ) ) → ( ( seq 1 ( 𝑃 , 𝑈 ) ‘ 𝑛 ) ‘ 𝑡 ) = ( seq 1 ( · , ( 𝐹𝑡 ) ) ‘ 𝑛 ) ) ∧ ( 𝜑𝑡𝑇 ∧ ( 𝑛 + 1 ) ∈ ( 1 ... 𝑀 ) ) ) → ( 𝑛 ∈ ( 1 ... 𝑀 ) ∧ ( 𝑛 + 1 ) ∈ ( 1 ... 𝑀 ) ∧ ( ( seq 1 ( 𝑃 , 𝑈 ) ‘ 𝑛 ) ‘ 𝑡 ) = ( seq 1 ( · , ( 𝐹𝑡 ) ) ‘ 𝑛 ) ) )
121 nfv 𝑓 𝜑
122 nfv 𝑓 𝑛 ∈ ( 1 ... 𝑀 )
123 nfv 𝑓 ( 𝑛 + 1 ) ∈ ( 1 ... 𝑀 )
124 nfcv 𝑓 1
125 nfmpo1 𝑓 ( 𝑓𝑌 , 𝑔𝑌 ↦ ( 𝑡𝑇 ↦ ( ( 𝑓𝑡 ) · ( 𝑔𝑡 ) ) ) )
126 3 125 nfcxfr 𝑓 𝑃
127 nfcv 𝑓 𝑈
128 124 126 127 nfseq 𝑓 seq 1 ( 𝑃 , 𝑈 )
129 nfcv 𝑓 𝑛
130 128 129 nffv 𝑓 ( seq 1 ( 𝑃 , 𝑈 ) ‘ 𝑛 )
131 nfcv 𝑓 𝑡
132 130 131 nffv 𝑓 ( ( seq 1 ( 𝑃 , 𝑈 ) ‘ 𝑛 ) ‘ 𝑡 )
133 nfcv 𝑓 ( seq 1 ( · , ( 𝐹𝑡 ) ) ‘ 𝑛 )
134 132 133 nfeq 𝑓 ( ( seq 1 ( 𝑃 , 𝑈 ) ‘ 𝑛 ) ‘ 𝑡 ) = ( seq 1 ( · , ( 𝐹𝑡 ) ) ‘ 𝑛 )
135 122 123 134 nf3an 𝑓 ( 𝑛 ∈ ( 1 ... 𝑀 ) ∧ ( 𝑛 + 1 ) ∈ ( 1 ... 𝑀 ) ∧ ( ( seq 1 ( 𝑃 , 𝑈 ) ‘ 𝑛 ) ‘ 𝑡 ) = ( seq 1 ( · , ( 𝐹𝑡 ) ) ‘ 𝑛 ) )
136 121 135 nfan 𝑓 ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... 𝑀 ) ∧ ( 𝑛 + 1 ) ∈ ( 1 ... 𝑀 ) ∧ ( ( seq 1 ( 𝑃 , 𝑈 ) ‘ 𝑛 ) ‘ 𝑡 ) = ( seq 1 ( · , ( 𝐹𝑡 ) ) ‘ 𝑛 ) ) )
137 nfv 𝑔 𝜑
138 nfv 𝑔 𝑛 ∈ ( 1 ... 𝑀 )
139 nfv 𝑔 ( 𝑛 + 1 ) ∈ ( 1 ... 𝑀 )
140 nfcv 𝑔 1
141 nfmpo2 𝑔 ( 𝑓𝑌 , 𝑔𝑌 ↦ ( 𝑡𝑇 ↦ ( ( 𝑓𝑡 ) · ( 𝑔𝑡 ) ) ) )
142 3 141 nfcxfr 𝑔 𝑃
143 nfcv 𝑔 𝑈
144 140 142 143 nfseq 𝑔 seq 1 ( 𝑃 , 𝑈 )
145 nfcv 𝑔 𝑛
146 144 145 nffv 𝑔 ( seq 1 ( 𝑃 , 𝑈 ) ‘ 𝑛 )
147 nfcv 𝑔 𝑡
148 146 147 nffv 𝑔 ( ( seq 1 ( 𝑃 , 𝑈 ) ‘ 𝑛 ) ‘ 𝑡 )
149 nfcv 𝑔 ( seq 1 ( · , ( 𝐹𝑡 ) ) ‘ 𝑛 )
150 148 149 nfeq 𝑔 ( ( seq 1 ( 𝑃 , 𝑈 ) ‘ 𝑛 ) ‘ 𝑡 ) = ( seq 1 ( · , ( 𝐹𝑡 ) ) ‘ 𝑛 )
151 138 139 150 nf3an 𝑔 ( 𝑛 ∈ ( 1 ... 𝑀 ) ∧ ( 𝑛 + 1 ) ∈ ( 1 ... 𝑀 ) ∧ ( ( seq 1 ( 𝑃 , 𝑈 ) ‘ 𝑛 ) ‘ 𝑡 ) = ( seq 1 ( · , ( 𝐹𝑡 ) ) ‘ 𝑛 ) )
152 137 151 nfan 𝑔 ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... 𝑀 ) ∧ ( 𝑛 + 1 ) ∈ ( 1 ... 𝑀 ) ∧ ( ( seq 1 ( 𝑃 , 𝑈 ) ‘ 𝑛 ) ‘ 𝑡 ) = ( seq 1 ( · , ( 𝐹𝑡 ) ) ‘ 𝑛 ) ) )
153 7 adantr ( ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... 𝑀 ) ∧ ( 𝑛 + 1 ) ∈ ( 1 ... 𝑀 ) ∧ ( ( seq 1 ( 𝑃 , 𝑈 ) ‘ 𝑛 ) ‘ 𝑡 ) = ( seq 1 ( · , ( 𝐹𝑡 ) ) ‘ 𝑛 ) ) ) → 𝑇 ∈ V )
154 9 adantr ( ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... 𝑀 ) ∧ ( 𝑛 + 1 ) ∈ ( 1 ... 𝑀 ) ∧ ( ( seq 1 ( 𝑃 , 𝑈 ) ‘ 𝑛 ) ‘ 𝑡 ) = ( seq 1 ( · , ( 𝐹𝑡 ) ) ‘ 𝑛 ) ) ) → 𝑈 : ( 1 ... 𝑀 ) ⟶ 𝑌 )
155 11 3adant1r ( ( ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... 𝑀 ) ∧ ( 𝑛 + 1 ) ∈ ( 1 ... 𝑀 ) ∧ ( ( seq 1 ( 𝑃 , 𝑈 ) ‘ 𝑛 ) ‘ 𝑡 ) = ( seq 1 ( · , ( 𝐹𝑡 ) ) ‘ 𝑛 ) ) ) ∧ 𝑓𝑌𝑔𝑌 ) → ( 𝑡𝑇 ↦ ( ( 𝑓𝑡 ) · ( 𝑔𝑡 ) ) ) ∈ 𝑌 )
156 simpr1 ( ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... 𝑀 ) ∧ ( 𝑛 + 1 ) ∈ ( 1 ... 𝑀 ) ∧ ( ( seq 1 ( 𝑃 , 𝑈 ) ‘ 𝑛 ) ‘ 𝑡 ) = ( seq 1 ( · , ( 𝐹𝑡 ) ) ‘ 𝑛 ) ) ) → 𝑛 ∈ ( 1 ... 𝑀 ) )
157 simpr2 ( ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... 𝑀 ) ∧ ( 𝑛 + 1 ) ∈ ( 1 ... 𝑀 ) ∧ ( ( seq 1 ( 𝑃 , 𝑈 ) ‘ 𝑛 ) ‘ 𝑡 ) = ( seq 1 ( · , ( 𝐹𝑡 ) ) ‘ 𝑛 ) ) ) → ( 𝑛 + 1 ) ∈ ( 1 ... 𝑀 ) )
158 simpr3 ( ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... 𝑀 ) ∧ ( 𝑛 + 1 ) ∈ ( 1 ... 𝑀 ) ∧ ( ( seq 1 ( 𝑃 , 𝑈 ) ‘ 𝑛 ) ‘ 𝑡 ) = ( seq 1 ( · , ( 𝐹𝑡 ) ) ‘ 𝑛 ) ) ) → ( ( seq 1 ( 𝑃 , 𝑈 ) ‘ 𝑛 ) ‘ 𝑡 ) = ( seq 1 ( · , ( 𝐹𝑡 ) ) ‘ 𝑛 ) )
159 10 adantlr ( ( ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... 𝑀 ) ∧ ( 𝑛 + 1 ) ∈ ( 1 ... 𝑀 ) ∧ ( ( seq 1 ( 𝑃 , 𝑈 ) ‘ 𝑛 ) ‘ 𝑡 ) = ( seq 1 ( · , ( 𝐹𝑡 ) ) ‘ 𝑛 ) ) ) ∧ 𝑓𝑌 ) → 𝑓 : 𝑇 ⟶ ℝ )
160 136 152 2 3 5 153 154 155 156 157 158 159 fmuldfeqlem1 ( ( ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... 𝑀 ) ∧ ( 𝑛 + 1 ) ∈ ( 1 ... 𝑀 ) ∧ ( ( seq 1 ( 𝑃 , 𝑈 ) ‘ 𝑛 ) ‘ 𝑡 ) = ( seq 1 ( · , ( 𝐹𝑡 ) ) ‘ 𝑛 ) ) ) ∧ 𝑡𝑇 ) → ( ( seq 1 ( 𝑃 , 𝑈 ) ‘ ( 𝑛 + 1 ) ) ‘ 𝑡 ) = ( seq 1 ( · , ( 𝐹𝑡 ) ) ‘ ( 𝑛 + 1 ) ) )
161 108 120 117 160 syl21anc ( ( 𝑛 ∈ ℕ ∧ ( ( 𝜑𝑡𝑇𝑛 ∈ ( 1 ... 𝑀 ) ) → ( ( seq 1 ( 𝑃 , 𝑈 ) ‘ 𝑛 ) ‘ 𝑡 ) = ( seq 1 ( · , ( 𝐹𝑡 ) ) ‘ 𝑛 ) ) ∧ ( 𝜑𝑡𝑇 ∧ ( 𝑛 + 1 ) ∈ ( 1 ... 𝑀 ) ) ) → ( ( seq 1 ( 𝑃 , 𝑈 ) ‘ ( 𝑛 + 1 ) ) ‘ 𝑡 ) = ( seq 1 ( · , ( 𝐹𝑡 ) ) ‘ ( 𝑛 + 1 ) ) )
162 161 3exp ( 𝑛 ∈ ℕ → ( ( ( 𝜑𝑡𝑇𝑛 ∈ ( 1 ... 𝑀 ) ) → ( ( seq 1 ( 𝑃 , 𝑈 ) ‘ 𝑛 ) ‘ 𝑡 ) = ( seq 1 ( · , ( 𝐹𝑡 ) ) ‘ 𝑛 ) ) → ( ( 𝜑𝑡𝑇 ∧ ( 𝑛 + 1 ) ∈ ( 1 ... 𝑀 ) ) → ( ( seq 1 ( 𝑃 , 𝑈 ) ‘ ( 𝑛 + 1 ) ) ‘ 𝑡 ) = ( seq 1 ( · , ( 𝐹𝑡 ) ) ‘ ( 𝑛 + 1 ) ) ) ) )
163 31 38 45 52 107 162 nnind ( 𝑀 ∈ ℕ → ( ( 𝜑𝑡𝑇𝑀 ∈ ( 1 ... 𝑀 ) ) → ( ( seq 1 ( 𝑃 , 𝑈 ) ‘ 𝑀 ) ‘ 𝑡 ) = ( seq 1 ( · , ( 𝐹𝑡 ) ) ‘ 𝑀 ) ) )
164 24 163 mpcom ( ( 𝜑𝑡𝑇𝑀 ∈ ( 1 ... 𝑀 ) ) → ( ( seq 1 ( 𝑃 , 𝑈 ) ‘ 𝑀 ) ‘ 𝑡 ) = ( seq 1 ( · , ( 𝐹𝑡 ) ) ‘ 𝑀 ) )
165 23 164 mpd3an3 ( ( 𝜑𝑡𝑇 ) → ( ( seq 1 ( 𝑃 , 𝑈 ) ‘ 𝑀 ) ‘ 𝑡 ) = ( seq 1 ( · , ( 𝐹𝑡 ) ) ‘ 𝑀 ) )
166 4 fveq1i ( 𝑋𝑡 ) = ( ( seq 1 ( 𝑃 , 𝑈 ) ‘ 𝑀 ) ‘ 𝑡 )
167 166 a1i ( ( 𝜑𝑡𝑇 ) → ( 𝑋𝑡 ) = ( ( seq 1 ( 𝑃 , 𝑈 ) ‘ 𝑀 ) ‘ 𝑡 ) )
168 simpr ( ( 𝜑𝑡𝑇 ) → 𝑡𝑇 )
169 elnnuz ( 𝑀 ∈ ℕ ↔ 𝑀 ∈ ( ℤ ‘ 1 ) )
170 8 169 sylib ( 𝜑𝑀 ∈ ( ℤ ‘ 1 ) )
171 170 adantr ( ( 𝜑𝑡𝑇 ) → 𝑀 ∈ ( ℤ ‘ 1 ) )
172 1 62 nfan 𝑖 ( 𝜑𝑡𝑇 )
173 nfv 𝑖 𝑘 ∈ ( 1 ... 𝑀 )
174 172 173 nfan 𝑖 ( ( 𝜑𝑡𝑇 ) ∧ 𝑘 ∈ ( 1 ... 𝑀 ) )
175 nfcv 𝑖 𝑘
176 68 175 nffv 𝑖 ( ( 𝐹𝑡 ) ‘ 𝑘 )
177 176 nfel1 𝑖 ( ( 𝐹𝑡 ) ‘ 𝑘 ) ∈ ℝ
178 174 177 nfim 𝑖 ( ( ( 𝜑𝑡𝑇 ) ∧ 𝑘 ∈ ( 1 ... 𝑀 ) ) → ( ( 𝐹𝑡 ) ‘ 𝑘 ) ∈ ℝ )
179 eleq1 ( 𝑖 = 𝑘 → ( 𝑖 ∈ ( 1 ... 𝑀 ) ↔ 𝑘 ∈ ( 1 ... 𝑀 ) ) )
180 179 anbi2d ( 𝑖 = 𝑘 → ( ( ( 𝜑𝑡𝑇 ) ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) ↔ ( ( 𝜑𝑡𝑇 ) ∧ 𝑘 ∈ ( 1 ... 𝑀 ) ) ) )
181 fveq2 ( 𝑖 = 𝑘 → ( ( 𝐹𝑡 ) ‘ 𝑖 ) = ( ( 𝐹𝑡 ) ‘ 𝑘 ) )
182 181 eleq1d ( 𝑖 = 𝑘 → ( ( ( 𝐹𝑡 ) ‘ 𝑖 ) ∈ ℝ ↔ ( ( 𝐹𝑡 ) ‘ 𝑘 ) ∈ ℝ ) )
183 180 182 imbi12d ( 𝑖 = 𝑘 → ( ( ( ( 𝜑𝑡𝑇 ) ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) → ( ( 𝐹𝑡 ) ‘ 𝑖 ) ∈ ℝ ) ↔ ( ( ( 𝜑𝑡𝑇 ) ∧ 𝑘 ∈ ( 1 ... 𝑀 ) ) → ( ( 𝐹𝑡 ) ‘ 𝑘 ) ∈ ℝ ) ) )
184 82 ad2antlr ( ( ( 𝜑𝑡𝑇 ) ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) → ( ( 𝐹𝑡 ) ‘ 𝑖 ) = ( ( 𝑖 ∈ ( 1 ... 𝑀 ) ↦ ( ( 𝑈𝑖 ) ‘ 𝑡 ) ) ‘ 𝑖 ) )
185 simpr ( ( ( 𝜑𝑡𝑇 ) ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) → 𝑖 ∈ ( 1 ... 𝑀 ) )
186 9 ffvelrnda ( ( 𝜑𝑖 ∈ ( 1 ... 𝑀 ) ) → ( 𝑈𝑖 ) ∈ 𝑌 )
187 simpl ( ( 𝜑𝑖 ∈ ( 1 ... 𝑀 ) ) → 𝜑 )
188 187 186 jca ( ( 𝜑𝑖 ∈ ( 1 ... 𝑀 ) ) → ( 𝜑 ∧ ( 𝑈𝑖 ) ∈ 𝑌 ) )
189 eleq1 ( 𝑓 = ( 𝑈𝑖 ) → ( 𝑓𝑌 ↔ ( 𝑈𝑖 ) ∈ 𝑌 ) )
190 189 anbi2d ( 𝑓 = ( 𝑈𝑖 ) → ( ( 𝜑𝑓𝑌 ) ↔ ( 𝜑 ∧ ( 𝑈𝑖 ) ∈ 𝑌 ) ) )
191 feq1 ( 𝑓 = ( 𝑈𝑖 ) → ( 𝑓 : 𝑇 ⟶ ℝ ↔ ( 𝑈𝑖 ) : 𝑇 ⟶ ℝ ) )
192 190 191 imbi12d ( 𝑓 = ( 𝑈𝑖 ) → ( ( ( 𝜑𝑓𝑌 ) → 𝑓 : 𝑇 ⟶ ℝ ) ↔ ( ( 𝜑 ∧ ( 𝑈𝑖 ) ∈ 𝑌 ) → ( 𝑈𝑖 ) : 𝑇 ⟶ ℝ ) ) )
193 192 96 vtoclga ( ( 𝑈𝑖 ) ∈ 𝑌 → ( ( 𝜑 ∧ ( 𝑈𝑖 ) ∈ 𝑌 ) → ( 𝑈𝑖 ) : 𝑇 ⟶ ℝ ) )
194 186 188 193 sylc ( ( 𝜑𝑖 ∈ ( 1 ... 𝑀 ) ) → ( 𝑈𝑖 ) : 𝑇 ⟶ ℝ )
195 194 adantlr ( ( ( 𝜑𝑡𝑇 ) ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) → ( 𝑈𝑖 ) : 𝑇 ⟶ ℝ )
196 simplr ( ( ( 𝜑𝑡𝑇 ) ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) → 𝑡𝑇 )
197 195 196 ffvelrnd ( ( ( 𝜑𝑡𝑇 ) ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) → ( ( 𝑈𝑖 ) ‘ 𝑡 ) ∈ ℝ )
198 86 fvmpt2 ( ( 𝑖 ∈ ( 1 ... 𝑀 ) ∧ ( ( 𝑈𝑖 ) ‘ 𝑡 ) ∈ ℝ ) → ( ( 𝑖 ∈ ( 1 ... 𝑀 ) ↦ ( ( 𝑈𝑖 ) ‘ 𝑡 ) ) ‘ 𝑖 ) = ( ( 𝑈𝑖 ) ‘ 𝑡 ) )
199 185 197 198 syl2anc ( ( ( 𝜑𝑡𝑇 ) ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) → ( ( 𝑖 ∈ ( 1 ... 𝑀 ) ↦ ( ( 𝑈𝑖 ) ‘ 𝑡 ) ) ‘ 𝑖 ) = ( ( 𝑈𝑖 ) ‘ 𝑡 ) )
200 199 197 eqeltrd ( ( ( 𝜑𝑡𝑇 ) ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) → ( ( 𝑖 ∈ ( 1 ... 𝑀 ) ↦ ( ( 𝑈𝑖 ) ‘ 𝑡 ) ) ‘ 𝑖 ) ∈ ℝ )
201 184 200 eqeltrd ( ( ( 𝜑𝑡𝑇 ) ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) → ( ( 𝐹𝑡 ) ‘ 𝑖 ) ∈ ℝ )
202 178 183 201 chvarfv ( ( ( 𝜑𝑡𝑇 ) ∧ 𝑘 ∈ ( 1 ... 𝑀 ) ) → ( ( 𝐹𝑡 ) ‘ 𝑘 ) ∈ ℝ )
203 remulcl ( ( 𝑘 ∈ ℝ ∧ 𝑏 ∈ ℝ ) → ( 𝑘 · 𝑏 ) ∈ ℝ )
204 203 adantl ( ( ( 𝜑𝑡𝑇 ) ∧ ( 𝑘 ∈ ℝ ∧ 𝑏 ∈ ℝ ) ) → ( 𝑘 · 𝑏 ) ∈ ℝ )
205 171 202 204 seqcl ( ( 𝜑𝑡𝑇 ) → ( seq 1 ( · , ( 𝐹𝑡 ) ) ‘ 𝑀 ) ∈ ℝ )
206 6 fvmpt2 ( ( 𝑡𝑇 ∧ ( seq 1 ( · , ( 𝐹𝑡 ) ) ‘ 𝑀 ) ∈ ℝ ) → ( 𝑍𝑡 ) = ( seq 1 ( · , ( 𝐹𝑡 ) ) ‘ 𝑀 ) )
207 168 205 206 syl2anc ( ( 𝜑𝑡𝑇 ) → ( 𝑍𝑡 ) = ( seq 1 ( · , ( 𝐹𝑡 ) ) ‘ 𝑀 ) )
208 165 167 207 3eqtr4d ( ( 𝜑𝑡𝑇 ) → ( 𝑋𝑡 ) = ( 𝑍𝑡 ) )