| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fmuldfeq.1 |
|- F/ i ph |
| 2 |
|
fmuldfeq.2 |
|- F/_ t Y |
| 3 |
|
fmuldfeq.3 |
|- P = ( f e. Y , g e. Y |-> ( t e. T |-> ( ( f ` t ) x. ( g ` t ) ) ) ) |
| 4 |
|
fmuldfeq.4 |
|- X = ( seq 1 ( P , U ) ` M ) |
| 5 |
|
fmuldfeq.5 |
|- F = ( t e. T |-> ( i e. ( 1 ... M ) |-> ( ( U ` i ) ` t ) ) ) |
| 6 |
|
fmuldfeq.6 |
|- Z = ( t e. T |-> ( seq 1 ( x. , ( F ` t ) ) ` M ) ) |
| 7 |
|
fmuldfeq.7 |
|- ( ph -> T e. _V ) |
| 8 |
|
fmuldfeq.8 |
|- ( ph -> M e. NN ) |
| 9 |
|
fmuldfeq.9 |
|- ( ph -> U : ( 1 ... M ) --> Y ) |
| 10 |
|
fmuldfeq.10 |
|- ( ( ph /\ f e. Y ) -> f : T --> RR ) |
| 11 |
|
fmuldfeq.11 |
|- ( ( ph /\ f e. Y /\ g e. Y ) -> ( t e. T |-> ( ( f ` t ) x. ( g ` t ) ) ) e. Y ) |
| 12 |
|
1zzd |
|- ( ( ph /\ t e. T ) -> 1 e. ZZ ) |
| 13 |
8
|
nnzd |
|- ( ph -> M e. ZZ ) |
| 14 |
13
|
adantr |
|- ( ( ph /\ t e. T ) -> M e. ZZ ) |
| 15 |
8
|
nnge1d |
|- ( ph -> 1 <_ M ) |
| 16 |
15
|
adantr |
|- ( ( ph /\ t e. T ) -> 1 <_ M ) |
| 17 |
|
nnre |
|- ( M e. NN -> M e. RR ) |
| 18 |
|
leid |
|- ( M e. RR -> M <_ M ) |
| 19 |
8 17 18
|
3syl |
|- ( ph -> M <_ M ) |
| 20 |
19
|
adantr |
|- ( ( ph /\ t e. T ) -> M <_ M ) |
| 21 |
12 14 14 16 20
|
elfzd |
|- ( ( ph /\ t e. T ) -> M e. ( 1 ... M ) ) |
| 22 |
8
|
3ad2ant1 |
|- ( ( ph /\ t e. T /\ M e. ( 1 ... M ) ) -> M e. NN ) |
| 23 |
|
eleq1 |
|- ( m = 1 -> ( m e. ( 1 ... M ) <-> 1 e. ( 1 ... M ) ) ) |
| 24 |
23
|
3anbi3d |
|- ( m = 1 -> ( ( ph /\ t e. T /\ m e. ( 1 ... M ) ) <-> ( ph /\ t e. T /\ 1 e. ( 1 ... M ) ) ) ) |
| 25 |
|
fveq2 |
|- ( m = 1 -> ( seq 1 ( P , U ) ` m ) = ( seq 1 ( P , U ) ` 1 ) ) |
| 26 |
25
|
fveq1d |
|- ( m = 1 -> ( ( seq 1 ( P , U ) ` m ) ` t ) = ( ( seq 1 ( P , U ) ` 1 ) ` t ) ) |
| 27 |
|
fveq2 |
|- ( m = 1 -> ( seq 1 ( x. , ( F ` t ) ) ` m ) = ( seq 1 ( x. , ( F ` t ) ) ` 1 ) ) |
| 28 |
26 27
|
eqeq12d |
|- ( m = 1 -> ( ( ( seq 1 ( P , U ) ` m ) ` t ) = ( seq 1 ( x. , ( F ` t ) ) ` m ) <-> ( ( seq 1 ( P , U ) ` 1 ) ` t ) = ( seq 1 ( x. , ( F ` t ) ) ` 1 ) ) ) |
| 29 |
24 28
|
imbi12d |
|- ( m = 1 -> ( ( ( ph /\ t e. T /\ m e. ( 1 ... M ) ) -> ( ( seq 1 ( P , U ) ` m ) ` t ) = ( seq 1 ( x. , ( F ` t ) ) ` m ) ) <-> ( ( ph /\ t e. T /\ 1 e. ( 1 ... M ) ) -> ( ( seq 1 ( P , U ) ` 1 ) ` t ) = ( seq 1 ( x. , ( F ` t ) ) ` 1 ) ) ) ) |
| 30 |
|
eleq1 |
|- ( m = n -> ( m e. ( 1 ... M ) <-> n e. ( 1 ... M ) ) ) |
| 31 |
30
|
3anbi3d |
|- ( m = n -> ( ( ph /\ t e. T /\ m e. ( 1 ... M ) ) <-> ( ph /\ t e. T /\ n e. ( 1 ... M ) ) ) ) |
| 32 |
|
fveq2 |
|- ( m = n -> ( seq 1 ( P , U ) ` m ) = ( seq 1 ( P , U ) ` n ) ) |
| 33 |
32
|
fveq1d |
|- ( m = n -> ( ( seq 1 ( P , U ) ` m ) ` t ) = ( ( seq 1 ( P , U ) ` n ) ` t ) ) |
| 34 |
|
fveq2 |
|- ( m = n -> ( seq 1 ( x. , ( F ` t ) ) ` m ) = ( seq 1 ( x. , ( F ` t ) ) ` n ) ) |
| 35 |
33 34
|
eqeq12d |
|- ( m = n -> ( ( ( seq 1 ( P , U ) ` m ) ` t ) = ( seq 1 ( x. , ( F ` t ) ) ` m ) <-> ( ( seq 1 ( P , U ) ` n ) ` t ) = ( seq 1 ( x. , ( F ` t ) ) ` n ) ) ) |
| 36 |
31 35
|
imbi12d |
|- ( m = n -> ( ( ( ph /\ t e. T /\ m e. ( 1 ... M ) ) -> ( ( seq 1 ( P , U ) ` m ) ` t ) = ( seq 1 ( x. , ( F ` t ) ) ` m ) ) <-> ( ( ph /\ t e. T /\ n e. ( 1 ... M ) ) -> ( ( seq 1 ( P , U ) ` n ) ` t ) = ( seq 1 ( x. , ( F ` t ) ) ` n ) ) ) ) |
| 37 |
|
eleq1 |
|- ( m = ( n + 1 ) -> ( m e. ( 1 ... M ) <-> ( n + 1 ) e. ( 1 ... M ) ) ) |
| 38 |
37
|
3anbi3d |
|- ( m = ( n + 1 ) -> ( ( ph /\ t e. T /\ m e. ( 1 ... M ) ) <-> ( ph /\ t e. T /\ ( n + 1 ) e. ( 1 ... M ) ) ) ) |
| 39 |
|
fveq2 |
|- ( m = ( n + 1 ) -> ( seq 1 ( P , U ) ` m ) = ( seq 1 ( P , U ) ` ( n + 1 ) ) ) |
| 40 |
39
|
fveq1d |
|- ( m = ( n + 1 ) -> ( ( seq 1 ( P , U ) ` m ) ` t ) = ( ( seq 1 ( P , U ) ` ( n + 1 ) ) ` t ) ) |
| 41 |
|
fveq2 |
|- ( m = ( n + 1 ) -> ( seq 1 ( x. , ( F ` t ) ) ` m ) = ( seq 1 ( x. , ( F ` t ) ) ` ( n + 1 ) ) ) |
| 42 |
40 41
|
eqeq12d |
|- ( m = ( n + 1 ) -> ( ( ( seq 1 ( P , U ) ` m ) ` t ) = ( seq 1 ( x. , ( F ` t ) ) ` m ) <-> ( ( seq 1 ( P , U ) ` ( n + 1 ) ) ` t ) = ( seq 1 ( x. , ( F ` t ) ) ` ( n + 1 ) ) ) ) |
| 43 |
38 42
|
imbi12d |
|- ( m = ( n + 1 ) -> ( ( ( ph /\ t e. T /\ m e. ( 1 ... M ) ) -> ( ( seq 1 ( P , U ) ` m ) ` t ) = ( seq 1 ( x. , ( F ` t ) ) ` m ) ) <-> ( ( ph /\ t e. T /\ ( n + 1 ) e. ( 1 ... M ) ) -> ( ( seq 1 ( P , U ) ` ( n + 1 ) ) ` t ) = ( seq 1 ( x. , ( F ` t ) ) ` ( n + 1 ) ) ) ) ) |
| 44 |
|
eleq1 |
|- ( m = M -> ( m e. ( 1 ... M ) <-> M e. ( 1 ... M ) ) ) |
| 45 |
44
|
3anbi3d |
|- ( m = M -> ( ( ph /\ t e. T /\ m e. ( 1 ... M ) ) <-> ( ph /\ t e. T /\ M e. ( 1 ... M ) ) ) ) |
| 46 |
|
fveq2 |
|- ( m = M -> ( seq 1 ( P , U ) ` m ) = ( seq 1 ( P , U ) ` M ) ) |
| 47 |
46
|
fveq1d |
|- ( m = M -> ( ( seq 1 ( P , U ) ` m ) ` t ) = ( ( seq 1 ( P , U ) ` M ) ` t ) ) |
| 48 |
|
fveq2 |
|- ( m = M -> ( seq 1 ( x. , ( F ` t ) ) ` m ) = ( seq 1 ( x. , ( F ` t ) ) ` M ) ) |
| 49 |
47 48
|
eqeq12d |
|- ( m = M -> ( ( ( seq 1 ( P , U ) ` m ) ` t ) = ( seq 1 ( x. , ( F ` t ) ) ` m ) <-> ( ( seq 1 ( P , U ) ` M ) ` t ) = ( seq 1 ( x. , ( F ` t ) ) ` M ) ) ) |
| 50 |
45 49
|
imbi12d |
|- ( m = M -> ( ( ( ph /\ t e. T /\ m e. ( 1 ... M ) ) -> ( ( seq 1 ( P , U ) ` m ) ` t ) = ( seq 1 ( x. , ( F ` t ) ) ` m ) ) <-> ( ( ph /\ t e. T /\ M e. ( 1 ... M ) ) -> ( ( seq 1 ( P , U ) ` M ) ` t ) = ( seq 1 ( x. , ( F ` t ) ) ` M ) ) ) ) |
| 51 |
|
1z |
|- 1 e. ZZ |
| 52 |
|
seq1 |
|- ( 1 e. ZZ -> ( seq 1 ( x. , ( F ` t ) ) ` 1 ) = ( ( F ` t ) ` 1 ) ) |
| 53 |
51 52
|
ax-mp |
|- ( seq 1 ( x. , ( F ` t ) ) ` 1 ) = ( ( F ` t ) ` 1 ) |
| 54 |
|
1zzd |
|- ( ph -> 1 e. ZZ ) |
| 55 |
|
1le1 |
|- 1 <_ 1 |
| 56 |
55
|
a1i |
|- ( ph -> 1 <_ 1 ) |
| 57 |
54 13 54 56 15
|
elfzd |
|- ( ph -> 1 e. ( 1 ... M ) ) |
| 58 |
|
nfv |
|- F/ i t e. T |
| 59 |
|
nfcv |
|- F/_ i T |
| 60 |
|
nfmpt1 |
|- F/_ i ( i e. ( 1 ... M ) |-> ( ( U ` i ) ` t ) ) |
| 61 |
59 60
|
nfmpt |
|- F/_ i ( t e. T |-> ( i e. ( 1 ... M ) |-> ( ( U ` i ) ` t ) ) ) |
| 62 |
5 61
|
nfcxfr |
|- F/_ i F |
| 63 |
|
nfcv |
|- F/_ i t |
| 64 |
62 63
|
nffv |
|- F/_ i ( F ` t ) |
| 65 |
|
nfcv |
|- F/_ i 1 |
| 66 |
64 65
|
nffv |
|- F/_ i ( ( F ` t ) ` 1 ) |
| 67 |
|
nffvmpt1 |
|- F/_ i ( ( i e. ( 1 ... M ) |-> ( ( U ` i ) ` t ) ) ` 1 ) |
| 68 |
66 67
|
nfeq |
|- F/ i ( ( F ` t ) ` 1 ) = ( ( i e. ( 1 ... M ) |-> ( ( U ` i ) ` t ) ) ` 1 ) |
| 69 |
58 68
|
nfim |
|- F/ i ( t e. T -> ( ( F ` t ) ` 1 ) = ( ( i e. ( 1 ... M ) |-> ( ( U ` i ) ` t ) ) ` 1 ) ) |
| 70 |
|
fveq2 |
|- ( i = 1 -> ( ( F ` t ) ` i ) = ( ( F ` t ) ` 1 ) ) |
| 71 |
|
fveq2 |
|- ( i = 1 -> ( ( i e. ( 1 ... M ) |-> ( ( U ` i ) ` t ) ) ` i ) = ( ( i e. ( 1 ... M ) |-> ( ( U ` i ) ` t ) ) ` 1 ) ) |
| 72 |
70 71
|
eqeq12d |
|- ( i = 1 -> ( ( ( F ` t ) ` i ) = ( ( i e. ( 1 ... M ) |-> ( ( U ` i ) ` t ) ) ` i ) <-> ( ( F ` t ) ` 1 ) = ( ( i e. ( 1 ... M ) |-> ( ( U ` i ) ` t ) ) ` 1 ) ) ) |
| 73 |
72
|
imbi2d |
|- ( i = 1 -> ( ( t e. T -> ( ( F ` t ) ` i ) = ( ( i e. ( 1 ... M ) |-> ( ( U ` i ) ` t ) ) ` i ) ) <-> ( t e. T -> ( ( F ` t ) ` 1 ) = ( ( i e. ( 1 ... M ) |-> ( ( U ` i ) ` t ) ) ` 1 ) ) ) ) |
| 74 |
|
ovex |
|- ( 1 ... M ) e. _V |
| 75 |
74
|
mptex |
|- ( i e. ( 1 ... M ) |-> ( ( U ` i ) ` t ) ) e. _V |
| 76 |
5
|
fvmpt2 |
|- ( ( t e. T /\ ( i e. ( 1 ... M ) |-> ( ( U ` i ) ` t ) ) e. _V ) -> ( F ` t ) = ( i e. ( 1 ... M ) |-> ( ( U ` i ) ` t ) ) ) |
| 77 |
75 76
|
mpan2 |
|- ( t e. T -> ( F ` t ) = ( i e. ( 1 ... M ) |-> ( ( U ` i ) ` t ) ) ) |
| 78 |
77
|
fveq1d |
|- ( t e. T -> ( ( F ` t ) ` i ) = ( ( i e. ( 1 ... M ) |-> ( ( U ` i ) ` t ) ) ` i ) ) |
| 79 |
69 73 78
|
vtoclg1f |
|- ( 1 e. ( 1 ... M ) -> ( t e. T -> ( ( F ` t ) ` 1 ) = ( ( i e. ( 1 ... M ) |-> ( ( U ` i ) ` t ) ) ` 1 ) ) ) |
| 80 |
57 79
|
syl |
|- ( ph -> ( t e. T -> ( ( F ` t ) ` 1 ) = ( ( i e. ( 1 ... M ) |-> ( ( U ` i ) ` t ) ) ` 1 ) ) ) |
| 81 |
80
|
imp |
|- ( ( ph /\ t e. T ) -> ( ( F ` t ) ` 1 ) = ( ( i e. ( 1 ... M ) |-> ( ( U ` i ) ` t ) ) ` 1 ) ) |
| 82 |
|
eqid |
|- ( i e. ( 1 ... M ) |-> ( ( U ` i ) ` t ) ) = ( i e. ( 1 ... M ) |-> ( ( U ` i ) ` t ) ) |
| 83 |
|
fveq2 |
|- ( i = 1 -> ( U ` i ) = ( U ` 1 ) ) |
| 84 |
83
|
fveq1d |
|- ( i = 1 -> ( ( U ` i ) ` t ) = ( ( U ` 1 ) ` t ) ) |
| 85 |
57
|
adantr |
|- ( ( ph /\ t e. T ) -> 1 e. ( 1 ... M ) ) |
| 86 |
9 57
|
ffvelcdmd |
|- ( ph -> ( U ` 1 ) e. Y ) |
| 87 |
86
|
ancli |
|- ( ph -> ( ph /\ ( U ` 1 ) e. Y ) ) |
| 88 |
|
eleq1 |
|- ( f = ( U ` 1 ) -> ( f e. Y <-> ( U ` 1 ) e. Y ) ) |
| 89 |
88
|
anbi2d |
|- ( f = ( U ` 1 ) -> ( ( ph /\ f e. Y ) <-> ( ph /\ ( U ` 1 ) e. Y ) ) ) |
| 90 |
|
feq1 |
|- ( f = ( U ` 1 ) -> ( f : T --> RR <-> ( U ` 1 ) : T --> RR ) ) |
| 91 |
89 90
|
imbi12d |
|- ( f = ( U ` 1 ) -> ( ( ( ph /\ f e. Y ) -> f : T --> RR ) <-> ( ( ph /\ ( U ` 1 ) e. Y ) -> ( U ` 1 ) : T --> RR ) ) ) |
| 92 |
10
|
a1i |
|- ( f e. Y -> ( ( ph /\ f e. Y ) -> f : T --> RR ) ) |
| 93 |
91 92
|
vtoclga |
|- ( ( U ` 1 ) e. Y -> ( ( ph /\ ( U ` 1 ) e. Y ) -> ( U ` 1 ) : T --> RR ) ) |
| 94 |
86 87 93
|
sylc |
|- ( ph -> ( U ` 1 ) : T --> RR ) |
| 95 |
94
|
ffvelcdmda |
|- ( ( ph /\ t e. T ) -> ( ( U ` 1 ) ` t ) e. RR ) |
| 96 |
82 84 85 95
|
fvmptd3 |
|- ( ( ph /\ t e. T ) -> ( ( i e. ( 1 ... M ) |-> ( ( U ` i ) ` t ) ) ` 1 ) = ( ( U ` 1 ) ` t ) ) |
| 97 |
81 96
|
eqtrd |
|- ( ( ph /\ t e. T ) -> ( ( F ` t ) ` 1 ) = ( ( U ` 1 ) ` t ) ) |
| 98 |
|
seq1 |
|- ( 1 e. ZZ -> ( seq 1 ( P , U ) ` 1 ) = ( U ` 1 ) ) |
| 99 |
51 98
|
ax-mp |
|- ( seq 1 ( P , U ) ` 1 ) = ( U ` 1 ) |
| 100 |
99
|
fveq1i |
|- ( ( seq 1 ( P , U ) ` 1 ) ` t ) = ( ( U ` 1 ) ` t ) |
| 101 |
97 100
|
eqtr4di |
|- ( ( ph /\ t e. T ) -> ( ( F ` t ) ` 1 ) = ( ( seq 1 ( P , U ) ` 1 ) ` t ) ) |
| 102 |
53 101
|
eqtr2id |
|- ( ( ph /\ t e. T ) -> ( ( seq 1 ( P , U ) ` 1 ) ` t ) = ( seq 1 ( x. , ( F ` t ) ) ` 1 ) ) |
| 103 |
102
|
3adant3 |
|- ( ( ph /\ t e. T /\ 1 e. ( 1 ... M ) ) -> ( ( seq 1 ( P , U ) ` 1 ) ` t ) = ( seq 1 ( x. , ( F ` t ) ) ` 1 ) ) |
| 104 |
|
simp31 |
|- ( ( n e. NN /\ ( ( ph /\ t e. T /\ n e. ( 1 ... M ) ) -> ( ( seq 1 ( P , U ) ` n ) ` t ) = ( seq 1 ( x. , ( F ` t ) ) ` n ) ) /\ ( ph /\ t e. T /\ ( n + 1 ) e. ( 1 ... M ) ) ) -> ph ) |
| 105 |
|
simp1 |
|- ( ( n e. NN /\ ( ( ph /\ t e. T /\ n e. ( 1 ... M ) ) -> ( ( seq 1 ( P , U ) ` n ) ` t ) = ( seq 1 ( x. , ( F ` t ) ) ` n ) ) /\ ( ph /\ t e. T /\ ( n + 1 ) e. ( 1 ... M ) ) ) -> n e. NN ) |
| 106 |
|
simp33 |
|- ( ( n e. NN /\ ( ( ph /\ t e. T /\ n e. ( 1 ... M ) ) -> ( ( seq 1 ( P , U ) ` n ) ` t ) = ( seq 1 ( x. , ( F ` t ) ) ` n ) ) /\ ( ph /\ t e. T /\ ( n + 1 ) e. ( 1 ... M ) ) ) -> ( n + 1 ) e. ( 1 ... M ) ) |
| 107 |
105 106
|
jca |
|- ( ( n e. NN /\ ( ( ph /\ t e. T /\ n e. ( 1 ... M ) ) -> ( ( seq 1 ( P , U ) ` n ) ` t ) = ( seq 1 ( x. , ( F ` t ) ) ` n ) ) /\ ( ph /\ t e. T /\ ( n + 1 ) e. ( 1 ... M ) ) ) -> ( n e. NN /\ ( n + 1 ) e. ( 1 ... M ) ) ) |
| 108 |
|
elnnuz |
|- ( n e. NN <-> n e. ( ZZ>= ` 1 ) ) |
| 109 |
108
|
biimpi |
|- ( n e. NN -> n e. ( ZZ>= ` 1 ) ) |
| 110 |
109
|
anim1i |
|- ( ( n e. NN /\ ( n + 1 ) e. ( 1 ... M ) ) -> ( n e. ( ZZ>= ` 1 ) /\ ( n + 1 ) e. ( 1 ... M ) ) ) |
| 111 |
|
peano2fzr |
|- ( ( n e. ( ZZ>= ` 1 ) /\ ( n + 1 ) e. ( 1 ... M ) ) -> n e. ( 1 ... M ) ) |
| 112 |
107 110 111
|
3syl |
|- ( ( n e. NN /\ ( ( ph /\ t e. T /\ n e. ( 1 ... M ) ) -> ( ( seq 1 ( P , U ) ` n ) ` t ) = ( seq 1 ( x. , ( F ` t ) ) ` n ) ) /\ ( ph /\ t e. T /\ ( n + 1 ) e. ( 1 ... M ) ) ) -> n e. ( 1 ... M ) ) |
| 113 |
|
simp32 |
|- ( ( n e. NN /\ ( ( ph /\ t e. T /\ n e. ( 1 ... M ) ) -> ( ( seq 1 ( P , U ) ` n ) ` t ) = ( seq 1 ( x. , ( F ` t ) ) ` n ) ) /\ ( ph /\ t e. T /\ ( n + 1 ) e. ( 1 ... M ) ) ) -> t e. T ) |
| 114 |
|
simp2 |
|- ( ( n e. NN /\ ( ( ph /\ t e. T /\ n e. ( 1 ... M ) ) -> ( ( seq 1 ( P , U ) ` n ) ` t ) = ( seq 1 ( x. , ( F ` t ) ) ` n ) ) /\ ( ph /\ t e. T /\ ( n + 1 ) e. ( 1 ... M ) ) ) -> ( ( ph /\ t e. T /\ n e. ( 1 ... M ) ) -> ( ( seq 1 ( P , U ) ` n ) ` t ) = ( seq 1 ( x. , ( F ` t ) ) ` n ) ) ) |
| 115 |
104 113 112 114
|
mp3and |
|- ( ( n e. NN /\ ( ( ph /\ t e. T /\ n e. ( 1 ... M ) ) -> ( ( seq 1 ( P , U ) ` n ) ` t ) = ( seq 1 ( x. , ( F ` t ) ) ` n ) ) /\ ( ph /\ t e. T /\ ( n + 1 ) e. ( 1 ... M ) ) ) -> ( ( seq 1 ( P , U ) ` n ) ` t ) = ( seq 1 ( x. , ( F ` t ) ) ` n ) ) |
| 116 |
112 106 115
|
3jca |
|- ( ( n e. NN /\ ( ( ph /\ t e. T /\ n e. ( 1 ... M ) ) -> ( ( seq 1 ( P , U ) ` n ) ` t ) = ( seq 1 ( x. , ( F ` t ) ) ` n ) ) /\ ( ph /\ t e. T /\ ( n + 1 ) e. ( 1 ... M ) ) ) -> ( n e. ( 1 ... M ) /\ ( n + 1 ) e. ( 1 ... M ) /\ ( ( seq 1 ( P , U ) ` n ) ` t ) = ( seq 1 ( x. , ( F ` t ) ) ` n ) ) ) |
| 117 |
|
nfv |
|- F/ f ph |
| 118 |
|
nfv |
|- F/ f n e. ( 1 ... M ) |
| 119 |
|
nfv |
|- F/ f ( n + 1 ) e. ( 1 ... M ) |
| 120 |
|
nfcv |
|- F/_ f 1 |
| 121 |
|
nfmpo1 |
|- F/_ f ( f e. Y , g e. Y |-> ( t e. T |-> ( ( f ` t ) x. ( g ` t ) ) ) ) |
| 122 |
3 121
|
nfcxfr |
|- F/_ f P |
| 123 |
|
nfcv |
|- F/_ f U |
| 124 |
120 122 123
|
nfseq |
|- F/_ f seq 1 ( P , U ) |
| 125 |
|
nfcv |
|- F/_ f n |
| 126 |
124 125
|
nffv |
|- F/_ f ( seq 1 ( P , U ) ` n ) |
| 127 |
|
nfcv |
|- F/_ f t |
| 128 |
126 127
|
nffv |
|- F/_ f ( ( seq 1 ( P , U ) ` n ) ` t ) |
| 129 |
|
nfcv |
|- F/_ f ( seq 1 ( x. , ( F ` t ) ) ` n ) |
| 130 |
128 129
|
nfeq |
|- F/ f ( ( seq 1 ( P , U ) ` n ) ` t ) = ( seq 1 ( x. , ( F ` t ) ) ` n ) |
| 131 |
118 119 130
|
nf3an |
|- F/ f ( n e. ( 1 ... M ) /\ ( n + 1 ) e. ( 1 ... M ) /\ ( ( seq 1 ( P , U ) ` n ) ` t ) = ( seq 1 ( x. , ( F ` t ) ) ` n ) ) |
| 132 |
117 131
|
nfan |
|- F/ f ( ph /\ ( n e. ( 1 ... M ) /\ ( n + 1 ) e. ( 1 ... M ) /\ ( ( seq 1 ( P , U ) ` n ) ` t ) = ( seq 1 ( x. , ( F ` t ) ) ` n ) ) ) |
| 133 |
|
nfv |
|- F/ g ph |
| 134 |
|
nfv |
|- F/ g n e. ( 1 ... M ) |
| 135 |
|
nfv |
|- F/ g ( n + 1 ) e. ( 1 ... M ) |
| 136 |
|
nfcv |
|- F/_ g 1 |
| 137 |
|
nfmpo2 |
|- F/_ g ( f e. Y , g e. Y |-> ( t e. T |-> ( ( f ` t ) x. ( g ` t ) ) ) ) |
| 138 |
3 137
|
nfcxfr |
|- F/_ g P |
| 139 |
|
nfcv |
|- F/_ g U |
| 140 |
136 138 139
|
nfseq |
|- F/_ g seq 1 ( P , U ) |
| 141 |
|
nfcv |
|- F/_ g n |
| 142 |
140 141
|
nffv |
|- F/_ g ( seq 1 ( P , U ) ` n ) |
| 143 |
|
nfcv |
|- F/_ g t |
| 144 |
142 143
|
nffv |
|- F/_ g ( ( seq 1 ( P , U ) ` n ) ` t ) |
| 145 |
|
nfcv |
|- F/_ g ( seq 1 ( x. , ( F ` t ) ) ` n ) |
| 146 |
144 145
|
nfeq |
|- F/ g ( ( seq 1 ( P , U ) ` n ) ` t ) = ( seq 1 ( x. , ( F ` t ) ) ` n ) |
| 147 |
134 135 146
|
nf3an |
|- F/ g ( n e. ( 1 ... M ) /\ ( n + 1 ) e. ( 1 ... M ) /\ ( ( seq 1 ( P , U ) ` n ) ` t ) = ( seq 1 ( x. , ( F ` t ) ) ` n ) ) |
| 148 |
133 147
|
nfan |
|- F/ g ( ph /\ ( n e. ( 1 ... M ) /\ ( n + 1 ) e. ( 1 ... M ) /\ ( ( seq 1 ( P , U ) ` n ) ` t ) = ( seq 1 ( x. , ( F ` t ) ) ` n ) ) ) |
| 149 |
7
|
adantr |
|- ( ( ph /\ ( n e. ( 1 ... M ) /\ ( n + 1 ) e. ( 1 ... M ) /\ ( ( seq 1 ( P , U ) ` n ) ` t ) = ( seq 1 ( x. , ( F ` t ) ) ` n ) ) ) -> T e. _V ) |
| 150 |
9
|
adantr |
|- ( ( ph /\ ( n e. ( 1 ... M ) /\ ( n + 1 ) e. ( 1 ... M ) /\ ( ( seq 1 ( P , U ) ` n ) ` t ) = ( seq 1 ( x. , ( F ` t ) ) ` n ) ) ) -> U : ( 1 ... M ) --> Y ) |
| 151 |
11
|
3adant1r |
|- ( ( ( ph /\ ( n e. ( 1 ... M ) /\ ( n + 1 ) e. ( 1 ... M ) /\ ( ( seq 1 ( P , U ) ` n ) ` t ) = ( seq 1 ( x. , ( F ` t ) ) ` n ) ) ) /\ f e. Y /\ g e. Y ) -> ( t e. T |-> ( ( f ` t ) x. ( g ` t ) ) ) e. Y ) |
| 152 |
|
simpr1 |
|- ( ( ph /\ ( n e. ( 1 ... M ) /\ ( n + 1 ) e. ( 1 ... M ) /\ ( ( seq 1 ( P , U ) ` n ) ` t ) = ( seq 1 ( x. , ( F ` t ) ) ` n ) ) ) -> n e. ( 1 ... M ) ) |
| 153 |
|
simpr2 |
|- ( ( ph /\ ( n e. ( 1 ... M ) /\ ( n + 1 ) e. ( 1 ... M ) /\ ( ( seq 1 ( P , U ) ` n ) ` t ) = ( seq 1 ( x. , ( F ` t ) ) ` n ) ) ) -> ( n + 1 ) e. ( 1 ... M ) ) |
| 154 |
|
simpr3 |
|- ( ( ph /\ ( n e. ( 1 ... M ) /\ ( n + 1 ) e. ( 1 ... M ) /\ ( ( seq 1 ( P , U ) ` n ) ` t ) = ( seq 1 ( x. , ( F ` t ) ) ` n ) ) ) -> ( ( seq 1 ( P , U ) ` n ) ` t ) = ( seq 1 ( x. , ( F ` t ) ) ` n ) ) |
| 155 |
10
|
adantlr |
|- ( ( ( ph /\ ( n e. ( 1 ... M ) /\ ( n + 1 ) e. ( 1 ... M ) /\ ( ( seq 1 ( P , U ) ` n ) ` t ) = ( seq 1 ( x. , ( F ` t ) ) ` n ) ) ) /\ f e. Y ) -> f : T --> RR ) |
| 156 |
132 148 2 3 5 149 150 151 152 153 154 155
|
fmuldfeqlem1 |
|- ( ( ( ph /\ ( n e. ( 1 ... M ) /\ ( n + 1 ) e. ( 1 ... M ) /\ ( ( seq 1 ( P , U ) ` n ) ` t ) = ( seq 1 ( x. , ( F ` t ) ) ` n ) ) ) /\ t e. T ) -> ( ( seq 1 ( P , U ) ` ( n + 1 ) ) ` t ) = ( seq 1 ( x. , ( F ` t ) ) ` ( n + 1 ) ) ) |
| 157 |
104 116 113 156
|
syl21anc |
|- ( ( n e. NN /\ ( ( ph /\ t e. T /\ n e. ( 1 ... M ) ) -> ( ( seq 1 ( P , U ) ` n ) ` t ) = ( seq 1 ( x. , ( F ` t ) ) ` n ) ) /\ ( ph /\ t e. T /\ ( n + 1 ) e. ( 1 ... M ) ) ) -> ( ( seq 1 ( P , U ) ` ( n + 1 ) ) ` t ) = ( seq 1 ( x. , ( F ` t ) ) ` ( n + 1 ) ) ) |
| 158 |
157
|
3exp |
|- ( n e. NN -> ( ( ( ph /\ t e. T /\ n e. ( 1 ... M ) ) -> ( ( seq 1 ( P , U ) ` n ) ` t ) = ( seq 1 ( x. , ( F ` t ) ) ` n ) ) -> ( ( ph /\ t e. T /\ ( n + 1 ) e. ( 1 ... M ) ) -> ( ( seq 1 ( P , U ) ` ( n + 1 ) ) ` t ) = ( seq 1 ( x. , ( F ` t ) ) ` ( n + 1 ) ) ) ) ) |
| 159 |
29 36 43 50 103 158
|
nnind |
|- ( M e. NN -> ( ( ph /\ t e. T /\ M e. ( 1 ... M ) ) -> ( ( seq 1 ( P , U ) ` M ) ` t ) = ( seq 1 ( x. , ( F ` t ) ) ` M ) ) ) |
| 160 |
22 159
|
mpcom |
|- ( ( ph /\ t e. T /\ M e. ( 1 ... M ) ) -> ( ( seq 1 ( P , U ) ` M ) ` t ) = ( seq 1 ( x. , ( F ` t ) ) ` M ) ) |
| 161 |
21 160
|
mpd3an3 |
|- ( ( ph /\ t e. T ) -> ( ( seq 1 ( P , U ) ` M ) ` t ) = ( seq 1 ( x. , ( F ` t ) ) ` M ) ) |
| 162 |
4
|
fveq1i |
|- ( X ` t ) = ( ( seq 1 ( P , U ) ` M ) ` t ) |
| 163 |
162
|
a1i |
|- ( ( ph /\ t e. T ) -> ( X ` t ) = ( ( seq 1 ( P , U ) ` M ) ` t ) ) |
| 164 |
|
simpr |
|- ( ( ph /\ t e. T ) -> t e. T ) |
| 165 |
|
elnnuz |
|- ( M e. NN <-> M e. ( ZZ>= ` 1 ) ) |
| 166 |
8 165
|
sylib |
|- ( ph -> M e. ( ZZ>= ` 1 ) ) |
| 167 |
166
|
adantr |
|- ( ( ph /\ t e. T ) -> M e. ( ZZ>= ` 1 ) ) |
| 168 |
1 58
|
nfan |
|- F/ i ( ph /\ t e. T ) |
| 169 |
|
nfv |
|- F/ i k e. ( 1 ... M ) |
| 170 |
168 169
|
nfan |
|- F/ i ( ( ph /\ t e. T ) /\ k e. ( 1 ... M ) ) |
| 171 |
|
nfcv |
|- F/_ i k |
| 172 |
64 171
|
nffv |
|- F/_ i ( ( F ` t ) ` k ) |
| 173 |
172
|
nfel1 |
|- F/ i ( ( F ` t ) ` k ) e. RR |
| 174 |
170 173
|
nfim |
|- F/ i ( ( ( ph /\ t e. T ) /\ k e. ( 1 ... M ) ) -> ( ( F ` t ) ` k ) e. RR ) |
| 175 |
|
eleq1 |
|- ( i = k -> ( i e. ( 1 ... M ) <-> k e. ( 1 ... M ) ) ) |
| 176 |
175
|
anbi2d |
|- ( i = k -> ( ( ( ph /\ t e. T ) /\ i e. ( 1 ... M ) ) <-> ( ( ph /\ t e. T ) /\ k e. ( 1 ... M ) ) ) ) |
| 177 |
|
fveq2 |
|- ( i = k -> ( ( F ` t ) ` i ) = ( ( F ` t ) ` k ) ) |
| 178 |
177
|
eleq1d |
|- ( i = k -> ( ( ( F ` t ) ` i ) e. RR <-> ( ( F ` t ) ` k ) e. RR ) ) |
| 179 |
176 178
|
imbi12d |
|- ( i = k -> ( ( ( ( ph /\ t e. T ) /\ i e. ( 1 ... M ) ) -> ( ( F ` t ) ` i ) e. RR ) <-> ( ( ( ph /\ t e. T ) /\ k e. ( 1 ... M ) ) -> ( ( F ` t ) ` k ) e. RR ) ) ) |
| 180 |
78
|
ad2antlr |
|- ( ( ( ph /\ t e. T ) /\ i e. ( 1 ... M ) ) -> ( ( F ` t ) ` i ) = ( ( i e. ( 1 ... M ) |-> ( ( U ` i ) ` t ) ) ` i ) ) |
| 181 |
|
simpr |
|- ( ( ( ph /\ t e. T ) /\ i e. ( 1 ... M ) ) -> i e. ( 1 ... M ) ) |
| 182 |
9
|
ffvelcdmda |
|- ( ( ph /\ i e. ( 1 ... M ) ) -> ( U ` i ) e. Y ) |
| 183 |
|
simpl |
|- ( ( ph /\ i e. ( 1 ... M ) ) -> ph ) |
| 184 |
183 182
|
jca |
|- ( ( ph /\ i e. ( 1 ... M ) ) -> ( ph /\ ( U ` i ) e. Y ) ) |
| 185 |
|
eleq1 |
|- ( f = ( U ` i ) -> ( f e. Y <-> ( U ` i ) e. Y ) ) |
| 186 |
185
|
anbi2d |
|- ( f = ( U ` i ) -> ( ( ph /\ f e. Y ) <-> ( ph /\ ( U ` i ) e. Y ) ) ) |
| 187 |
|
feq1 |
|- ( f = ( U ` i ) -> ( f : T --> RR <-> ( U ` i ) : T --> RR ) ) |
| 188 |
186 187
|
imbi12d |
|- ( f = ( U ` i ) -> ( ( ( ph /\ f e. Y ) -> f : T --> RR ) <-> ( ( ph /\ ( U ` i ) e. Y ) -> ( U ` i ) : T --> RR ) ) ) |
| 189 |
188 92
|
vtoclga |
|- ( ( U ` i ) e. Y -> ( ( ph /\ ( U ` i ) e. Y ) -> ( U ` i ) : T --> RR ) ) |
| 190 |
182 184 189
|
sylc |
|- ( ( ph /\ i e. ( 1 ... M ) ) -> ( U ` i ) : T --> RR ) |
| 191 |
190
|
adantlr |
|- ( ( ( ph /\ t e. T ) /\ i e. ( 1 ... M ) ) -> ( U ` i ) : T --> RR ) |
| 192 |
|
simplr |
|- ( ( ( ph /\ t e. T ) /\ i e. ( 1 ... M ) ) -> t e. T ) |
| 193 |
191 192
|
ffvelcdmd |
|- ( ( ( ph /\ t e. T ) /\ i e. ( 1 ... M ) ) -> ( ( U ` i ) ` t ) e. RR ) |
| 194 |
82
|
fvmpt2 |
|- ( ( i e. ( 1 ... M ) /\ ( ( U ` i ) ` t ) e. RR ) -> ( ( i e. ( 1 ... M ) |-> ( ( U ` i ) ` t ) ) ` i ) = ( ( U ` i ) ` t ) ) |
| 195 |
181 193 194
|
syl2anc |
|- ( ( ( ph /\ t e. T ) /\ i e. ( 1 ... M ) ) -> ( ( i e. ( 1 ... M ) |-> ( ( U ` i ) ` t ) ) ` i ) = ( ( U ` i ) ` t ) ) |
| 196 |
195 193
|
eqeltrd |
|- ( ( ( ph /\ t e. T ) /\ i e. ( 1 ... M ) ) -> ( ( i e. ( 1 ... M ) |-> ( ( U ` i ) ` t ) ) ` i ) e. RR ) |
| 197 |
180 196
|
eqeltrd |
|- ( ( ( ph /\ t e. T ) /\ i e. ( 1 ... M ) ) -> ( ( F ` t ) ` i ) e. RR ) |
| 198 |
174 179 197
|
chvarfv |
|- ( ( ( ph /\ t e. T ) /\ k e. ( 1 ... M ) ) -> ( ( F ` t ) ` k ) e. RR ) |
| 199 |
|
remulcl |
|- ( ( k e. RR /\ b e. RR ) -> ( k x. b ) e. RR ) |
| 200 |
199
|
adantl |
|- ( ( ( ph /\ t e. T ) /\ ( k e. RR /\ b e. RR ) ) -> ( k x. b ) e. RR ) |
| 201 |
167 198 200
|
seqcl |
|- ( ( ph /\ t e. T ) -> ( seq 1 ( x. , ( F ` t ) ) ` M ) e. RR ) |
| 202 |
6
|
fvmpt2 |
|- ( ( t e. T /\ ( seq 1 ( x. , ( F ` t ) ) ` M ) e. RR ) -> ( Z ` t ) = ( seq 1 ( x. , ( F ` t ) ) ` M ) ) |
| 203 |
164 201 202
|
syl2anc |
|- ( ( ph /\ t e. T ) -> ( Z ` t ) = ( seq 1 ( x. , ( F ` t ) ) ` M ) ) |
| 204 |
161 163 203
|
3eqtr4d |
|- ( ( ph /\ t e. T ) -> ( X ` t ) = ( Z ` t ) ) |