| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fmul01lt1lem1.1 | ⊢ Ⅎ 𝑖 𝐵 | 
						
							| 2 |  | fmul01lt1lem1.2 | ⊢ Ⅎ 𝑖 𝜑 | 
						
							| 3 |  | fmul01lt1lem1.3 | ⊢ 𝐴  =  seq 𝐿 (  ·  ,  𝐵 ) | 
						
							| 4 |  | fmul01lt1lem1.4 | ⊢ ( 𝜑  →  𝐿  ∈  ℤ ) | 
						
							| 5 |  | fmul01lt1lem1.5 | ⊢ ( 𝜑  →  𝑀  ∈  ( ℤ≥ ‘ 𝐿 ) ) | 
						
							| 6 |  | fmul01lt1lem1.6 | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 𝐿 ... 𝑀 ) )  →  ( 𝐵 ‘ 𝑖 )  ∈  ℝ ) | 
						
							| 7 |  | fmul01lt1lem1.7 | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 𝐿 ... 𝑀 ) )  →  0  ≤  ( 𝐵 ‘ 𝑖 ) ) | 
						
							| 8 |  | fmul01lt1lem1.8 | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 𝐿 ... 𝑀 ) )  →  ( 𝐵 ‘ 𝑖 )  ≤  1 ) | 
						
							| 9 |  | fmul01lt1lem1.9 | ⊢ ( 𝜑  →  𝐸  ∈  ℝ+ ) | 
						
							| 10 |  | fmul01lt1lem1.10 | ⊢ ( 𝜑  →  ( 𝐵 ‘ 𝐿 )  <  𝐸 ) | 
						
							| 11 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑀  =  𝐿 )  →  𝑀  =  𝐿 ) | 
						
							| 12 | 11 | fveq2d | ⊢ ( ( 𝜑  ∧  𝑀  =  𝐿 )  →  ( 𝐴 ‘ 𝑀 )  =  ( 𝐴 ‘ 𝐿 ) ) | 
						
							| 13 | 3 | a1i | ⊢ ( ( 𝜑  ∧  𝑀  =  𝐿 )  →  𝐴  =  seq 𝐿 (  ·  ,  𝐵 ) ) | 
						
							| 14 | 13 | fveq1d | ⊢ ( ( 𝜑  ∧  𝑀  =  𝐿 )  →  ( 𝐴 ‘ 𝐿 )  =  ( seq 𝐿 (  ·  ,  𝐵 ) ‘ 𝐿 ) ) | 
						
							| 15 |  | seq1 | ⊢ ( 𝐿  ∈  ℤ  →  ( seq 𝐿 (  ·  ,  𝐵 ) ‘ 𝐿 )  =  ( 𝐵 ‘ 𝐿 ) ) | 
						
							| 16 | 4 15 | syl | ⊢ ( 𝜑  →  ( seq 𝐿 (  ·  ,  𝐵 ) ‘ 𝐿 )  =  ( 𝐵 ‘ 𝐿 ) ) | 
						
							| 17 | 16 | adantr | ⊢ ( ( 𝜑  ∧  𝑀  =  𝐿 )  →  ( seq 𝐿 (  ·  ,  𝐵 ) ‘ 𝐿 )  =  ( 𝐵 ‘ 𝐿 ) ) | 
						
							| 18 | 12 14 17 | 3eqtrd | ⊢ ( ( 𝜑  ∧  𝑀  =  𝐿 )  →  ( 𝐴 ‘ 𝑀 )  =  ( 𝐵 ‘ 𝐿 ) ) | 
						
							| 19 | 10 | adantr | ⊢ ( ( 𝜑  ∧  𝑀  =  𝐿 )  →  ( 𝐵 ‘ 𝐿 )  <  𝐸 ) | 
						
							| 20 | 18 19 | eqbrtrd | ⊢ ( ( 𝜑  ∧  𝑀  =  𝐿 )  →  ( 𝐴 ‘ 𝑀 )  <  𝐸 ) | 
						
							| 21 |  | simpr | ⊢ ( ( 𝜑  ∧  ¬  𝑀  =  𝐿 )  →  ¬  𝑀  =  𝐿 ) | 
						
							| 22 | 21 | neqned | ⊢ ( ( 𝜑  ∧  ¬  𝑀  =  𝐿 )  →  𝑀  ≠  𝐿 ) | 
						
							| 23 | 4 | zred | ⊢ ( 𝜑  →  𝐿  ∈  ℝ ) | 
						
							| 24 |  | eluzelz | ⊢ ( 𝑀  ∈  ( ℤ≥ ‘ 𝐿 )  →  𝑀  ∈  ℤ ) | 
						
							| 25 | 5 24 | syl | ⊢ ( 𝜑  →  𝑀  ∈  ℤ ) | 
						
							| 26 | 25 | zred | ⊢ ( 𝜑  →  𝑀  ∈  ℝ ) | 
						
							| 27 |  | eluzle | ⊢ ( 𝑀  ∈  ( ℤ≥ ‘ 𝐿 )  →  𝐿  ≤  𝑀 ) | 
						
							| 28 | 5 27 | syl | ⊢ ( 𝜑  →  𝐿  ≤  𝑀 ) | 
						
							| 29 | 23 26 28 | 3jca | ⊢ ( 𝜑  →  ( 𝐿  ∈  ℝ  ∧  𝑀  ∈  ℝ  ∧  𝐿  ≤  𝑀 ) ) | 
						
							| 30 | 29 | adantr | ⊢ ( ( 𝜑  ∧  ¬  𝑀  =  𝐿 )  →  ( 𝐿  ∈  ℝ  ∧  𝑀  ∈  ℝ  ∧  𝐿  ≤  𝑀 ) ) | 
						
							| 31 |  | leltne | ⊢ ( ( 𝐿  ∈  ℝ  ∧  𝑀  ∈  ℝ  ∧  𝐿  ≤  𝑀 )  →  ( 𝐿  <  𝑀  ↔  𝑀  ≠  𝐿 ) ) | 
						
							| 32 | 30 31 | syl | ⊢ ( ( 𝜑  ∧  ¬  𝑀  =  𝐿 )  →  ( 𝐿  <  𝑀  ↔  𝑀  ≠  𝐿 ) ) | 
						
							| 33 | 22 32 | mpbird | ⊢ ( ( 𝜑  ∧  ¬  𝑀  =  𝐿 )  →  𝐿  <  𝑀 ) | 
						
							| 34 | 3 | fveq1i | ⊢ ( 𝐴 ‘ 𝑀 )  =  ( seq 𝐿 (  ·  ,  𝐵 ) ‘ 𝑀 ) | 
						
							| 35 |  | remulcl | ⊢ ( ( 𝑗  ∈  ℝ  ∧  𝑘  ∈  ℝ )  →  ( 𝑗  ·  𝑘 )  ∈  ℝ ) | 
						
							| 36 | 35 | adantl | ⊢ ( ( ( 𝜑  ∧  𝐿  <  𝑀 )  ∧  ( 𝑗  ∈  ℝ  ∧  𝑘  ∈  ℝ ) )  →  ( 𝑗  ·  𝑘 )  ∈  ℝ ) | 
						
							| 37 |  | recn | ⊢ ( 𝑗  ∈  ℝ  →  𝑗  ∈  ℂ ) | 
						
							| 38 | 37 | 3ad2ant1 | ⊢ ( ( 𝑗  ∈  ℝ  ∧  𝑘  ∈  ℝ  ∧  𝑙  ∈  ℝ )  →  𝑗  ∈  ℂ ) | 
						
							| 39 |  | recn | ⊢ ( 𝑘  ∈  ℝ  →  𝑘  ∈  ℂ ) | 
						
							| 40 | 39 | 3ad2ant2 | ⊢ ( ( 𝑗  ∈  ℝ  ∧  𝑘  ∈  ℝ  ∧  𝑙  ∈  ℝ )  →  𝑘  ∈  ℂ ) | 
						
							| 41 |  | recn | ⊢ ( 𝑙  ∈  ℝ  →  𝑙  ∈  ℂ ) | 
						
							| 42 | 41 | 3ad2ant3 | ⊢ ( ( 𝑗  ∈  ℝ  ∧  𝑘  ∈  ℝ  ∧  𝑙  ∈  ℝ )  →  𝑙  ∈  ℂ ) | 
						
							| 43 | 38 40 42 | mulassd | ⊢ ( ( 𝑗  ∈  ℝ  ∧  𝑘  ∈  ℝ  ∧  𝑙  ∈  ℝ )  →  ( ( 𝑗  ·  𝑘 )  ·  𝑙 )  =  ( 𝑗  ·  ( 𝑘  ·  𝑙 ) ) ) | 
						
							| 44 | 43 | adantl | ⊢ ( ( ( 𝜑  ∧  𝐿  <  𝑀 )  ∧  ( 𝑗  ∈  ℝ  ∧  𝑘  ∈  ℝ  ∧  𝑙  ∈  ℝ ) )  →  ( ( 𝑗  ·  𝑘 )  ·  𝑙 )  =  ( 𝑗  ·  ( 𝑘  ·  𝑙 ) ) ) | 
						
							| 45 |  | simpr | ⊢ ( ( 𝜑  ∧  𝐿  <  𝑀 )  →  𝐿  <  𝑀 ) | 
						
							| 46 | 45 | olcd | ⊢ ( ( 𝜑  ∧  𝐿  <  𝑀 )  →  ( 𝑀  <  𝐿  ∨  𝐿  <  𝑀 ) ) | 
						
							| 47 | 26 23 | jca | ⊢ ( 𝜑  →  ( 𝑀  ∈  ℝ  ∧  𝐿  ∈  ℝ ) ) | 
						
							| 48 | 47 | adantr | ⊢ ( ( 𝜑  ∧  𝐿  <  𝑀 )  →  ( 𝑀  ∈  ℝ  ∧  𝐿  ∈  ℝ ) ) | 
						
							| 49 |  | lttri2 | ⊢ ( ( 𝑀  ∈  ℝ  ∧  𝐿  ∈  ℝ )  →  ( 𝑀  ≠  𝐿  ↔  ( 𝑀  <  𝐿  ∨  𝐿  <  𝑀 ) ) ) | 
						
							| 50 | 48 49 | syl | ⊢ ( ( 𝜑  ∧  𝐿  <  𝑀 )  →  ( 𝑀  ≠  𝐿  ↔  ( 𝑀  <  𝐿  ∨  𝐿  <  𝑀 ) ) ) | 
						
							| 51 | 46 50 | mpbird | ⊢ ( ( 𝜑  ∧  𝐿  <  𝑀 )  →  𝑀  ≠  𝐿 ) | 
						
							| 52 | 51 | neneqd | ⊢ ( ( 𝜑  ∧  𝐿  <  𝑀 )  →  ¬  𝑀  =  𝐿 ) | 
						
							| 53 |  | uzp1 | ⊢ ( 𝑀  ∈  ( ℤ≥ ‘ 𝐿 )  →  ( 𝑀  =  𝐿  ∨  𝑀  ∈  ( ℤ≥ ‘ ( 𝐿  +  1 ) ) ) ) | 
						
							| 54 | 5 53 | syl | ⊢ ( 𝜑  →  ( 𝑀  =  𝐿  ∨  𝑀  ∈  ( ℤ≥ ‘ ( 𝐿  +  1 ) ) ) ) | 
						
							| 55 | 54 | adantr | ⊢ ( ( 𝜑  ∧  𝐿  <  𝑀 )  →  ( 𝑀  =  𝐿  ∨  𝑀  ∈  ( ℤ≥ ‘ ( 𝐿  +  1 ) ) ) ) | 
						
							| 56 | 55 | ord | ⊢ ( ( 𝜑  ∧  𝐿  <  𝑀 )  →  ( ¬  𝑀  =  𝐿  →  𝑀  ∈  ( ℤ≥ ‘ ( 𝐿  +  1 ) ) ) ) | 
						
							| 57 | 52 56 | mpd | ⊢ ( ( 𝜑  ∧  𝐿  <  𝑀 )  →  𝑀  ∈  ( ℤ≥ ‘ ( 𝐿  +  1 ) ) ) | 
						
							| 58 | 4 | adantr | ⊢ ( ( 𝜑  ∧  𝐿  <  𝑀 )  →  𝐿  ∈  ℤ ) | 
						
							| 59 |  | uzid | ⊢ ( 𝐿  ∈  ℤ  →  𝐿  ∈  ( ℤ≥ ‘ 𝐿 ) ) | 
						
							| 60 | 58 59 | syl | ⊢ ( ( 𝜑  ∧  𝐿  <  𝑀 )  →  𝐿  ∈  ( ℤ≥ ‘ 𝐿 ) ) | 
						
							| 61 |  | nfv | ⊢ Ⅎ 𝑖 𝑗  ∈  ( 𝐿 ... 𝑀 ) | 
						
							| 62 | 2 61 | nfan | ⊢ Ⅎ 𝑖 ( 𝜑  ∧  𝑗  ∈  ( 𝐿 ... 𝑀 ) ) | 
						
							| 63 |  | nfcv | ⊢ Ⅎ 𝑖 𝑗 | 
						
							| 64 | 1 63 | nffv | ⊢ Ⅎ 𝑖 ( 𝐵 ‘ 𝑗 ) | 
						
							| 65 | 64 | nfel1 | ⊢ Ⅎ 𝑖 ( 𝐵 ‘ 𝑗 )  ∈  ℝ | 
						
							| 66 | 62 65 | nfim | ⊢ Ⅎ 𝑖 ( ( 𝜑  ∧  𝑗  ∈  ( 𝐿 ... 𝑀 ) )  →  ( 𝐵 ‘ 𝑗 )  ∈  ℝ ) | 
						
							| 67 |  | eleq1 | ⊢ ( 𝑖  =  𝑗  →  ( 𝑖  ∈  ( 𝐿 ... 𝑀 )  ↔  𝑗  ∈  ( 𝐿 ... 𝑀 ) ) ) | 
						
							| 68 | 67 | anbi2d | ⊢ ( 𝑖  =  𝑗  →  ( ( 𝜑  ∧  𝑖  ∈  ( 𝐿 ... 𝑀 ) )  ↔  ( 𝜑  ∧  𝑗  ∈  ( 𝐿 ... 𝑀 ) ) ) ) | 
						
							| 69 |  | fveq2 | ⊢ ( 𝑖  =  𝑗  →  ( 𝐵 ‘ 𝑖 )  =  ( 𝐵 ‘ 𝑗 ) ) | 
						
							| 70 | 69 | eleq1d | ⊢ ( 𝑖  =  𝑗  →  ( ( 𝐵 ‘ 𝑖 )  ∈  ℝ  ↔  ( 𝐵 ‘ 𝑗 )  ∈  ℝ ) ) | 
						
							| 71 | 68 70 | imbi12d | ⊢ ( 𝑖  =  𝑗  →  ( ( ( 𝜑  ∧  𝑖  ∈  ( 𝐿 ... 𝑀 ) )  →  ( 𝐵 ‘ 𝑖 )  ∈  ℝ )  ↔  ( ( 𝜑  ∧  𝑗  ∈  ( 𝐿 ... 𝑀 ) )  →  ( 𝐵 ‘ 𝑗 )  ∈  ℝ ) ) ) | 
						
							| 72 | 66 71 6 | chvarfv | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 𝐿 ... 𝑀 ) )  →  ( 𝐵 ‘ 𝑗 )  ∈  ℝ ) | 
						
							| 73 | 72 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝐿  <  𝑀 )  ∧  𝑗  ∈  ( 𝐿 ... 𝑀 ) )  →  ( 𝐵 ‘ 𝑗 )  ∈  ℝ ) | 
						
							| 74 | 36 44 57 60 73 | seqsplit | ⊢ ( ( 𝜑  ∧  𝐿  <  𝑀 )  →  ( seq 𝐿 (  ·  ,  𝐵 ) ‘ 𝑀 )  =  ( ( seq 𝐿 (  ·  ,  𝐵 ) ‘ 𝐿 )  ·  ( seq ( 𝐿  +  1 ) (  ·  ,  𝐵 ) ‘ 𝑀 ) ) ) | 
						
							| 75 |  | eluzfz1 | ⊢ ( 𝑀  ∈  ( ℤ≥ ‘ 𝐿 )  →  𝐿  ∈  ( 𝐿 ... 𝑀 ) ) | 
						
							| 76 | 5 75 | syl | ⊢ ( 𝜑  →  𝐿  ∈  ( 𝐿 ... 𝑀 ) ) | 
						
							| 77 | 76 | ancli | ⊢ ( 𝜑  →  ( 𝜑  ∧  𝐿  ∈  ( 𝐿 ... 𝑀 ) ) ) | 
						
							| 78 |  | nfv | ⊢ Ⅎ 𝑖 𝐿  ∈  ( 𝐿 ... 𝑀 ) | 
						
							| 79 | 2 78 | nfan | ⊢ Ⅎ 𝑖 ( 𝜑  ∧  𝐿  ∈  ( 𝐿 ... 𝑀 ) ) | 
						
							| 80 |  | nfcv | ⊢ Ⅎ 𝑖 𝐿 | 
						
							| 81 | 1 80 | nffv | ⊢ Ⅎ 𝑖 ( 𝐵 ‘ 𝐿 ) | 
						
							| 82 | 81 | nfel1 | ⊢ Ⅎ 𝑖 ( 𝐵 ‘ 𝐿 )  ∈  ℝ | 
						
							| 83 | 79 82 | nfim | ⊢ Ⅎ 𝑖 ( ( 𝜑  ∧  𝐿  ∈  ( 𝐿 ... 𝑀 ) )  →  ( 𝐵 ‘ 𝐿 )  ∈  ℝ ) | 
						
							| 84 |  | eleq1 | ⊢ ( 𝑖  =  𝐿  →  ( 𝑖  ∈  ( 𝐿 ... 𝑀 )  ↔  𝐿  ∈  ( 𝐿 ... 𝑀 ) ) ) | 
						
							| 85 | 84 | anbi2d | ⊢ ( 𝑖  =  𝐿  →  ( ( 𝜑  ∧  𝑖  ∈  ( 𝐿 ... 𝑀 ) )  ↔  ( 𝜑  ∧  𝐿  ∈  ( 𝐿 ... 𝑀 ) ) ) ) | 
						
							| 86 |  | fveq2 | ⊢ ( 𝑖  =  𝐿  →  ( 𝐵 ‘ 𝑖 )  =  ( 𝐵 ‘ 𝐿 ) ) | 
						
							| 87 | 86 | eleq1d | ⊢ ( 𝑖  =  𝐿  →  ( ( 𝐵 ‘ 𝑖 )  ∈  ℝ  ↔  ( 𝐵 ‘ 𝐿 )  ∈  ℝ ) ) | 
						
							| 88 | 85 87 | imbi12d | ⊢ ( 𝑖  =  𝐿  →  ( ( ( 𝜑  ∧  𝑖  ∈  ( 𝐿 ... 𝑀 ) )  →  ( 𝐵 ‘ 𝑖 )  ∈  ℝ )  ↔  ( ( 𝜑  ∧  𝐿  ∈  ( 𝐿 ... 𝑀 ) )  →  ( 𝐵 ‘ 𝐿 )  ∈  ℝ ) ) ) | 
						
							| 89 | 83 88 6 | vtoclg1f | ⊢ ( 𝐿  ∈  ( 𝐿 ... 𝑀 )  →  ( ( 𝜑  ∧  𝐿  ∈  ( 𝐿 ... 𝑀 ) )  →  ( 𝐵 ‘ 𝐿 )  ∈  ℝ ) ) | 
						
							| 90 | 76 77 89 | sylc | ⊢ ( 𝜑  →  ( 𝐵 ‘ 𝐿 )  ∈  ℝ ) | 
						
							| 91 | 16 90 | eqeltrd | ⊢ ( 𝜑  →  ( seq 𝐿 (  ·  ,  𝐵 ) ‘ 𝐿 )  ∈  ℝ ) | 
						
							| 92 | 91 | adantr | ⊢ ( ( 𝜑  ∧  𝐿  <  𝑀 )  →  ( seq 𝐿 (  ·  ,  𝐵 ) ‘ 𝐿 )  ∈  ℝ ) | 
						
							| 93 | 4 | adantr | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( ( 𝐿  +  1 ) ... 𝑀 ) )  →  𝐿  ∈  ℤ ) | 
						
							| 94 | 25 | adantr | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( ( 𝐿  +  1 ) ... 𝑀 ) )  →  𝑀  ∈  ℤ ) | 
						
							| 95 |  | elfzelz | ⊢ ( 𝑗  ∈  ( ( 𝐿  +  1 ) ... 𝑀 )  →  𝑗  ∈  ℤ ) | 
						
							| 96 | 95 | adantl | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( ( 𝐿  +  1 ) ... 𝑀 ) )  →  𝑗  ∈  ℤ ) | 
						
							| 97 | 23 | adantr | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( ( 𝐿  +  1 ) ... 𝑀 ) )  →  𝐿  ∈  ℝ ) | 
						
							| 98 |  | peano2re | ⊢ ( 𝐿  ∈  ℝ  →  ( 𝐿  +  1 )  ∈  ℝ ) | 
						
							| 99 | 23 98 | syl | ⊢ ( 𝜑  →  ( 𝐿  +  1 )  ∈  ℝ ) | 
						
							| 100 | 99 | adantr | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( ( 𝐿  +  1 ) ... 𝑀 ) )  →  ( 𝐿  +  1 )  ∈  ℝ ) | 
						
							| 101 | 95 | zred | ⊢ ( 𝑗  ∈  ( ( 𝐿  +  1 ) ... 𝑀 )  →  𝑗  ∈  ℝ ) | 
						
							| 102 | 101 | adantl | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( ( 𝐿  +  1 ) ... 𝑀 ) )  →  𝑗  ∈  ℝ ) | 
						
							| 103 | 23 | lep1d | ⊢ ( 𝜑  →  𝐿  ≤  ( 𝐿  +  1 ) ) | 
						
							| 104 | 103 | adantr | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( ( 𝐿  +  1 ) ... 𝑀 ) )  →  𝐿  ≤  ( 𝐿  +  1 ) ) | 
						
							| 105 |  | elfzle1 | ⊢ ( 𝑗  ∈  ( ( 𝐿  +  1 ) ... 𝑀 )  →  ( 𝐿  +  1 )  ≤  𝑗 ) | 
						
							| 106 | 105 | adantl | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( ( 𝐿  +  1 ) ... 𝑀 ) )  →  ( 𝐿  +  1 )  ≤  𝑗 ) | 
						
							| 107 | 97 100 102 104 106 | letrd | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( ( 𝐿  +  1 ) ... 𝑀 ) )  →  𝐿  ≤  𝑗 ) | 
						
							| 108 |  | elfzle2 | ⊢ ( 𝑗  ∈  ( ( 𝐿  +  1 ) ... 𝑀 )  →  𝑗  ≤  𝑀 ) | 
						
							| 109 | 108 | adantl | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( ( 𝐿  +  1 ) ... 𝑀 ) )  →  𝑗  ≤  𝑀 ) | 
						
							| 110 | 93 94 96 107 109 | elfzd | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( ( 𝐿  +  1 ) ... 𝑀 ) )  →  𝑗  ∈  ( 𝐿 ... 𝑀 ) ) | 
						
							| 111 | 110 72 | syldan | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( ( 𝐿  +  1 ) ... 𝑀 ) )  →  ( 𝐵 ‘ 𝑗 )  ∈  ℝ ) | 
						
							| 112 | 111 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝐿  <  𝑀 )  ∧  𝑗  ∈  ( ( 𝐿  +  1 ) ... 𝑀 ) )  →  ( 𝐵 ‘ 𝑗 )  ∈  ℝ ) | 
						
							| 113 | 57 112 36 | seqcl | ⊢ ( ( 𝜑  ∧  𝐿  <  𝑀 )  →  ( seq ( 𝐿  +  1 ) (  ·  ,  𝐵 ) ‘ 𝑀 )  ∈  ℝ ) | 
						
							| 114 | 92 113 | remulcld | ⊢ ( ( 𝜑  ∧  𝐿  <  𝑀 )  →  ( ( seq 𝐿 (  ·  ,  𝐵 ) ‘ 𝐿 )  ·  ( seq ( 𝐿  +  1 ) (  ·  ,  𝐵 ) ‘ 𝑀 ) )  ∈  ℝ ) | 
						
							| 115 | 9 | rpred | ⊢ ( 𝜑  →  𝐸  ∈  ℝ ) | 
						
							| 116 | 115 | adantr | ⊢ ( ( 𝜑  ∧  𝐿  <  𝑀 )  →  𝐸  ∈  ℝ ) | 
						
							| 117 |  | 1red | ⊢ ( ( 𝜑  ∧  𝐿  <  𝑀 )  →  1  ∈  ℝ ) | 
						
							| 118 |  | nfcv | ⊢ Ⅎ 𝑖 0 | 
						
							| 119 |  | nfcv | ⊢ Ⅎ 𝑖  ≤ | 
						
							| 120 | 118 119 81 | nfbr | ⊢ Ⅎ 𝑖 0  ≤  ( 𝐵 ‘ 𝐿 ) | 
						
							| 121 | 79 120 | nfim | ⊢ Ⅎ 𝑖 ( ( 𝜑  ∧  𝐿  ∈  ( 𝐿 ... 𝑀 ) )  →  0  ≤  ( 𝐵 ‘ 𝐿 ) ) | 
						
							| 122 | 86 | breq2d | ⊢ ( 𝑖  =  𝐿  →  ( 0  ≤  ( 𝐵 ‘ 𝑖 )  ↔  0  ≤  ( 𝐵 ‘ 𝐿 ) ) ) | 
						
							| 123 | 85 122 | imbi12d | ⊢ ( 𝑖  =  𝐿  →  ( ( ( 𝜑  ∧  𝑖  ∈  ( 𝐿 ... 𝑀 ) )  →  0  ≤  ( 𝐵 ‘ 𝑖 ) )  ↔  ( ( 𝜑  ∧  𝐿  ∈  ( 𝐿 ... 𝑀 ) )  →  0  ≤  ( 𝐵 ‘ 𝐿 ) ) ) ) | 
						
							| 124 | 121 123 7 | vtoclg1f | ⊢ ( 𝐿  ∈  ( 𝐿 ... 𝑀 )  →  ( ( 𝜑  ∧  𝐿  ∈  ( 𝐿 ... 𝑀 ) )  →  0  ≤  ( 𝐵 ‘ 𝐿 ) ) ) | 
						
							| 125 | 76 77 124 | sylc | ⊢ ( 𝜑  →  0  ≤  ( 𝐵 ‘ 𝐿 ) ) | 
						
							| 126 | 125 16 | breqtrrd | ⊢ ( 𝜑  →  0  ≤  ( seq 𝐿 (  ·  ,  𝐵 ) ‘ 𝐿 ) ) | 
						
							| 127 | 126 | adantr | ⊢ ( ( 𝜑  ∧  𝐿  <  𝑀 )  →  0  ≤  ( seq 𝐿 (  ·  ,  𝐵 ) ‘ 𝐿 ) ) | 
						
							| 128 |  | nfv | ⊢ Ⅎ 𝑖 𝐿  <  𝑀 | 
						
							| 129 | 2 128 | nfan | ⊢ Ⅎ 𝑖 ( 𝜑  ∧  𝐿  <  𝑀 ) | 
						
							| 130 |  | eqid | ⊢ seq ( 𝐿  +  1 ) (  ·  ,  𝐵 )  =  seq ( 𝐿  +  1 ) (  ·  ,  𝐵 ) | 
						
							| 131 | 4 | peano2zd | ⊢ ( 𝜑  →  ( 𝐿  +  1 )  ∈  ℤ ) | 
						
							| 132 | 131 | adantr | ⊢ ( ( 𝜑  ∧  𝐿  <  𝑀 )  →  ( 𝐿  +  1 )  ∈  ℤ ) | 
						
							| 133 | 23 | adantr | ⊢ ( ( 𝜑  ∧  𝐿  <  𝑀 )  →  𝐿  ∈  ℝ ) | 
						
							| 134 | 133 45 | gtned | ⊢ ( ( 𝜑  ∧  𝐿  <  𝑀 )  →  𝑀  ≠  𝐿 ) | 
						
							| 135 | 134 | neneqd | ⊢ ( ( 𝜑  ∧  𝐿  <  𝑀 )  →  ¬  𝑀  =  𝐿 ) | 
						
							| 136 | 5 | adantr | ⊢ ( ( 𝜑  ∧  𝐿  <  𝑀 )  →  𝑀  ∈  ( ℤ≥ ‘ 𝐿 ) ) | 
						
							| 137 | 136 53 | syl | ⊢ ( ( 𝜑  ∧  𝐿  <  𝑀 )  →  ( 𝑀  =  𝐿  ∨  𝑀  ∈  ( ℤ≥ ‘ ( 𝐿  +  1 ) ) ) ) | 
						
							| 138 |  | orel1 | ⊢ ( ¬  𝑀  =  𝐿  →  ( ( 𝑀  =  𝐿  ∨  𝑀  ∈  ( ℤ≥ ‘ ( 𝐿  +  1 ) ) )  →  𝑀  ∈  ( ℤ≥ ‘ ( 𝐿  +  1 ) ) ) ) | 
						
							| 139 | 135 137 138 | sylc | ⊢ ( ( 𝜑  ∧  𝐿  <  𝑀 )  →  𝑀  ∈  ( ℤ≥ ‘ ( 𝐿  +  1 ) ) ) | 
						
							| 140 | 25 | adantr | ⊢ ( ( 𝜑  ∧  𝐿  <  𝑀 )  →  𝑀  ∈  ℤ ) | 
						
							| 141 |  | zltp1le | ⊢ ( ( 𝐿  ∈  ℤ  ∧  𝑀  ∈  ℤ )  →  ( 𝐿  <  𝑀  ↔  ( 𝐿  +  1 )  ≤  𝑀 ) ) | 
						
							| 142 | 58 140 141 | syl2anc | ⊢ ( ( 𝜑  ∧  𝐿  <  𝑀 )  →  ( 𝐿  <  𝑀  ↔  ( 𝐿  +  1 )  ≤  𝑀 ) ) | 
						
							| 143 | 45 142 | mpbid | ⊢ ( ( 𝜑  ∧  𝐿  <  𝑀 )  →  ( 𝐿  +  1 )  ≤  𝑀 ) | 
						
							| 144 | 26 | adantr | ⊢ ( ( 𝜑  ∧  𝐿  <  𝑀 )  →  𝑀  ∈  ℝ ) | 
						
							| 145 | 144 | leidd | ⊢ ( ( 𝜑  ∧  𝐿  <  𝑀 )  →  𝑀  ≤  𝑀 ) | 
						
							| 146 | 132 140 140 143 145 | elfzd | ⊢ ( ( 𝜑  ∧  𝐿  <  𝑀 )  →  𝑀  ∈  ( ( 𝐿  +  1 ) ... 𝑀 ) ) | 
						
							| 147 | 4 | adantr | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( ( 𝐿  +  1 ) ... 𝑀 ) )  →  𝐿  ∈  ℤ ) | 
						
							| 148 | 25 | adantr | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( ( 𝐿  +  1 ) ... 𝑀 ) )  →  𝑀  ∈  ℤ ) | 
						
							| 149 |  | elfzelz | ⊢ ( 𝑖  ∈  ( ( 𝐿  +  1 ) ... 𝑀 )  →  𝑖  ∈  ℤ ) | 
						
							| 150 | 149 | adantl | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( ( 𝐿  +  1 ) ... 𝑀 ) )  →  𝑖  ∈  ℤ ) | 
						
							| 151 | 23 | adantr | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( ( 𝐿  +  1 ) ... 𝑀 ) )  →  𝐿  ∈  ℝ ) | 
						
							| 152 | 151 98 | syl | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( ( 𝐿  +  1 ) ... 𝑀 ) )  →  ( 𝐿  +  1 )  ∈  ℝ ) | 
						
							| 153 | 149 | zred | ⊢ ( 𝑖  ∈  ( ( 𝐿  +  1 ) ... 𝑀 )  →  𝑖  ∈  ℝ ) | 
						
							| 154 | 153 | adantl | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( ( 𝐿  +  1 ) ... 𝑀 ) )  →  𝑖  ∈  ℝ ) | 
						
							| 155 | 103 | adantr | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( ( 𝐿  +  1 ) ... 𝑀 ) )  →  𝐿  ≤  ( 𝐿  +  1 ) ) | 
						
							| 156 |  | elfzle1 | ⊢ ( 𝑖  ∈  ( ( 𝐿  +  1 ) ... 𝑀 )  →  ( 𝐿  +  1 )  ≤  𝑖 ) | 
						
							| 157 | 156 | adantl | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( ( 𝐿  +  1 ) ... 𝑀 ) )  →  ( 𝐿  +  1 )  ≤  𝑖 ) | 
						
							| 158 | 151 152 154 155 157 | letrd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( ( 𝐿  +  1 ) ... 𝑀 ) )  →  𝐿  ≤  𝑖 ) | 
						
							| 159 |  | elfzle2 | ⊢ ( 𝑖  ∈  ( ( 𝐿  +  1 ) ... 𝑀 )  →  𝑖  ≤  𝑀 ) | 
						
							| 160 | 159 | adantl | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( ( 𝐿  +  1 ) ... 𝑀 ) )  →  𝑖  ≤  𝑀 ) | 
						
							| 161 | 147 148 150 158 160 | elfzd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( ( 𝐿  +  1 ) ... 𝑀 ) )  →  𝑖  ∈  ( 𝐿 ... 𝑀 ) ) | 
						
							| 162 | 161 6 | syldan | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( ( 𝐿  +  1 ) ... 𝑀 ) )  →  ( 𝐵 ‘ 𝑖 )  ∈  ℝ ) | 
						
							| 163 | 162 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝐿  <  𝑀 )  ∧  𝑖  ∈  ( ( 𝐿  +  1 ) ... 𝑀 ) )  →  ( 𝐵 ‘ 𝑖 )  ∈  ℝ ) | 
						
							| 164 |  | simpll | ⊢ ( ( ( 𝜑  ∧  𝐿  <  𝑀 )  ∧  𝑖  ∈  ( ( 𝐿  +  1 ) ... 𝑀 ) )  →  𝜑 ) | 
						
							| 165 | 4 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝐿  <  𝑀 )  ∧  𝑖  ∈  ( ( 𝐿  +  1 ) ... 𝑀 ) )  →  𝐿  ∈  ℤ ) | 
						
							| 166 | 25 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝐿  <  𝑀 )  ∧  𝑖  ∈  ( ( 𝐿  +  1 ) ... 𝑀 ) )  →  𝑀  ∈  ℤ ) | 
						
							| 167 | 149 | adantl | ⊢ ( ( ( 𝜑  ∧  𝐿  <  𝑀 )  ∧  𝑖  ∈  ( ( 𝐿  +  1 ) ... 𝑀 ) )  →  𝑖  ∈  ℤ ) | 
						
							| 168 | 23 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝐿  <  𝑀 )  ∧  𝑖  ∈  ( ( 𝐿  +  1 ) ... 𝑀 ) )  →  𝐿  ∈  ℝ ) | 
						
							| 169 | 99 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝐿  <  𝑀 )  ∧  𝑖  ∈  ( ( 𝐿  +  1 ) ... 𝑀 ) )  →  ( 𝐿  +  1 )  ∈  ℝ ) | 
						
							| 170 | 153 | adantl | ⊢ ( ( ( 𝜑  ∧  𝐿  <  𝑀 )  ∧  𝑖  ∈  ( ( 𝐿  +  1 ) ... 𝑀 ) )  →  𝑖  ∈  ℝ ) | 
						
							| 171 | 103 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝐿  <  𝑀 )  ∧  𝑖  ∈  ( ( 𝐿  +  1 ) ... 𝑀 ) )  →  𝐿  ≤  ( 𝐿  +  1 ) ) | 
						
							| 172 | 156 | adantl | ⊢ ( ( ( 𝜑  ∧  𝐿  <  𝑀 )  ∧  𝑖  ∈  ( ( 𝐿  +  1 ) ... 𝑀 ) )  →  ( 𝐿  +  1 )  ≤  𝑖 ) | 
						
							| 173 | 168 169 170 171 172 | letrd | ⊢ ( ( ( 𝜑  ∧  𝐿  <  𝑀 )  ∧  𝑖  ∈  ( ( 𝐿  +  1 ) ... 𝑀 ) )  →  𝐿  ≤  𝑖 ) | 
						
							| 174 | 159 | adantl | ⊢ ( ( ( 𝜑  ∧  𝐿  <  𝑀 )  ∧  𝑖  ∈  ( ( 𝐿  +  1 ) ... 𝑀 ) )  →  𝑖  ≤  𝑀 ) | 
						
							| 175 | 165 166 167 173 174 | elfzd | ⊢ ( ( ( 𝜑  ∧  𝐿  <  𝑀 )  ∧  𝑖  ∈  ( ( 𝐿  +  1 ) ... 𝑀 ) )  →  𝑖  ∈  ( 𝐿 ... 𝑀 ) ) | 
						
							| 176 | 164 175 7 | syl2anc | ⊢ ( ( ( 𝜑  ∧  𝐿  <  𝑀 )  ∧  𝑖  ∈  ( ( 𝐿  +  1 ) ... 𝑀 ) )  →  0  ≤  ( 𝐵 ‘ 𝑖 ) ) | 
						
							| 177 | 164 175 8 | syl2anc | ⊢ ( ( ( 𝜑  ∧  𝐿  <  𝑀 )  ∧  𝑖  ∈  ( ( 𝐿  +  1 ) ... 𝑀 ) )  →  ( 𝐵 ‘ 𝑖 )  ≤  1 ) | 
						
							| 178 | 1 129 130 132 139 146 163 176 177 | fmul01 | ⊢ ( ( 𝜑  ∧  𝐿  <  𝑀 )  →  ( 0  ≤  ( seq ( 𝐿  +  1 ) (  ·  ,  𝐵 ) ‘ 𝑀 )  ∧  ( seq ( 𝐿  +  1 ) (  ·  ,  𝐵 ) ‘ 𝑀 )  ≤  1 ) ) | 
						
							| 179 | 178 | simprd | ⊢ ( ( 𝜑  ∧  𝐿  <  𝑀 )  →  ( seq ( 𝐿  +  1 ) (  ·  ,  𝐵 ) ‘ 𝑀 )  ≤  1 ) | 
						
							| 180 | 113 117 92 127 179 | lemul2ad | ⊢ ( ( 𝜑  ∧  𝐿  <  𝑀 )  →  ( ( seq 𝐿 (  ·  ,  𝐵 ) ‘ 𝐿 )  ·  ( seq ( 𝐿  +  1 ) (  ·  ,  𝐵 ) ‘ 𝑀 ) )  ≤  ( ( seq 𝐿 (  ·  ,  𝐵 ) ‘ 𝐿 )  ·  1 ) ) | 
						
							| 181 | 91 | recnd | ⊢ ( 𝜑  →  ( seq 𝐿 (  ·  ,  𝐵 ) ‘ 𝐿 )  ∈  ℂ ) | 
						
							| 182 | 181 | mulridd | ⊢ ( 𝜑  →  ( ( seq 𝐿 (  ·  ,  𝐵 ) ‘ 𝐿 )  ·  1 )  =  ( seq 𝐿 (  ·  ,  𝐵 ) ‘ 𝐿 ) ) | 
						
							| 183 | 182 | adantr | ⊢ ( ( 𝜑  ∧  𝐿  <  𝑀 )  →  ( ( seq 𝐿 (  ·  ,  𝐵 ) ‘ 𝐿 )  ·  1 )  =  ( seq 𝐿 (  ·  ,  𝐵 ) ‘ 𝐿 ) ) | 
						
							| 184 | 180 183 | breqtrd | ⊢ ( ( 𝜑  ∧  𝐿  <  𝑀 )  →  ( ( seq 𝐿 (  ·  ,  𝐵 ) ‘ 𝐿 )  ·  ( seq ( 𝐿  +  1 ) (  ·  ,  𝐵 ) ‘ 𝑀 ) )  ≤  ( seq 𝐿 (  ·  ,  𝐵 ) ‘ 𝐿 ) ) | 
						
							| 185 | 16 10 | eqbrtrd | ⊢ ( 𝜑  →  ( seq 𝐿 (  ·  ,  𝐵 ) ‘ 𝐿 )  <  𝐸 ) | 
						
							| 186 | 185 | adantr | ⊢ ( ( 𝜑  ∧  𝐿  <  𝑀 )  →  ( seq 𝐿 (  ·  ,  𝐵 ) ‘ 𝐿 )  <  𝐸 ) | 
						
							| 187 | 114 92 116 184 186 | lelttrd | ⊢ ( ( 𝜑  ∧  𝐿  <  𝑀 )  →  ( ( seq 𝐿 (  ·  ,  𝐵 ) ‘ 𝐿 )  ·  ( seq ( 𝐿  +  1 ) (  ·  ,  𝐵 ) ‘ 𝑀 ) )  <  𝐸 ) | 
						
							| 188 | 74 187 | eqbrtrd | ⊢ ( ( 𝜑  ∧  𝐿  <  𝑀 )  →  ( seq 𝐿 (  ·  ,  𝐵 ) ‘ 𝑀 )  <  𝐸 ) | 
						
							| 189 | 34 188 | eqbrtrid | ⊢ ( ( 𝜑  ∧  𝐿  <  𝑀 )  →  ( 𝐴 ‘ 𝑀 )  <  𝐸 ) | 
						
							| 190 | 33 189 | syldan | ⊢ ( ( 𝜑  ∧  ¬  𝑀  =  𝐿 )  →  ( 𝐴 ‘ 𝑀 )  <  𝐸 ) | 
						
							| 191 | 20 190 | pm2.61dan | ⊢ ( 𝜑  →  ( 𝐴 ‘ 𝑀 )  <  𝐸 ) |