| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fmul01.1 | ⊢ Ⅎ 𝑖 𝐵 | 
						
							| 2 |  | fmul01.2 | ⊢ Ⅎ 𝑖 𝜑 | 
						
							| 3 |  | fmul01.3 | ⊢ 𝐴  =  seq 𝐿 (  ·  ,  𝐵 ) | 
						
							| 4 |  | fmul01.4 | ⊢ ( 𝜑  →  𝐿  ∈  ℤ ) | 
						
							| 5 |  | fmul01.5 | ⊢ ( 𝜑  →  𝑀  ∈  ( ℤ≥ ‘ 𝐿 ) ) | 
						
							| 6 |  | fmul01.6 | ⊢ ( 𝜑  →  𝐾  ∈  ( 𝐿 ... 𝑀 ) ) | 
						
							| 7 |  | fmul01.7 | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 𝐿 ... 𝑀 ) )  →  ( 𝐵 ‘ 𝑖 )  ∈  ℝ ) | 
						
							| 8 |  | fmul01.8 | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 𝐿 ... 𝑀 ) )  →  0  ≤  ( 𝐵 ‘ 𝑖 ) ) | 
						
							| 9 |  | fmul01.9 | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 𝐿 ... 𝑀 ) )  →  ( 𝐵 ‘ 𝑖 )  ≤  1 ) | 
						
							| 10 |  | fveq2 | ⊢ ( 𝑘  =  𝐿  →  ( 𝐴 ‘ 𝑘 )  =  ( 𝐴 ‘ 𝐿 ) ) | 
						
							| 11 | 10 | breq2d | ⊢ ( 𝑘  =  𝐿  →  ( 0  ≤  ( 𝐴 ‘ 𝑘 )  ↔  0  ≤  ( 𝐴 ‘ 𝐿 ) ) ) | 
						
							| 12 | 10 | breq1d | ⊢ ( 𝑘  =  𝐿  →  ( ( 𝐴 ‘ 𝑘 )  ≤  1  ↔  ( 𝐴 ‘ 𝐿 )  ≤  1 ) ) | 
						
							| 13 | 11 12 | anbi12d | ⊢ ( 𝑘  =  𝐿  →  ( ( 0  ≤  ( 𝐴 ‘ 𝑘 )  ∧  ( 𝐴 ‘ 𝑘 )  ≤  1 )  ↔  ( 0  ≤  ( 𝐴 ‘ 𝐿 )  ∧  ( 𝐴 ‘ 𝐿 )  ≤  1 ) ) ) | 
						
							| 14 | 13 | imbi2d | ⊢ ( 𝑘  =  𝐿  →  ( ( 𝜑  →  ( 0  ≤  ( 𝐴 ‘ 𝑘 )  ∧  ( 𝐴 ‘ 𝑘 )  ≤  1 ) )  ↔  ( 𝜑  →  ( 0  ≤  ( 𝐴 ‘ 𝐿 )  ∧  ( 𝐴 ‘ 𝐿 )  ≤  1 ) ) ) ) | 
						
							| 15 |  | fveq2 | ⊢ ( 𝑘  =  𝑗  →  ( 𝐴 ‘ 𝑘 )  =  ( 𝐴 ‘ 𝑗 ) ) | 
						
							| 16 | 15 | breq2d | ⊢ ( 𝑘  =  𝑗  →  ( 0  ≤  ( 𝐴 ‘ 𝑘 )  ↔  0  ≤  ( 𝐴 ‘ 𝑗 ) ) ) | 
						
							| 17 | 15 | breq1d | ⊢ ( 𝑘  =  𝑗  →  ( ( 𝐴 ‘ 𝑘 )  ≤  1  ↔  ( 𝐴 ‘ 𝑗 )  ≤  1 ) ) | 
						
							| 18 | 16 17 | anbi12d | ⊢ ( 𝑘  =  𝑗  →  ( ( 0  ≤  ( 𝐴 ‘ 𝑘 )  ∧  ( 𝐴 ‘ 𝑘 )  ≤  1 )  ↔  ( 0  ≤  ( 𝐴 ‘ 𝑗 )  ∧  ( 𝐴 ‘ 𝑗 )  ≤  1 ) ) ) | 
						
							| 19 | 18 | imbi2d | ⊢ ( 𝑘  =  𝑗  →  ( ( 𝜑  →  ( 0  ≤  ( 𝐴 ‘ 𝑘 )  ∧  ( 𝐴 ‘ 𝑘 )  ≤  1 ) )  ↔  ( 𝜑  →  ( 0  ≤  ( 𝐴 ‘ 𝑗 )  ∧  ( 𝐴 ‘ 𝑗 )  ≤  1 ) ) ) ) | 
						
							| 20 |  | fveq2 | ⊢ ( 𝑘  =  ( 𝑗  +  1 )  →  ( 𝐴 ‘ 𝑘 )  =  ( 𝐴 ‘ ( 𝑗  +  1 ) ) ) | 
						
							| 21 | 20 | breq2d | ⊢ ( 𝑘  =  ( 𝑗  +  1 )  →  ( 0  ≤  ( 𝐴 ‘ 𝑘 )  ↔  0  ≤  ( 𝐴 ‘ ( 𝑗  +  1 ) ) ) ) | 
						
							| 22 | 20 | breq1d | ⊢ ( 𝑘  =  ( 𝑗  +  1 )  →  ( ( 𝐴 ‘ 𝑘 )  ≤  1  ↔  ( 𝐴 ‘ ( 𝑗  +  1 ) )  ≤  1 ) ) | 
						
							| 23 | 21 22 | anbi12d | ⊢ ( 𝑘  =  ( 𝑗  +  1 )  →  ( ( 0  ≤  ( 𝐴 ‘ 𝑘 )  ∧  ( 𝐴 ‘ 𝑘 )  ≤  1 )  ↔  ( 0  ≤  ( 𝐴 ‘ ( 𝑗  +  1 ) )  ∧  ( 𝐴 ‘ ( 𝑗  +  1 ) )  ≤  1 ) ) ) | 
						
							| 24 | 23 | imbi2d | ⊢ ( 𝑘  =  ( 𝑗  +  1 )  →  ( ( 𝜑  →  ( 0  ≤  ( 𝐴 ‘ 𝑘 )  ∧  ( 𝐴 ‘ 𝑘 )  ≤  1 ) )  ↔  ( 𝜑  →  ( 0  ≤  ( 𝐴 ‘ ( 𝑗  +  1 ) )  ∧  ( 𝐴 ‘ ( 𝑗  +  1 ) )  ≤  1 ) ) ) ) | 
						
							| 25 |  | fveq2 | ⊢ ( 𝑘  =  𝐾  →  ( 𝐴 ‘ 𝑘 )  =  ( 𝐴 ‘ 𝐾 ) ) | 
						
							| 26 | 25 | breq2d | ⊢ ( 𝑘  =  𝐾  →  ( 0  ≤  ( 𝐴 ‘ 𝑘 )  ↔  0  ≤  ( 𝐴 ‘ 𝐾 ) ) ) | 
						
							| 27 | 25 | breq1d | ⊢ ( 𝑘  =  𝐾  →  ( ( 𝐴 ‘ 𝑘 )  ≤  1  ↔  ( 𝐴 ‘ 𝐾 )  ≤  1 ) ) | 
						
							| 28 | 26 27 | anbi12d | ⊢ ( 𝑘  =  𝐾  →  ( ( 0  ≤  ( 𝐴 ‘ 𝑘 )  ∧  ( 𝐴 ‘ 𝑘 )  ≤  1 )  ↔  ( 0  ≤  ( 𝐴 ‘ 𝐾 )  ∧  ( 𝐴 ‘ 𝐾 )  ≤  1 ) ) ) | 
						
							| 29 | 28 | imbi2d | ⊢ ( 𝑘  =  𝐾  →  ( ( 𝜑  →  ( 0  ≤  ( 𝐴 ‘ 𝑘 )  ∧  ( 𝐴 ‘ 𝑘 )  ≤  1 ) )  ↔  ( 𝜑  →  ( 0  ≤  ( 𝐴 ‘ 𝐾 )  ∧  ( 𝐴 ‘ 𝐾 )  ≤  1 ) ) ) ) | 
						
							| 30 |  | eluzelz | ⊢ ( 𝑀  ∈  ( ℤ≥ ‘ 𝐿 )  →  𝑀  ∈  ℤ ) | 
						
							| 31 | 5 30 | syl | ⊢ ( 𝜑  →  𝑀  ∈  ℤ ) | 
						
							| 32 | 4 | zred | ⊢ ( 𝜑  →  𝐿  ∈  ℝ ) | 
						
							| 33 | 32 | leidd | ⊢ ( 𝜑  →  𝐿  ≤  𝐿 ) | 
						
							| 34 |  | eluz | ⊢ ( ( 𝐿  ∈  ℤ  ∧  𝑀  ∈  ℤ )  →  ( 𝑀  ∈  ( ℤ≥ ‘ 𝐿 )  ↔  𝐿  ≤  𝑀 ) ) | 
						
							| 35 | 4 31 34 | syl2anc | ⊢ ( 𝜑  →  ( 𝑀  ∈  ( ℤ≥ ‘ 𝐿 )  ↔  𝐿  ≤  𝑀 ) ) | 
						
							| 36 | 5 35 | mpbid | ⊢ ( 𝜑  →  𝐿  ≤  𝑀 ) | 
						
							| 37 | 4 31 4 33 36 | elfzd | ⊢ ( 𝜑  →  𝐿  ∈  ( 𝐿 ... 𝑀 ) ) | 
						
							| 38 | 37 | ancli | ⊢ ( 𝜑  →  ( 𝜑  ∧  𝐿  ∈  ( 𝐿 ... 𝑀 ) ) ) | 
						
							| 39 |  | nfv | ⊢ Ⅎ 𝑖 𝐿  ∈  ( 𝐿 ... 𝑀 ) | 
						
							| 40 | 2 39 | nfan | ⊢ Ⅎ 𝑖 ( 𝜑  ∧  𝐿  ∈  ( 𝐿 ... 𝑀 ) ) | 
						
							| 41 |  | nfcv | ⊢ Ⅎ 𝑖 0 | 
						
							| 42 |  | nfcv | ⊢ Ⅎ 𝑖  ≤ | 
						
							| 43 |  | nfcv | ⊢ Ⅎ 𝑖 𝐿 | 
						
							| 44 | 1 43 | nffv | ⊢ Ⅎ 𝑖 ( 𝐵 ‘ 𝐿 ) | 
						
							| 45 | 41 42 44 | nfbr | ⊢ Ⅎ 𝑖 0  ≤  ( 𝐵 ‘ 𝐿 ) | 
						
							| 46 | 40 45 | nfim | ⊢ Ⅎ 𝑖 ( ( 𝜑  ∧  𝐿  ∈  ( 𝐿 ... 𝑀 ) )  →  0  ≤  ( 𝐵 ‘ 𝐿 ) ) | 
						
							| 47 |  | eleq1 | ⊢ ( 𝑖  =  𝐿  →  ( 𝑖  ∈  ( 𝐿 ... 𝑀 )  ↔  𝐿  ∈  ( 𝐿 ... 𝑀 ) ) ) | 
						
							| 48 | 47 | anbi2d | ⊢ ( 𝑖  =  𝐿  →  ( ( 𝜑  ∧  𝑖  ∈  ( 𝐿 ... 𝑀 ) )  ↔  ( 𝜑  ∧  𝐿  ∈  ( 𝐿 ... 𝑀 ) ) ) ) | 
						
							| 49 |  | fveq2 | ⊢ ( 𝑖  =  𝐿  →  ( 𝐵 ‘ 𝑖 )  =  ( 𝐵 ‘ 𝐿 ) ) | 
						
							| 50 | 49 | breq2d | ⊢ ( 𝑖  =  𝐿  →  ( 0  ≤  ( 𝐵 ‘ 𝑖 )  ↔  0  ≤  ( 𝐵 ‘ 𝐿 ) ) ) | 
						
							| 51 | 48 50 | imbi12d | ⊢ ( 𝑖  =  𝐿  →  ( ( ( 𝜑  ∧  𝑖  ∈  ( 𝐿 ... 𝑀 ) )  →  0  ≤  ( 𝐵 ‘ 𝑖 ) )  ↔  ( ( 𝜑  ∧  𝐿  ∈  ( 𝐿 ... 𝑀 ) )  →  0  ≤  ( 𝐵 ‘ 𝐿 ) ) ) ) | 
						
							| 52 | 46 51 8 | vtoclg1f | ⊢ ( 𝐿  ∈  ( 𝐿 ... 𝑀 )  →  ( ( 𝜑  ∧  𝐿  ∈  ( 𝐿 ... 𝑀 ) )  →  0  ≤  ( 𝐵 ‘ 𝐿 ) ) ) | 
						
							| 53 | 37 38 52 | sylc | ⊢ ( 𝜑  →  0  ≤  ( 𝐵 ‘ 𝐿 ) ) | 
						
							| 54 | 3 | fveq1i | ⊢ ( 𝐴 ‘ 𝐿 )  =  ( seq 𝐿 (  ·  ,  𝐵 ) ‘ 𝐿 ) | 
						
							| 55 |  | seq1 | ⊢ ( 𝐿  ∈  ℤ  →  ( seq 𝐿 (  ·  ,  𝐵 ) ‘ 𝐿 )  =  ( 𝐵 ‘ 𝐿 ) ) | 
						
							| 56 | 4 55 | syl | ⊢ ( 𝜑  →  ( seq 𝐿 (  ·  ,  𝐵 ) ‘ 𝐿 )  =  ( 𝐵 ‘ 𝐿 ) ) | 
						
							| 57 | 54 56 | eqtrid | ⊢ ( 𝜑  →  ( 𝐴 ‘ 𝐿 )  =  ( 𝐵 ‘ 𝐿 ) ) | 
						
							| 58 | 53 57 | breqtrrd | ⊢ ( 𝜑  →  0  ≤  ( 𝐴 ‘ 𝐿 ) ) | 
						
							| 59 |  | nfcv | ⊢ Ⅎ 𝑖 1 | 
						
							| 60 | 44 42 59 | nfbr | ⊢ Ⅎ 𝑖 ( 𝐵 ‘ 𝐿 )  ≤  1 | 
						
							| 61 | 40 60 | nfim | ⊢ Ⅎ 𝑖 ( ( 𝜑  ∧  𝐿  ∈  ( 𝐿 ... 𝑀 ) )  →  ( 𝐵 ‘ 𝐿 )  ≤  1 ) | 
						
							| 62 | 49 | breq1d | ⊢ ( 𝑖  =  𝐿  →  ( ( 𝐵 ‘ 𝑖 )  ≤  1  ↔  ( 𝐵 ‘ 𝐿 )  ≤  1 ) ) | 
						
							| 63 | 48 62 | imbi12d | ⊢ ( 𝑖  =  𝐿  →  ( ( ( 𝜑  ∧  𝑖  ∈  ( 𝐿 ... 𝑀 ) )  →  ( 𝐵 ‘ 𝑖 )  ≤  1 )  ↔  ( ( 𝜑  ∧  𝐿  ∈  ( 𝐿 ... 𝑀 ) )  →  ( 𝐵 ‘ 𝐿 )  ≤  1 ) ) ) | 
						
							| 64 | 61 63 9 | vtoclg1f | ⊢ ( 𝐿  ∈  ( 𝐿 ... 𝑀 )  →  ( ( 𝜑  ∧  𝐿  ∈  ( 𝐿 ... 𝑀 ) )  →  ( 𝐵 ‘ 𝐿 )  ≤  1 ) ) | 
						
							| 65 | 37 38 64 | sylc | ⊢ ( 𝜑  →  ( 𝐵 ‘ 𝐿 )  ≤  1 ) | 
						
							| 66 | 57 65 | eqbrtrd | ⊢ ( 𝜑  →  ( 𝐴 ‘ 𝐿 )  ≤  1 ) | 
						
							| 67 | 58 66 | jca | ⊢ ( 𝜑  →  ( 0  ≤  ( 𝐴 ‘ 𝐿 )  ∧  ( 𝐴 ‘ 𝐿 )  ≤  1 ) ) | 
						
							| 68 | 67 | a1i | ⊢ ( 𝑀  ∈  ( ℤ≥ ‘ 𝐿 )  →  ( 𝜑  →  ( 0  ≤  ( 𝐴 ‘ 𝐿 )  ∧  ( 𝐴 ‘ 𝐿 )  ≤  1 ) ) ) | 
						
							| 69 |  | elfzouz | ⊢ ( 𝑗  ∈  ( 𝐿 ..^ 𝑀 )  →  𝑗  ∈  ( ℤ≥ ‘ 𝐿 ) ) | 
						
							| 70 | 69 | 3ad2ant1 | ⊢ ( ( 𝑗  ∈  ( 𝐿 ..^ 𝑀 )  ∧  ( 𝜑  →  ( 0  ≤  ( 𝐴 ‘ 𝑗 )  ∧  ( 𝐴 ‘ 𝑗 )  ≤  1 ) )  ∧  𝜑 )  →  𝑗  ∈  ( ℤ≥ ‘ 𝐿 ) ) | 
						
							| 71 |  | simpl3 | ⊢ ( ( ( 𝑗  ∈  ( 𝐿 ..^ 𝑀 )  ∧  ( 𝜑  →  ( 0  ≤  ( 𝐴 ‘ 𝑗 )  ∧  ( 𝐴 ‘ 𝑗 )  ≤  1 ) )  ∧  𝜑 )  ∧  𝑘  ∈  ( 𝐿 ... 𝑗 ) )  →  𝜑 ) | 
						
							| 72 |  | elfzouz2 | ⊢ ( 𝑗  ∈  ( 𝐿 ..^ 𝑀 )  →  𝑀  ∈  ( ℤ≥ ‘ 𝑗 ) ) | 
						
							| 73 |  | fzss2 | ⊢ ( 𝑀  ∈  ( ℤ≥ ‘ 𝑗 )  →  ( 𝐿 ... 𝑗 )  ⊆  ( 𝐿 ... 𝑀 ) ) | 
						
							| 74 | 72 73 | syl | ⊢ ( 𝑗  ∈  ( 𝐿 ..^ 𝑀 )  →  ( 𝐿 ... 𝑗 )  ⊆  ( 𝐿 ... 𝑀 ) ) | 
						
							| 75 | 74 | 3ad2ant1 | ⊢ ( ( 𝑗  ∈  ( 𝐿 ..^ 𝑀 )  ∧  ( 𝜑  →  ( 0  ≤  ( 𝐴 ‘ 𝑗 )  ∧  ( 𝐴 ‘ 𝑗 )  ≤  1 ) )  ∧  𝜑 )  →  ( 𝐿 ... 𝑗 )  ⊆  ( 𝐿 ... 𝑀 ) ) | 
						
							| 76 | 75 | sselda | ⊢ ( ( ( 𝑗  ∈  ( 𝐿 ..^ 𝑀 )  ∧  ( 𝜑  →  ( 0  ≤  ( 𝐴 ‘ 𝑗 )  ∧  ( 𝐴 ‘ 𝑗 )  ≤  1 ) )  ∧  𝜑 )  ∧  𝑘  ∈  ( 𝐿 ... 𝑗 ) )  →  𝑘  ∈  ( 𝐿 ... 𝑀 ) ) | 
						
							| 77 |  | nfv | ⊢ Ⅎ 𝑖 𝑘  ∈  ( 𝐿 ... 𝑀 ) | 
						
							| 78 | 2 77 | nfan | ⊢ Ⅎ 𝑖 ( 𝜑  ∧  𝑘  ∈  ( 𝐿 ... 𝑀 ) ) | 
						
							| 79 |  | nfcv | ⊢ Ⅎ 𝑖 𝑘 | 
						
							| 80 | 1 79 | nffv | ⊢ Ⅎ 𝑖 ( 𝐵 ‘ 𝑘 ) | 
						
							| 81 | 80 | nfel1 | ⊢ Ⅎ 𝑖 ( 𝐵 ‘ 𝑘 )  ∈  ℝ | 
						
							| 82 | 78 81 | nfim | ⊢ Ⅎ 𝑖 ( ( 𝜑  ∧  𝑘  ∈  ( 𝐿 ... 𝑀 ) )  →  ( 𝐵 ‘ 𝑘 )  ∈  ℝ ) | 
						
							| 83 |  | eleq1 | ⊢ ( 𝑖  =  𝑘  →  ( 𝑖  ∈  ( 𝐿 ... 𝑀 )  ↔  𝑘  ∈  ( 𝐿 ... 𝑀 ) ) ) | 
						
							| 84 | 83 | anbi2d | ⊢ ( 𝑖  =  𝑘  →  ( ( 𝜑  ∧  𝑖  ∈  ( 𝐿 ... 𝑀 ) )  ↔  ( 𝜑  ∧  𝑘  ∈  ( 𝐿 ... 𝑀 ) ) ) ) | 
						
							| 85 |  | fveq2 | ⊢ ( 𝑖  =  𝑘  →  ( 𝐵 ‘ 𝑖 )  =  ( 𝐵 ‘ 𝑘 ) ) | 
						
							| 86 | 85 | eleq1d | ⊢ ( 𝑖  =  𝑘  →  ( ( 𝐵 ‘ 𝑖 )  ∈  ℝ  ↔  ( 𝐵 ‘ 𝑘 )  ∈  ℝ ) ) | 
						
							| 87 | 84 86 | imbi12d | ⊢ ( 𝑖  =  𝑘  →  ( ( ( 𝜑  ∧  𝑖  ∈  ( 𝐿 ... 𝑀 ) )  →  ( 𝐵 ‘ 𝑖 )  ∈  ℝ )  ↔  ( ( 𝜑  ∧  𝑘  ∈  ( 𝐿 ... 𝑀 ) )  →  ( 𝐵 ‘ 𝑘 )  ∈  ℝ ) ) ) | 
						
							| 88 | 82 87 7 | chvarfv | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 𝐿 ... 𝑀 ) )  →  ( 𝐵 ‘ 𝑘 )  ∈  ℝ ) | 
						
							| 89 | 71 76 88 | syl2anc | ⊢ ( ( ( 𝑗  ∈  ( 𝐿 ..^ 𝑀 )  ∧  ( 𝜑  →  ( 0  ≤  ( 𝐴 ‘ 𝑗 )  ∧  ( 𝐴 ‘ 𝑗 )  ≤  1 ) )  ∧  𝜑 )  ∧  𝑘  ∈  ( 𝐿 ... 𝑗 ) )  →  ( 𝐵 ‘ 𝑘 )  ∈  ℝ ) | 
						
							| 90 |  | remulcl | ⊢ ( ( 𝑘  ∈  ℝ  ∧  𝑙  ∈  ℝ )  →  ( 𝑘  ·  𝑙 )  ∈  ℝ ) | 
						
							| 91 | 90 | adantl | ⊢ ( ( ( 𝑗  ∈  ( 𝐿 ..^ 𝑀 )  ∧  ( 𝜑  →  ( 0  ≤  ( 𝐴 ‘ 𝑗 )  ∧  ( 𝐴 ‘ 𝑗 )  ≤  1 ) )  ∧  𝜑 )  ∧  ( 𝑘  ∈  ℝ  ∧  𝑙  ∈  ℝ ) )  →  ( 𝑘  ·  𝑙 )  ∈  ℝ ) | 
						
							| 92 | 70 89 91 | seqcl | ⊢ ( ( 𝑗  ∈  ( 𝐿 ..^ 𝑀 )  ∧  ( 𝜑  →  ( 0  ≤  ( 𝐴 ‘ 𝑗 )  ∧  ( 𝐴 ‘ 𝑗 )  ≤  1 ) )  ∧  𝜑 )  →  ( seq 𝐿 (  ·  ,  𝐵 ) ‘ 𝑗 )  ∈  ℝ ) | 
						
							| 93 |  | simp3 | ⊢ ( ( 𝑗  ∈  ( 𝐿 ..^ 𝑀 )  ∧  ( 𝜑  →  ( 0  ≤  ( 𝐴 ‘ 𝑗 )  ∧  ( 𝐴 ‘ 𝑗 )  ≤  1 ) )  ∧  𝜑 )  →  𝜑 ) | 
						
							| 94 |  | fzofzp1 | ⊢ ( 𝑗  ∈  ( 𝐿 ..^ 𝑀 )  →  ( 𝑗  +  1 )  ∈  ( 𝐿 ... 𝑀 ) ) | 
						
							| 95 | 94 | 3ad2ant1 | ⊢ ( ( 𝑗  ∈  ( 𝐿 ..^ 𝑀 )  ∧  ( 𝜑  →  ( 0  ≤  ( 𝐴 ‘ 𝑗 )  ∧  ( 𝐴 ‘ 𝑗 )  ≤  1 ) )  ∧  𝜑 )  →  ( 𝑗  +  1 )  ∈  ( 𝐿 ... 𝑀 ) ) | 
						
							| 96 |  | nfv | ⊢ Ⅎ 𝑖 ( 𝑗  +  1 )  ∈  ( 𝐿 ... 𝑀 ) | 
						
							| 97 | 2 96 | nfan | ⊢ Ⅎ 𝑖 ( 𝜑  ∧  ( 𝑗  +  1 )  ∈  ( 𝐿 ... 𝑀 ) ) | 
						
							| 98 |  | nfcv | ⊢ Ⅎ 𝑖 ( 𝑗  +  1 ) | 
						
							| 99 | 1 98 | nffv | ⊢ Ⅎ 𝑖 ( 𝐵 ‘ ( 𝑗  +  1 ) ) | 
						
							| 100 | 99 | nfel1 | ⊢ Ⅎ 𝑖 ( 𝐵 ‘ ( 𝑗  +  1 ) )  ∈  ℝ | 
						
							| 101 | 97 100 | nfim | ⊢ Ⅎ 𝑖 ( ( 𝜑  ∧  ( 𝑗  +  1 )  ∈  ( 𝐿 ... 𝑀 ) )  →  ( 𝐵 ‘ ( 𝑗  +  1 ) )  ∈  ℝ ) | 
						
							| 102 |  | eleq1 | ⊢ ( 𝑖  =  ( 𝑗  +  1 )  →  ( 𝑖  ∈  ( 𝐿 ... 𝑀 )  ↔  ( 𝑗  +  1 )  ∈  ( 𝐿 ... 𝑀 ) ) ) | 
						
							| 103 | 102 | anbi2d | ⊢ ( 𝑖  =  ( 𝑗  +  1 )  →  ( ( 𝜑  ∧  𝑖  ∈  ( 𝐿 ... 𝑀 ) )  ↔  ( 𝜑  ∧  ( 𝑗  +  1 )  ∈  ( 𝐿 ... 𝑀 ) ) ) ) | 
						
							| 104 |  | fveq2 | ⊢ ( 𝑖  =  ( 𝑗  +  1 )  →  ( 𝐵 ‘ 𝑖 )  =  ( 𝐵 ‘ ( 𝑗  +  1 ) ) ) | 
						
							| 105 | 104 | eleq1d | ⊢ ( 𝑖  =  ( 𝑗  +  1 )  →  ( ( 𝐵 ‘ 𝑖 )  ∈  ℝ  ↔  ( 𝐵 ‘ ( 𝑗  +  1 ) )  ∈  ℝ ) ) | 
						
							| 106 | 103 105 | imbi12d | ⊢ ( 𝑖  =  ( 𝑗  +  1 )  →  ( ( ( 𝜑  ∧  𝑖  ∈  ( 𝐿 ... 𝑀 ) )  →  ( 𝐵 ‘ 𝑖 )  ∈  ℝ )  ↔  ( ( 𝜑  ∧  ( 𝑗  +  1 )  ∈  ( 𝐿 ... 𝑀 ) )  →  ( 𝐵 ‘ ( 𝑗  +  1 ) )  ∈  ℝ ) ) ) | 
						
							| 107 | 101 106 7 | vtoclg1f | ⊢ ( ( 𝑗  +  1 )  ∈  ( 𝐿 ... 𝑀 )  →  ( ( 𝜑  ∧  ( 𝑗  +  1 )  ∈  ( 𝐿 ... 𝑀 ) )  →  ( 𝐵 ‘ ( 𝑗  +  1 ) )  ∈  ℝ ) ) | 
						
							| 108 | 107 | anabsi7 | ⊢ ( ( 𝜑  ∧  ( 𝑗  +  1 )  ∈  ( 𝐿 ... 𝑀 ) )  →  ( 𝐵 ‘ ( 𝑗  +  1 ) )  ∈  ℝ ) | 
						
							| 109 | 93 95 108 | syl2anc | ⊢ ( ( 𝑗  ∈  ( 𝐿 ..^ 𝑀 )  ∧  ( 𝜑  →  ( 0  ≤  ( 𝐴 ‘ 𝑗 )  ∧  ( 𝐴 ‘ 𝑗 )  ≤  1 ) )  ∧  𝜑 )  →  ( 𝐵 ‘ ( 𝑗  +  1 ) )  ∈  ℝ ) | 
						
							| 110 |  | pm3.35 | ⊢ ( ( 𝜑  ∧  ( 𝜑  →  ( 0  ≤  ( 𝐴 ‘ 𝑗 )  ∧  ( 𝐴 ‘ 𝑗 )  ≤  1 ) ) )  →  ( 0  ≤  ( 𝐴 ‘ 𝑗 )  ∧  ( 𝐴 ‘ 𝑗 )  ≤  1 ) ) | 
						
							| 111 | 110 | ancoms | ⊢ ( ( ( 𝜑  →  ( 0  ≤  ( 𝐴 ‘ 𝑗 )  ∧  ( 𝐴 ‘ 𝑗 )  ≤  1 ) )  ∧  𝜑 )  →  ( 0  ≤  ( 𝐴 ‘ 𝑗 )  ∧  ( 𝐴 ‘ 𝑗 )  ≤  1 ) ) | 
						
							| 112 |  | simpl | ⊢ ( ( 0  ≤  ( 𝐴 ‘ 𝑗 )  ∧  ( 𝐴 ‘ 𝑗 )  ≤  1 )  →  0  ≤  ( 𝐴 ‘ 𝑗 ) ) | 
						
							| 113 | 111 112 | syl | ⊢ ( ( ( 𝜑  →  ( 0  ≤  ( 𝐴 ‘ 𝑗 )  ∧  ( 𝐴 ‘ 𝑗 )  ≤  1 ) )  ∧  𝜑 )  →  0  ≤  ( 𝐴 ‘ 𝑗 ) ) | 
						
							| 114 | 113 | 3adant1 | ⊢ ( ( 𝑗  ∈  ( 𝐿 ..^ 𝑀 )  ∧  ( 𝜑  →  ( 0  ≤  ( 𝐴 ‘ 𝑗 )  ∧  ( 𝐴 ‘ 𝑗 )  ≤  1 ) )  ∧  𝜑 )  →  0  ≤  ( 𝐴 ‘ 𝑗 ) ) | 
						
							| 115 | 3 | fveq1i | ⊢ ( 𝐴 ‘ 𝑗 )  =  ( seq 𝐿 (  ·  ,  𝐵 ) ‘ 𝑗 ) | 
						
							| 116 | 114 115 | breqtrdi | ⊢ ( ( 𝑗  ∈  ( 𝐿 ..^ 𝑀 )  ∧  ( 𝜑  →  ( 0  ≤  ( 𝐴 ‘ 𝑗 )  ∧  ( 𝐴 ‘ 𝑗 )  ≤  1 ) )  ∧  𝜑 )  →  0  ≤  ( seq 𝐿 (  ·  ,  𝐵 ) ‘ 𝑗 ) ) | 
						
							| 117 |  | simp1 | ⊢ ( ( 𝑗  ∈  ( 𝐿 ..^ 𝑀 )  ∧  ( 𝜑  →  ( 0  ≤  ( 𝐴 ‘ 𝑗 )  ∧  ( 𝐴 ‘ 𝑗 )  ≤  1 ) )  ∧  𝜑 )  →  𝑗  ∈  ( 𝐿 ..^ 𝑀 ) ) | 
						
							| 118 | 94 | adantl | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 𝐿 ..^ 𝑀 ) )  →  ( 𝑗  +  1 )  ∈  ( 𝐿 ... 𝑀 ) ) | 
						
							| 119 |  | simpl | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 𝐿 ..^ 𝑀 ) )  →  𝜑 ) | 
						
							| 120 | 119 118 | jca | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 𝐿 ..^ 𝑀 ) )  →  ( 𝜑  ∧  ( 𝑗  +  1 )  ∈  ( 𝐿 ... 𝑀 ) ) ) | 
						
							| 121 | 41 42 99 | nfbr | ⊢ Ⅎ 𝑖 0  ≤  ( 𝐵 ‘ ( 𝑗  +  1 ) ) | 
						
							| 122 | 97 121 | nfim | ⊢ Ⅎ 𝑖 ( ( 𝜑  ∧  ( 𝑗  +  1 )  ∈  ( 𝐿 ... 𝑀 ) )  →  0  ≤  ( 𝐵 ‘ ( 𝑗  +  1 ) ) ) | 
						
							| 123 | 104 | breq2d | ⊢ ( 𝑖  =  ( 𝑗  +  1 )  →  ( 0  ≤  ( 𝐵 ‘ 𝑖 )  ↔  0  ≤  ( 𝐵 ‘ ( 𝑗  +  1 ) ) ) ) | 
						
							| 124 | 103 123 | imbi12d | ⊢ ( 𝑖  =  ( 𝑗  +  1 )  →  ( ( ( 𝜑  ∧  𝑖  ∈  ( 𝐿 ... 𝑀 ) )  →  0  ≤  ( 𝐵 ‘ 𝑖 ) )  ↔  ( ( 𝜑  ∧  ( 𝑗  +  1 )  ∈  ( 𝐿 ... 𝑀 ) )  →  0  ≤  ( 𝐵 ‘ ( 𝑗  +  1 ) ) ) ) ) | 
						
							| 125 | 122 124 8 | vtoclg1f | ⊢ ( ( 𝑗  +  1 )  ∈  ( 𝐿 ... 𝑀 )  →  ( ( 𝜑  ∧  ( 𝑗  +  1 )  ∈  ( 𝐿 ... 𝑀 ) )  →  0  ≤  ( 𝐵 ‘ ( 𝑗  +  1 ) ) ) ) | 
						
							| 126 | 118 120 125 | sylc | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 𝐿 ..^ 𝑀 ) )  →  0  ≤  ( 𝐵 ‘ ( 𝑗  +  1 ) ) ) | 
						
							| 127 | 93 117 126 | syl2anc | ⊢ ( ( 𝑗  ∈  ( 𝐿 ..^ 𝑀 )  ∧  ( 𝜑  →  ( 0  ≤  ( 𝐴 ‘ 𝑗 )  ∧  ( 𝐴 ‘ 𝑗 )  ≤  1 ) )  ∧  𝜑 )  →  0  ≤  ( 𝐵 ‘ ( 𝑗  +  1 ) ) ) | 
						
							| 128 | 92 109 116 127 | mulge0d | ⊢ ( ( 𝑗  ∈  ( 𝐿 ..^ 𝑀 )  ∧  ( 𝜑  →  ( 0  ≤  ( 𝐴 ‘ 𝑗 )  ∧  ( 𝐴 ‘ 𝑗 )  ≤  1 ) )  ∧  𝜑 )  →  0  ≤  ( ( seq 𝐿 (  ·  ,  𝐵 ) ‘ 𝑗 )  ·  ( 𝐵 ‘ ( 𝑗  +  1 ) ) ) ) | 
						
							| 129 |  | seqp1 | ⊢ ( 𝑗  ∈  ( ℤ≥ ‘ 𝐿 )  →  ( seq 𝐿 (  ·  ,  𝐵 ) ‘ ( 𝑗  +  1 ) )  =  ( ( seq 𝐿 (  ·  ,  𝐵 ) ‘ 𝑗 )  ·  ( 𝐵 ‘ ( 𝑗  +  1 ) ) ) ) | 
						
							| 130 | 70 129 | syl | ⊢ ( ( 𝑗  ∈  ( 𝐿 ..^ 𝑀 )  ∧  ( 𝜑  →  ( 0  ≤  ( 𝐴 ‘ 𝑗 )  ∧  ( 𝐴 ‘ 𝑗 )  ≤  1 ) )  ∧  𝜑 )  →  ( seq 𝐿 (  ·  ,  𝐵 ) ‘ ( 𝑗  +  1 ) )  =  ( ( seq 𝐿 (  ·  ,  𝐵 ) ‘ 𝑗 )  ·  ( 𝐵 ‘ ( 𝑗  +  1 ) ) ) ) | 
						
							| 131 | 128 130 | breqtrrd | ⊢ ( ( 𝑗  ∈  ( 𝐿 ..^ 𝑀 )  ∧  ( 𝜑  →  ( 0  ≤  ( 𝐴 ‘ 𝑗 )  ∧  ( 𝐴 ‘ 𝑗 )  ≤  1 ) )  ∧  𝜑 )  →  0  ≤  ( seq 𝐿 (  ·  ,  𝐵 ) ‘ ( 𝑗  +  1 ) ) ) | 
						
							| 132 | 3 | fveq1i | ⊢ ( 𝐴 ‘ ( 𝑗  +  1 ) )  =  ( seq 𝐿 (  ·  ,  𝐵 ) ‘ ( 𝑗  +  1 ) ) | 
						
							| 133 | 131 132 | breqtrrdi | ⊢ ( ( 𝑗  ∈  ( 𝐿 ..^ 𝑀 )  ∧  ( 𝜑  →  ( 0  ≤  ( 𝐴 ‘ 𝑗 )  ∧  ( 𝐴 ‘ 𝑗 )  ≤  1 ) )  ∧  𝜑 )  →  0  ≤  ( 𝐴 ‘ ( 𝑗  +  1 ) ) ) | 
						
							| 134 | 92 109 | remulcld | ⊢ ( ( 𝑗  ∈  ( 𝐿 ..^ 𝑀 )  ∧  ( 𝜑  →  ( 0  ≤  ( 𝐴 ‘ 𝑗 )  ∧  ( 𝐴 ‘ 𝑗 )  ≤  1 ) )  ∧  𝜑 )  →  ( ( seq 𝐿 (  ·  ,  𝐵 ) ‘ 𝑗 )  ·  ( 𝐵 ‘ ( 𝑗  +  1 ) ) )  ∈  ℝ ) | 
						
							| 135 |  | 1red | ⊢ ( ( 𝑗  ∈  ( 𝐿 ..^ 𝑀 )  ∧  ( 𝜑  →  ( 0  ≤  ( 𝐴 ‘ 𝑗 )  ∧  ( 𝐴 ‘ 𝑗 )  ≤  1 ) )  ∧  𝜑 )  →  1  ∈  ℝ ) | 
						
							| 136 | 93 95 | jca | ⊢ ( ( 𝑗  ∈  ( 𝐿 ..^ 𝑀 )  ∧  ( 𝜑  →  ( 0  ≤  ( 𝐴 ‘ 𝑗 )  ∧  ( 𝐴 ‘ 𝑗 )  ≤  1 ) )  ∧  𝜑 )  →  ( 𝜑  ∧  ( 𝑗  +  1 )  ∈  ( 𝐿 ... 𝑀 ) ) ) | 
						
							| 137 | 99 42 59 | nfbr | ⊢ Ⅎ 𝑖 ( 𝐵 ‘ ( 𝑗  +  1 ) )  ≤  1 | 
						
							| 138 | 97 137 | nfim | ⊢ Ⅎ 𝑖 ( ( 𝜑  ∧  ( 𝑗  +  1 )  ∈  ( 𝐿 ... 𝑀 ) )  →  ( 𝐵 ‘ ( 𝑗  +  1 ) )  ≤  1 ) | 
						
							| 139 | 104 | breq1d | ⊢ ( 𝑖  =  ( 𝑗  +  1 )  →  ( ( 𝐵 ‘ 𝑖 )  ≤  1  ↔  ( 𝐵 ‘ ( 𝑗  +  1 ) )  ≤  1 ) ) | 
						
							| 140 | 103 139 | imbi12d | ⊢ ( 𝑖  =  ( 𝑗  +  1 )  →  ( ( ( 𝜑  ∧  𝑖  ∈  ( 𝐿 ... 𝑀 ) )  →  ( 𝐵 ‘ 𝑖 )  ≤  1 )  ↔  ( ( 𝜑  ∧  ( 𝑗  +  1 )  ∈  ( 𝐿 ... 𝑀 ) )  →  ( 𝐵 ‘ ( 𝑗  +  1 ) )  ≤  1 ) ) ) | 
						
							| 141 | 138 140 9 | vtoclg1f | ⊢ ( ( 𝑗  +  1 )  ∈  ( 𝐿 ... 𝑀 )  →  ( ( 𝜑  ∧  ( 𝑗  +  1 )  ∈  ( 𝐿 ... 𝑀 ) )  →  ( 𝐵 ‘ ( 𝑗  +  1 ) )  ≤  1 ) ) | 
						
							| 142 | 95 136 141 | sylc | ⊢ ( ( 𝑗  ∈  ( 𝐿 ..^ 𝑀 )  ∧  ( 𝜑  →  ( 0  ≤  ( 𝐴 ‘ 𝑗 )  ∧  ( 𝐴 ‘ 𝑗 )  ≤  1 ) )  ∧  𝜑 )  →  ( 𝐵 ‘ ( 𝑗  +  1 ) )  ≤  1 ) | 
						
							| 143 | 109 135 92 116 142 | lemul2ad | ⊢ ( ( 𝑗  ∈  ( 𝐿 ..^ 𝑀 )  ∧  ( 𝜑  →  ( 0  ≤  ( 𝐴 ‘ 𝑗 )  ∧  ( 𝐴 ‘ 𝑗 )  ≤  1 ) )  ∧  𝜑 )  →  ( ( seq 𝐿 (  ·  ,  𝐵 ) ‘ 𝑗 )  ·  ( 𝐵 ‘ ( 𝑗  +  1 ) ) )  ≤  ( ( seq 𝐿 (  ·  ,  𝐵 ) ‘ 𝑗 )  ·  1 ) ) | 
						
							| 144 | 92 | recnd | ⊢ ( ( 𝑗  ∈  ( 𝐿 ..^ 𝑀 )  ∧  ( 𝜑  →  ( 0  ≤  ( 𝐴 ‘ 𝑗 )  ∧  ( 𝐴 ‘ 𝑗 )  ≤  1 ) )  ∧  𝜑 )  →  ( seq 𝐿 (  ·  ,  𝐵 ) ‘ 𝑗 )  ∈  ℂ ) | 
						
							| 145 | 144 | mulridd | ⊢ ( ( 𝑗  ∈  ( 𝐿 ..^ 𝑀 )  ∧  ( 𝜑  →  ( 0  ≤  ( 𝐴 ‘ 𝑗 )  ∧  ( 𝐴 ‘ 𝑗 )  ≤  1 ) )  ∧  𝜑 )  →  ( ( seq 𝐿 (  ·  ,  𝐵 ) ‘ 𝑗 )  ·  1 )  =  ( seq 𝐿 (  ·  ,  𝐵 ) ‘ 𝑗 ) ) | 
						
							| 146 | 143 145 | breqtrd | ⊢ ( ( 𝑗  ∈  ( 𝐿 ..^ 𝑀 )  ∧  ( 𝜑  →  ( 0  ≤  ( 𝐴 ‘ 𝑗 )  ∧  ( 𝐴 ‘ 𝑗 )  ≤  1 ) )  ∧  𝜑 )  →  ( ( seq 𝐿 (  ·  ,  𝐵 ) ‘ 𝑗 )  ·  ( 𝐵 ‘ ( 𝑗  +  1 ) ) )  ≤  ( seq 𝐿 (  ·  ,  𝐵 ) ‘ 𝑗 ) ) | 
						
							| 147 |  | simp2 | ⊢ ( ( 𝑗  ∈  ( 𝐿 ..^ 𝑀 )  ∧  ( 𝜑  →  ( 0  ≤  ( 𝐴 ‘ 𝑗 )  ∧  ( 𝐴 ‘ 𝑗 )  ≤  1 ) )  ∧  𝜑 )  →  ( 𝜑  →  ( 0  ≤  ( 𝐴 ‘ 𝑗 )  ∧  ( 𝐴 ‘ 𝑗 )  ≤  1 ) ) ) | 
						
							| 148 | 110 | simprd | ⊢ ( ( 𝜑  ∧  ( 𝜑  →  ( 0  ≤  ( 𝐴 ‘ 𝑗 )  ∧  ( 𝐴 ‘ 𝑗 )  ≤  1 ) ) )  →  ( 𝐴 ‘ 𝑗 )  ≤  1 ) | 
						
							| 149 | 93 147 148 | syl2anc | ⊢ ( ( 𝑗  ∈  ( 𝐿 ..^ 𝑀 )  ∧  ( 𝜑  →  ( 0  ≤  ( 𝐴 ‘ 𝑗 )  ∧  ( 𝐴 ‘ 𝑗 )  ≤  1 ) )  ∧  𝜑 )  →  ( 𝐴 ‘ 𝑗 )  ≤  1 ) | 
						
							| 150 | 115 149 | eqbrtrrid | ⊢ ( ( 𝑗  ∈  ( 𝐿 ..^ 𝑀 )  ∧  ( 𝜑  →  ( 0  ≤  ( 𝐴 ‘ 𝑗 )  ∧  ( 𝐴 ‘ 𝑗 )  ≤  1 ) )  ∧  𝜑 )  →  ( seq 𝐿 (  ·  ,  𝐵 ) ‘ 𝑗 )  ≤  1 ) | 
						
							| 151 | 134 92 135 146 150 | letrd | ⊢ ( ( 𝑗  ∈  ( 𝐿 ..^ 𝑀 )  ∧  ( 𝜑  →  ( 0  ≤  ( 𝐴 ‘ 𝑗 )  ∧  ( 𝐴 ‘ 𝑗 )  ≤  1 ) )  ∧  𝜑 )  →  ( ( seq 𝐿 (  ·  ,  𝐵 ) ‘ 𝑗 )  ·  ( 𝐵 ‘ ( 𝑗  +  1 ) ) )  ≤  1 ) | 
						
							| 152 | 130 151 | eqbrtrd | ⊢ ( ( 𝑗  ∈  ( 𝐿 ..^ 𝑀 )  ∧  ( 𝜑  →  ( 0  ≤  ( 𝐴 ‘ 𝑗 )  ∧  ( 𝐴 ‘ 𝑗 )  ≤  1 ) )  ∧  𝜑 )  →  ( seq 𝐿 (  ·  ,  𝐵 ) ‘ ( 𝑗  +  1 ) )  ≤  1 ) | 
						
							| 153 | 132 152 | eqbrtrid | ⊢ ( ( 𝑗  ∈  ( 𝐿 ..^ 𝑀 )  ∧  ( 𝜑  →  ( 0  ≤  ( 𝐴 ‘ 𝑗 )  ∧  ( 𝐴 ‘ 𝑗 )  ≤  1 ) )  ∧  𝜑 )  →  ( 𝐴 ‘ ( 𝑗  +  1 ) )  ≤  1 ) | 
						
							| 154 | 133 153 | jca | ⊢ ( ( 𝑗  ∈  ( 𝐿 ..^ 𝑀 )  ∧  ( 𝜑  →  ( 0  ≤  ( 𝐴 ‘ 𝑗 )  ∧  ( 𝐴 ‘ 𝑗 )  ≤  1 ) )  ∧  𝜑 )  →  ( 0  ≤  ( 𝐴 ‘ ( 𝑗  +  1 ) )  ∧  ( 𝐴 ‘ ( 𝑗  +  1 ) )  ≤  1 ) ) | 
						
							| 155 | 154 | 3exp | ⊢ ( 𝑗  ∈  ( 𝐿 ..^ 𝑀 )  →  ( ( 𝜑  →  ( 0  ≤  ( 𝐴 ‘ 𝑗 )  ∧  ( 𝐴 ‘ 𝑗 )  ≤  1 ) )  →  ( 𝜑  →  ( 0  ≤  ( 𝐴 ‘ ( 𝑗  +  1 ) )  ∧  ( 𝐴 ‘ ( 𝑗  +  1 ) )  ≤  1 ) ) ) ) | 
						
							| 156 | 14 19 24 29 68 155 | fzind2 | ⊢ ( 𝐾  ∈  ( 𝐿 ... 𝑀 )  →  ( 𝜑  →  ( 0  ≤  ( 𝐴 ‘ 𝐾 )  ∧  ( 𝐴 ‘ 𝐾 )  ≤  1 ) ) ) | 
						
							| 157 | 6 156 | mpcom | ⊢ ( 𝜑  →  ( 0  ≤  ( 𝐴 ‘ 𝐾 )  ∧  ( 𝐴 ‘ 𝐾 )  ≤  1 ) ) |