| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fmulcl.1 | ⊢ 𝑃  =  ( 𝑓  ∈  𝑌 ,  𝑔  ∈  𝑌  ↦  ( 𝑡  ∈  𝑇  ↦  ( ( 𝑓 ‘ 𝑡 )  ·  ( 𝑔 ‘ 𝑡 ) ) ) ) | 
						
							| 2 |  | fmulcl.2 | ⊢ 𝑋  =  ( seq 1 ( 𝑃 ,  𝑈 ) ‘ 𝑁 ) | 
						
							| 3 |  | fmulcl.4 | ⊢ ( 𝜑  →  𝑁  ∈  ( 1 ... 𝑀 ) ) | 
						
							| 4 |  | fmulcl.5 | ⊢ ( 𝜑  →  𝑈 : ( 1 ... 𝑀 ) ⟶ 𝑌 ) | 
						
							| 5 |  | fmulcl.6 | ⊢ ( ( 𝜑  ∧  𝑓  ∈  𝑌  ∧  𝑔  ∈  𝑌 )  →  ( 𝑡  ∈  𝑇  ↦  ( ( 𝑓 ‘ 𝑡 )  ·  ( 𝑔 ‘ 𝑡 ) ) )  ∈  𝑌 ) | 
						
							| 6 |  | fmulcl.7 | ⊢ ( 𝜑  →  𝑇  ∈  V ) | 
						
							| 7 |  | elfzuz | ⊢ ( 𝑁  ∈  ( 1 ... 𝑀 )  →  𝑁  ∈  ( ℤ≥ ‘ 1 ) ) | 
						
							| 8 | 3 7 | syl | ⊢ ( 𝜑  →  𝑁  ∈  ( ℤ≥ ‘ 1 ) ) | 
						
							| 9 |  | elfzuz3 | ⊢ ( 𝑁  ∈  ( 1 ... 𝑀 )  →  𝑀  ∈  ( ℤ≥ ‘ 𝑁 ) ) | 
						
							| 10 |  | fzss2 | ⊢ ( 𝑀  ∈  ( ℤ≥ ‘ 𝑁 )  →  ( 1 ... 𝑁 )  ⊆  ( 1 ... 𝑀 ) ) | 
						
							| 11 | 3 9 10 | 3syl | ⊢ ( 𝜑  →  ( 1 ... 𝑁 )  ⊆  ( 1 ... 𝑀 ) ) | 
						
							| 12 | 11 | sselda | ⊢ ( ( 𝜑  ∧  ℎ  ∈  ( 1 ... 𝑁 ) )  →  ℎ  ∈  ( 1 ... 𝑀 ) ) | 
						
							| 13 | 4 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  ℎ  ∈  ( 1 ... 𝑀 ) )  →  ( 𝑈 ‘ ℎ )  ∈  𝑌 ) | 
						
							| 14 | 12 13 | syldan | ⊢ ( ( 𝜑  ∧  ℎ  ∈  ( 1 ... 𝑁 ) )  →  ( 𝑈 ‘ ℎ )  ∈  𝑌 ) | 
						
							| 15 |  | simprl | ⊢ ( ( 𝜑  ∧  ( ℎ  ∈  𝑌  ∧  𝑙  ∈  𝑌 ) )  →  ℎ  ∈  𝑌 ) | 
						
							| 16 |  | simprr | ⊢ ( ( 𝜑  ∧  ( ℎ  ∈  𝑌  ∧  𝑙  ∈  𝑌 ) )  →  𝑙  ∈  𝑌 ) | 
						
							| 17 | 6 | adantr | ⊢ ( ( 𝜑  ∧  ( ℎ  ∈  𝑌  ∧  𝑙  ∈  𝑌 ) )  →  𝑇  ∈  V ) | 
						
							| 18 |  | mptexg | ⊢ ( 𝑇  ∈  V  →  ( 𝑡  ∈  𝑇  ↦  ( ( ℎ ‘ 𝑡 )  ·  ( 𝑙 ‘ 𝑡 ) ) )  ∈  V ) | 
						
							| 19 | 17 18 | syl | ⊢ ( ( 𝜑  ∧  ( ℎ  ∈  𝑌  ∧  𝑙  ∈  𝑌 ) )  →  ( 𝑡  ∈  𝑇  ↦  ( ( ℎ ‘ 𝑡 )  ·  ( 𝑙 ‘ 𝑡 ) ) )  ∈  V ) | 
						
							| 20 |  | fveq1 | ⊢ ( 𝑓  =  ℎ  →  ( 𝑓 ‘ 𝑡 )  =  ( ℎ ‘ 𝑡 ) ) | 
						
							| 21 |  | fveq1 | ⊢ ( 𝑔  =  𝑙  →  ( 𝑔 ‘ 𝑡 )  =  ( 𝑙 ‘ 𝑡 ) ) | 
						
							| 22 | 20 21 | oveqan12d | ⊢ ( ( 𝑓  =  ℎ  ∧  𝑔  =  𝑙 )  →  ( ( 𝑓 ‘ 𝑡 )  ·  ( 𝑔 ‘ 𝑡 ) )  =  ( ( ℎ ‘ 𝑡 )  ·  ( 𝑙 ‘ 𝑡 ) ) ) | 
						
							| 23 | 22 | mpteq2dv | ⊢ ( ( 𝑓  =  ℎ  ∧  𝑔  =  𝑙 )  →  ( 𝑡  ∈  𝑇  ↦  ( ( 𝑓 ‘ 𝑡 )  ·  ( 𝑔 ‘ 𝑡 ) ) )  =  ( 𝑡  ∈  𝑇  ↦  ( ( ℎ ‘ 𝑡 )  ·  ( 𝑙 ‘ 𝑡 ) ) ) ) | 
						
							| 24 | 23 1 | ovmpoga | ⊢ ( ( ℎ  ∈  𝑌  ∧  𝑙  ∈  𝑌  ∧  ( 𝑡  ∈  𝑇  ↦  ( ( ℎ ‘ 𝑡 )  ·  ( 𝑙 ‘ 𝑡 ) ) )  ∈  V )  →  ( ℎ 𝑃 𝑙 )  =  ( 𝑡  ∈  𝑇  ↦  ( ( ℎ ‘ 𝑡 )  ·  ( 𝑙 ‘ 𝑡 ) ) ) ) | 
						
							| 25 | 15 16 19 24 | syl3anc | ⊢ ( ( 𝜑  ∧  ( ℎ  ∈  𝑌  ∧  𝑙  ∈  𝑌 ) )  →  ( ℎ 𝑃 𝑙 )  =  ( 𝑡  ∈  𝑇  ↦  ( ( ℎ ‘ 𝑡 )  ·  ( 𝑙 ‘ 𝑡 ) ) ) ) | 
						
							| 26 |  | 3simpc | ⊢ ( ( 𝜑  ∧  ℎ  ∈  𝑌  ∧  𝑙  ∈  𝑌 )  →  ( ℎ  ∈  𝑌  ∧  𝑙  ∈  𝑌 ) ) | 
						
							| 27 |  | eleq1w | ⊢ ( 𝑓  =  ℎ  →  ( 𝑓  ∈  𝑌  ↔  ℎ  ∈  𝑌 ) ) | 
						
							| 28 | 27 | 3anbi2d | ⊢ ( 𝑓  =  ℎ  →  ( ( 𝜑  ∧  𝑓  ∈  𝑌  ∧  𝑔  ∈  𝑌 )  ↔  ( 𝜑  ∧  ℎ  ∈  𝑌  ∧  𝑔  ∈  𝑌 ) ) ) | 
						
							| 29 | 20 | oveq1d | ⊢ ( 𝑓  =  ℎ  →  ( ( 𝑓 ‘ 𝑡 )  ·  ( 𝑔 ‘ 𝑡 ) )  =  ( ( ℎ ‘ 𝑡 )  ·  ( 𝑔 ‘ 𝑡 ) ) ) | 
						
							| 30 | 29 | mpteq2dv | ⊢ ( 𝑓  =  ℎ  →  ( 𝑡  ∈  𝑇  ↦  ( ( 𝑓 ‘ 𝑡 )  ·  ( 𝑔 ‘ 𝑡 ) ) )  =  ( 𝑡  ∈  𝑇  ↦  ( ( ℎ ‘ 𝑡 )  ·  ( 𝑔 ‘ 𝑡 ) ) ) ) | 
						
							| 31 | 30 | eleq1d | ⊢ ( 𝑓  =  ℎ  →  ( ( 𝑡  ∈  𝑇  ↦  ( ( 𝑓 ‘ 𝑡 )  ·  ( 𝑔 ‘ 𝑡 ) ) )  ∈  𝑌  ↔  ( 𝑡  ∈  𝑇  ↦  ( ( ℎ ‘ 𝑡 )  ·  ( 𝑔 ‘ 𝑡 ) ) )  ∈  𝑌 ) ) | 
						
							| 32 | 28 31 | imbi12d | ⊢ ( 𝑓  =  ℎ  →  ( ( ( 𝜑  ∧  𝑓  ∈  𝑌  ∧  𝑔  ∈  𝑌 )  →  ( 𝑡  ∈  𝑇  ↦  ( ( 𝑓 ‘ 𝑡 )  ·  ( 𝑔 ‘ 𝑡 ) ) )  ∈  𝑌 )  ↔  ( ( 𝜑  ∧  ℎ  ∈  𝑌  ∧  𝑔  ∈  𝑌 )  →  ( 𝑡  ∈  𝑇  ↦  ( ( ℎ ‘ 𝑡 )  ·  ( 𝑔 ‘ 𝑡 ) ) )  ∈  𝑌 ) ) ) | 
						
							| 33 |  | eleq1w | ⊢ ( 𝑔  =  𝑙  →  ( 𝑔  ∈  𝑌  ↔  𝑙  ∈  𝑌 ) ) | 
						
							| 34 | 33 | 3anbi3d | ⊢ ( 𝑔  =  𝑙  →  ( ( 𝜑  ∧  ℎ  ∈  𝑌  ∧  𝑔  ∈  𝑌 )  ↔  ( 𝜑  ∧  ℎ  ∈  𝑌  ∧  𝑙  ∈  𝑌 ) ) ) | 
						
							| 35 | 21 | oveq2d | ⊢ ( 𝑔  =  𝑙  →  ( ( ℎ ‘ 𝑡 )  ·  ( 𝑔 ‘ 𝑡 ) )  =  ( ( ℎ ‘ 𝑡 )  ·  ( 𝑙 ‘ 𝑡 ) ) ) | 
						
							| 36 | 35 | mpteq2dv | ⊢ ( 𝑔  =  𝑙  →  ( 𝑡  ∈  𝑇  ↦  ( ( ℎ ‘ 𝑡 )  ·  ( 𝑔 ‘ 𝑡 ) ) )  =  ( 𝑡  ∈  𝑇  ↦  ( ( ℎ ‘ 𝑡 )  ·  ( 𝑙 ‘ 𝑡 ) ) ) ) | 
						
							| 37 | 36 | eleq1d | ⊢ ( 𝑔  =  𝑙  →  ( ( 𝑡  ∈  𝑇  ↦  ( ( ℎ ‘ 𝑡 )  ·  ( 𝑔 ‘ 𝑡 ) ) )  ∈  𝑌  ↔  ( 𝑡  ∈  𝑇  ↦  ( ( ℎ ‘ 𝑡 )  ·  ( 𝑙 ‘ 𝑡 ) ) )  ∈  𝑌 ) ) | 
						
							| 38 | 34 37 | imbi12d | ⊢ ( 𝑔  =  𝑙  →  ( ( ( 𝜑  ∧  ℎ  ∈  𝑌  ∧  𝑔  ∈  𝑌 )  →  ( 𝑡  ∈  𝑇  ↦  ( ( ℎ ‘ 𝑡 )  ·  ( 𝑔 ‘ 𝑡 ) ) )  ∈  𝑌 )  ↔  ( ( 𝜑  ∧  ℎ  ∈  𝑌  ∧  𝑙  ∈  𝑌 )  →  ( 𝑡  ∈  𝑇  ↦  ( ( ℎ ‘ 𝑡 )  ·  ( 𝑙 ‘ 𝑡 ) ) )  ∈  𝑌 ) ) ) | 
						
							| 39 | 32 38 5 | vtocl2g | ⊢ ( ( ℎ  ∈  𝑌  ∧  𝑙  ∈  𝑌 )  →  ( ( 𝜑  ∧  ℎ  ∈  𝑌  ∧  𝑙  ∈  𝑌 )  →  ( 𝑡  ∈  𝑇  ↦  ( ( ℎ ‘ 𝑡 )  ·  ( 𝑙 ‘ 𝑡 ) ) )  ∈  𝑌 ) ) | 
						
							| 40 | 26 39 | mpcom | ⊢ ( ( 𝜑  ∧  ℎ  ∈  𝑌  ∧  𝑙  ∈  𝑌 )  →  ( 𝑡  ∈  𝑇  ↦  ( ( ℎ ‘ 𝑡 )  ·  ( 𝑙 ‘ 𝑡 ) ) )  ∈  𝑌 ) | 
						
							| 41 | 40 | 3expb | ⊢ ( ( 𝜑  ∧  ( ℎ  ∈  𝑌  ∧  𝑙  ∈  𝑌 ) )  →  ( 𝑡  ∈  𝑇  ↦  ( ( ℎ ‘ 𝑡 )  ·  ( 𝑙 ‘ 𝑡 ) ) )  ∈  𝑌 ) | 
						
							| 42 | 25 41 | eqeltrd | ⊢ ( ( 𝜑  ∧  ( ℎ  ∈  𝑌  ∧  𝑙  ∈  𝑌 ) )  →  ( ℎ 𝑃 𝑙 )  ∈  𝑌 ) | 
						
							| 43 | 8 14 42 | seqcl | ⊢ ( 𝜑  →  ( seq 1 ( 𝑃 ,  𝑈 ) ‘ 𝑁 )  ∈  𝑌 ) | 
						
							| 44 | 2 43 | eqeltrid | ⊢ ( 𝜑  →  𝑋  ∈  𝑌 ) |