| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fmulcl.1 |  |-  P = ( f e. Y , g e. Y |-> ( t e. T |-> ( ( f ` t ) x. ( g ` t ) ) ) ) | 
						
							| 2 |  | fmulcl.2 |  |-  X = ( seq 1 ( P , U ) ` N ) | 
						
							| 3 |  | fmulcl.4 |  |-  ( ph -> N e. ( 1 ... M ) ) | 
						
							| 4 |  | fmulcl.5 |  |-  ( ph -> U : ( 1 ... M ) --> Y ) | 
						
							| 5 |  | fmulcl.6 |  |-  ( ( ph /\ f e. Y /\ g e. Y ) -> ( t e. T |-> ( ( f ` t ) x. ( g ` t ) ) ) e. Y ) | 
						
							| 6 |  | fmulcl.7 |  |-  ( ph -> T e. _V ) | 
						
							| 7 |  | elfzuz |  |-  ( N e. ( 1 ... M ) -> N e. ( ZZ>= ` 1 ) ) | 
						
							| 8 | 3 7 | syl |  |-  ( ph -> N e. ( ZZ>= ` 1 ) ) | 
						
							| 9 |  | elfzuz3 |  |-  ( N e. ( 1 ... M ) -> M e. ( ZZ>= ` N ) ) | 
						
							| 10 |  | fzss2 |  |-  ( M e. ( ZZ>= ` N ) -> ( 1 ... N ) C_ ( 1 ... M ) ) | 
						
							| 11 | 3 9 10 | 3syl |  |-  ( ph -> ( 1 ... N ) C_ ( 1 ... M ) ) | 
						
							| 12 | 11 | sselda |  |-  ( ( ph /\ h e. ( 1 ... N ) ) -> h e. ( 1 ... M ) ) | 
						
							| 13 | 4 | ffvelcdmda |  |-  ( ( ph /\ h e. ( 1 ... M ) ) -> ( U ` h ) e. Y ) | 
						
							| 14 | 12 13 | syldan |  |-  ( ( ph /\ h e. ( 1 ... N ) ) -> ( U ` h ) e. Y ) | 
						
							| 15 |  | simprl |  |-  ( ( ph /\ ( h e. Y /\ l e. Y ) ) -> h e. Y ) | 
						
							| 16 |  | simprr |  |-  ( ( ph /\ ( h e. Y /\ l e. Y ) ) -> l e. Y ) | 
						
							| 17 | 6 | adantr |  |-  ( ( ph /\ ( h e. Y /\ l e. Y ) ) -> T e. _V ) | 
						
							| 18 |  | mptexg |  |-  ( T e. _V -> ( t e. T |-> ( ( h ` t ) x. ( l ` t ) ) ) e. _V ) | 
						
							| 19 | 17 18 | syl |  |-  ( ( ph /\ ( h e. Y /\ l e. Y ) ) -> ( t e. T |-> ( ( h ` t ) x. ( l ` t ) ) ) e. _V ) | 
						
							| 20 |  | fveq1 |  |-  ( f = h -> ( f ` t ) = ( h ` t ) ) | 
						
							| 21 |  | fveq1 |  |-  ( g = l -> ( g ` t ) = ( l ` t ) ) | 
						
							| 22 | 20 21 | oveqan12d |  |-  ( ( f = h /\ g = l ) -> ( ( f ` t ) x. ( g ` t ) ) = ( ( h ` t ) x. ( l ` t ) ) ) | 
						
							| 23 | 22 | mpteq2dv |  |-  ( ( f = h /\ g = l ) -> ( t e. T |-> ( ( f ` t ) x. ( g ` t ) ) ) = ( t e. T |-> ( ( h ` t ) x. ( l ` t ) ) ) ) | 
						
							| 24 | 23 1 | ovmpoga |  |-  ( ( h e. Y /\ l e. Y /\ ( t e. T |-> ( ( h ` t ) x. ( l ` t ) ) ) e. _V ) -> ( h P l ) = ( t e. T |-> ( ( h ` t ) x. ( l ` t ) ) ) ) | 
						
							| 25 | 15 16 19 24 | syl3anc |  |-  ( ( ph /\ ( h e. Y /\ l e. Y ) ) -> ( h P l ) = ( t e. T |-> ( ( h ` t ) x. ( l ` t ) ) ) ) | 
						
							| 26 |  | 3simpc |  |-  ( ( ph /\ h e. Y /\ l e. Y ) -> ( h e. Y /\ l e. Y ) ) | 
						
							| 27 |  | eleq1w |  |-  ( f = h -> ( f e. Y <-> h e. Y ) ) | 
						
							| 28 | 27 | 3anbi2d |  |-  ( f = h -> ( ( ph /\ f e. Y /\ g e. Y ) <-> ( ph /\ h e. Y /\ g e. Y ) ) ) | 
						
							| 29 | 20 | oveq1d |  |-  ( f = h -> ( ( f ` t ) x. ( g ` t ) ) = ( ( h ` t ) x. ( g ` t ) ) ) | 
						
							| 30 | 29 | mpteq2dv |  |-  ( f = h -> ( t e. T |-> ( ( f ` t ) x. ( g ` t ) ) ) = ( t e. T |-> ( ( h ` t ) x. ( g ` t ) ) ) ) | 
						
							| 31 | 30 | eleq1d |  |-  ( f = h -> ( ( t e. T |-> ( ( f ` t ) x. ( g ` t ) ) ) e. Y <-> ( t e. T |-> ( ( h ` t ) x. ( g ` t ) ) ) e. Y ) ) | 
						
							| 32 | 28 31 | imbi12d |  |-  ( f = h -> ( ( ( ph /\ f e. Y /\ g e. Y ) -> ( t e. T |-> ( ( f ` t ) x. ( g ` t ) ) ) e. Y ) <-> ( ( ph /\ h e. Y /\ g e. Y ) -> ( t e. T |-> ( ( h ` t ) x. ( g ` t ) ) ) e. Y ) ) ) | 
						
							| 33 |  | eleq1w |  |-  ( g = l -> ( g e. Y <-> l e. Y ) ) | 
						
							| 34 | 33 | 3anbi3d |  |-  ( g = l -> ( ( ph /\ h e. Y /\ g e. Y ) <-> ( ph /\ h e. Y /\ l e. Y ) ) ) | 
						
							| 35 | 21 | oveq2d |  |-  ( g = l -> ( ( h ` t ) x. ( g ` t ) ) = ( ( h ` t ) x. ( l ` t ) ) ) | 
						
							| 36 | 35 | mpteq2dv |  |-  ( g = l -> ( t e. T |-> ( ( h ` t ) x. ( g ` t ) ) ) = ( t e. T |-> ( ( h ` t ) x. ( l ` t ) ) ) ) | 
						
							| 37 | 36 | eleq1d |  |-  ( g = l -> ( ( t e. T |-> ( ( h ` t ) x. ( g ` t ) ) ) e. Y <-> ( t e. T |-> ( ( h ` t ) x. ( l ` t ) ) ) e. Y ) ) | 
						
							| 38 | 34 37 | imbi12d |  |-  ( g = l -> ( ( ( ph /\ h e. Y /\ g e. Y ) -> ( t e. T |-> ( ( h ` t ) x. ( g ` t ) ) ) e. Y ) <-> ( ( ph /\ h e. Y /\ l e. Y ) -> ( t e. T |-> ( ( h ` t ) x. ( l ` t ) ) ) e. Y ) ) ) | 
						
							| 39 | 32 38 5 | vtocl2g |  |-  ( ( h e. Y /\ l e. Y ) -> ( ( ph /\ h e. Y /\ l e. Y ) -> ( t e. T |-> ( ( h ` t ) x. ( l ` t ) ) ) e. Y ) ) | 
						
							| 40 | 26 39 | mpcom |  |-  ( ( ph /\ h e. Y /\ l e. Y ) -> ( t e. T |-> ( ( h ` t ) x. ( l ` t ) ) ) e. Y ) | 
						
							| 41 | 40 | 3expb |  |-  ( ( ph /\ ( h e. Y /\ l e. Y ) ) -> ( t e. T |-> ( ( h ` t ) x. ( l ` t ) ) ) e. Y ) | 
						
							| 42 | 25 41 | eqeltrd |  |-  ( ( ph /\ ( h e. Y /\ l e. Y ) ) -> ( h P l ) e. Y ) | 
						
							| 43 | 8 14 42 | seqcl |  |-  ( ph -> ( seq 1 ( P , U ) ` N ) e. Y ) | 
						
							| 44 | 2 43 | eqeltrid |  |-  ( ph -> X e. Y ) |