| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fmuldfeqlem1.1 | ⊢ Ⅎ 𝑓 𝜑 | 
						
							| 2 |  | fmuldfeqlem1.2 | ⊢ Ⅎ 𝑔 𝜑 | 
						
							| 3 |  | fmuldfeqlem1.3 | ⊢ Ⅎ 𝑡 𝑌 | 
						
							| 4 |  | fmuldfeqlem1.5 | ⊢ 𝑃  =  ( 𝑓  ∈  𝑌 ,  𝑔  ∈  𝑌  ↦  ( 𝑡  ∈  𝑇  ↦  ( ( 𝑓 ‘ 𝑡 )  ·  ( 𝑔 ‘ 𝑡 ) ) ) ) | 
						
							| 5 |  | fmuldfeqlem1.6 | ⊢ 𝐹  =  ( 𝑡  ∈  𝑇  ↦  ( 𝑖  ∈  ( 1 ... 𝑀 )  ↦  ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑡 ) ) ) | 
						
							| 6 |  | fmuldfeqlem1.7 | ⊢ ( 𝜑  →  𝑇  ∈  V ) | 
						
							| 7 |  | fmuldfeqlem1.8 | ⊢ ( 𝜑  →  𝑈 : ( 1 ... 𝑀 ) ⟶ 𝑌 ) | 
						
							| 8 |  | fmuldfeqlem1.9 | ⊢ ( ( 𝜑  ∧  𝑓  ∈  𝑌  ∧  𝑔  ∈  𝑌 )  →  ( 𝑡  ∈  𝑇  ↦  ( ( 𝑓 ‘ 𝑡 )  ·  ( 𝑔 ‘ 𝑡 ) ) )  ∈  𝑌 ) | 
						
							| 9 |  | fmuldfeqlem1.10 | ⊢ ( 𝜑  →  𝑁  ∈  ( 1 ... 𝑀 ) ) | 
						
							| 10 |  | fmuldfeqlem1.11 | ⊢ ( 𝜑  →  ( 𝑁  +  1 )  ∈  ( 1 ... 𝑀 ) ) | 
						
							| 11 |  | fmuldfeqlem1.12 | ⊢ ( 𝜑  →  ( ( seq 1 ( 𝑃 ,  𝑈 ) ‘ 𝑁 ) ‘ 𝑡 )  =  ( seq 1 (  ·  ,  ( 𝐹 ‘ 𝑡 ) ) ‘ 𝑁 ) ) | 
						
							| 12 |  | fmuldfeqlem1.13 | ⊢ ( ( 𝜑  ∧  𝑓  ∈  𝑌 )  →  𝑓 : 𝑇 ⟶ ℝ ) | 
						
							| 13 |  | ovex | ⊢ ( 1 ... 𝑀 )  ∈  V | 
						
							| 14 | 13 | mptex | ⊢ ( 𝑖  ∈  ( 1 ... 𝑀 )  ↦  ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑡 ) )  ∈  V | 
						
							| 15 | 5 | fvmpt2 | ⊢ ( ( 𝑡  ∈  𝑇  ∧  ( 𝑖  ∈  ( 1 ... 𝑀 )  ↦  ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑡 ) )  ∈  V )  →  ( 𝐹 ‘ 𝑡 )  =  ( 𝑖  ∈  ( 1 ... 𝑀 )  ↦  ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑡 ) ) ) | 
						
							| 16 | 14 15 | mpan2 | ⊢ ( 𝑡  ∈  𝑇  →  ( 𝐹 ‘ 𝑡 )  =  ( 𝑖  ∈  ( 1 ... 𝑀 )  ↦  ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑡 ) ) ) | 
						
							| 17 |  | fveq2 | ⊢ ( 𝑖  =  𝑗  →  ( 𝑈 ‘ 𝑖 )  =  ( 𝑈 ‘ 𝑗 ) ) | 
						
							| 18 | 17 | fveq1d | ⊢ ( 𝑖  =  𝑗  →  ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑡 )  =  ( ( 𝑈 ‘ 𝑗 ) ‘ 𝑡 ) ) | 
						
							| 19 | 18 | cbvmptv | ⊢ ( 𝑖  ∈  ( 1 ... 𝑀 )  ↦  ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑡 ) )  =  ( 𝑗  ∈  ( 1 ... 𝑀 )  ↦  ( ( 𝑈 ‘ 𝑗 ) ‘ 𝑡 ) ) | 
						
							| 20 | 16 19 | eqtrdi | ⊢ ( 𝑡  ∈  𝑇  →  ( 𝐹 ‘ 𝑡 )  =  ( 𝑗  ∈  ( 1 ... 𝑀 )  ↦  ( ( 𝑈 ‘ 𝑗 ) ‘ 𝑡 ) ) ) | 
						
							| 21 | 20 | adantl | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  →  ( 𝐹 ‘ 𝑡 )  =  ( 𝑗  ∈  ( 1 ... 𝑀 )  ↦  ( ( 𝑈 ‘ 𝑗 ) ‘ 𝑡 ) ) ) | 
						
							| 22 |  | fveq2 | ⊢ ( 𝑗  =  ( 𝑁  +  1 )  →  ( 𝑈 ‘ 𝑗 )  =  ( 𝑈 ‘ ( 𝑁  +  1 ) ) ) | 
						
							| 23 | 22 | fveq1d | ⊢ ( 𝑗  =  ( 𝑁  +  1 )  →  ( ( 𝑈 ‘ 𝑗 ) ‘ 𝑡 )  =  ( ( 𝑈 ‘ ( 𝑁  +  1 ) ) ‘ 𝑡 ) ) | 
						
							| 24 | 23 | adantl | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  ∧  𝑗  =  ( 𝑁  +  1 ) )  →  ( ( 𝑈 ‘ 𝑗 ) ‘ 𝑡 )  =  ( ( 𝑈 ‘ ( 𝑁  +  1 ) ) ‘ 𝑡 ) ) | 
						
							| 25 | 10 | adantr | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  →  ( 𝑁  +  1 )  ∈  ( 1 ... 𝑀 ) ) | 
						
							| 26 | 7 10 | ffvelcdmd | ⊢ ( 𝜑  →  ( 𝑈 ‘ ( 𝑁  +  1 ) )  ∈  𝑌 ) | 
						
							| 27 | 26 | ancli | ⊢ ( 𝜑  →  ( 𝜑  ∧  ( 𝑈 ‘ ( 𝑁  +  1 ) )  ∈  𝑌 ) ) | 
						
							| 28 |  | nfcv | ⊢ Ⅎ 𝑓 ( 𝑈 ‘ ( 𝑁  +  1 ) ) | 
						
							| 29 |  | nfv | ⊢ Ⅎ 𝑓 ( 𝑈 ‘ ( 𝑁  +  1 ) )  ∈  𝑌 | 
						
							| 30 | 1 29 | nfan | ⊢ Ⅎ 𝑓 ( 𝜑  ∧  ( 𝑈 ‘ ( 𝑁  +  1 ) )  ∈  𝑌 ) | 
						
							| 31 |  | nfv | ⊢ Ⅎ 𝑓 ( 𝑈 ‘ ( 𝑁  +  1 ) ) : 𝑇 ⟶ ℝ | 
						
							| 32 | 30 31 | nfim | ⊢ Ⅎ 𝑓 ( ( 𝜑  ∧  ( 𝑈 ‘ ( 𝑁  +  1 ) )  ∈  𝑌 )  →  ( 𝑈 ‘ ( 𝑁  +  1 ) ) : 𝑇 ⟶ ℝ ) | 
						
							| 33 |  | eleq1 | ⊢ ( 𝑓  =  ( 𝑈 ‘ ( 𝑁  +  1 ) )  →  ( 𝑓  ∈  𝑌  ↔  ( 𝑈 ‘ ( 𝑁  +  1 ) )  ∈  𝑌 ) ) | 
						
							| 34 | 33 | anbi2d | ⊢ ( 𝑓  =  ( 𝑈 ‘ ( 𝑁  +  1 ) )  →  ( ( 𝜑  ∧  𝑓  ∈  𝑌 )  ↔  ( 𝜑  ∧  ( 𝑈 ‘ ( 𝑁  +  1 ) )  ∈  𝑌 ) ) ) | 
						
							| 35 |  | feq1 | ⊢ ( 𝑓  =  ( 𝑈 ‘ ( 𝑁  +  1 ) )  →  ( 𝑓 : 𝑇 ⟶ ℝ  ↔  ( 𝑈 ‘ ( 𝑁  +  1 ) ) : 𝑇 ⟶ ℝ ) ) | 
						
							| 36 | 34 35 | imbi12d | ⊢ ( 𝑓  =  ( 𝑈 ‘ ( 𝑁  +  1 ) )  →  ( ( ( 𝜑  ∧  𝑓  ∈  𝑌 )  →  𝑓 : 𝑇 ⟶ ℝ )  ↔  ( ( 𝜑  ∧  ( 𝑈 ‘ ( 𝑁  +  1 ) )  ∈  𝑌 )  →  ( 𝑈 ‘ ( 𝑁  +  1 ) ) : 𝑇 ⟶ ℝ ) ) ) | 
						
							| 37 | 28 32 36 12 | vtoclgf | ⊢ ( ( 𝑈 ‘ ( 𝑁  +  1 ) )  ∈  𝑌  →  ( ( 𝜑  ∧  ( 𝑈 ‘ ( 𝑁  +  1 ) )  ∈  𝑌 )  →  ( 𝑈 ‘ ( 𝑁  +  1 ) ) : 𝑇 ⟶ ℝ ) ) | 
						
							| 38 | 26 27 37 | sylc | ⊢ ( 𝜑  →  ( 𝑈 ‘ ( 𝑁  +  1 ) ) : 𝑇 ⟶ ℝ ) | 
						
							| 39 | 38 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  →  ( ( 𝑈 ‘ ( 𝑁  +  1 ) ) ‘ 𝑡 )  ∈  ℝ ) | 
						
							| 40 | 21 24 25 39 | fvmptd | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  →  ( ( 𝐹 ‘ 𝑡 ) ‘ ( 𝑁  +  1 ) )  =  ( ( 𝑈 ‘ ( 𝑁  +  1 ) ) ‘ 𝑡 ) ) | 
						
							| 41 | 40 | oveq2d | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  →  ( ( seq 1 (  ·  ,  ( 𝐹 ‘ 𝑡 ) ) ‘ 𝑁 )  ·  ( ( 𝐹 ‘ 𝑡 ) ‘ ( 𝑁  +  1 ) ) )  =  ( ( seq 1 (  ·  ,  ( 𝐹 ‘ 𝑡 ) ) ‘ 𝑁 )  ·  ( ( 𝑈 ‘ ( 𝑁  +  1 ) ) ‘ 𝑡 ) ) ) | 
						
							| 42 |  | elfzuz | ⊢ ( 𝑁  ∈  ( 1 ... 𝑀 )  →  𝑁  ∈  ( ℤ≥ ‘ 1 ) ) | 
						
							| 43 | 9 42 | syl | ⊢ ( 𝜑  →  𝑁  ∈  ( ℤ≥ ‘ 1 ) ) | 
						
							| 44 |  | seqp1 | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 1 )  →  ( seq 1 (  ·  ,  ( 𝐹 ‘ 𝑡 ) ) ‘ ( 𝑁  +  1 ) )  =  ( ( seq 1 (  ·  ,  ( 𝐹 ‘ 𝑡 ) ) ‘ 𝑁 )  ·  ( ( 𝐹 ‘ 𝑡 ) ‘ ( 𝑁  +  1 ) ) ) ) | 
						
							| 45 | 43 44 | syl | ⊢ ( 𝜑  →  ( seq 1 (  ·  ,  ( 𝐹 ‘ 𝑡 ) ) ‘ ( 𝑁  +  1 ) )  =  ( ( seq 1 (  ·  ,  ( 𝐹 ‘ 𝑡 ) ) ‘ 𝑁 )  ·  ( ( 𝐹 ‘ 𝑡 ) ‘ ( 𝑁  +  1 ) ) ) ) | 
						
							| 46 | 45 | adantr | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  →  ( seq 1 (  ·  ,  ( 𝐹 ‘ 𝑡 ) ) ‘ ( 𝑁  +  1 ) )  =  ( ( seq 1 (  ·  ,  ( 𝐹 ‘ 𝑡 ) ) ‘ 𝑁 )  ·  ( ( 𝐹 ‘ 𝑡 ) ‘ ( 𝑁  +  1 ) ) ) ) | 
						
							| 47 |  | seqp1 | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 1 )  →  ( seq 1 ( 𝑃 ,  𝑈 ) ‘ ( 𝑁  +  1 ) )  =  ( ( seq 1 ( 𝑃 ,  𝑈 ) ‘ 𝑁 ) 𝑃 ( 𝑈 ‘ ( 𝑁  +  1 ) ) ) ) | 
						
							| 48 | 43 47 | syl | ⊢ ( 𝜑  →  ( seq 1 ( 𝑃 ,  𝑈 ) ‘ ( 𝑁  +  1 ) )  =  ( ( seq 1 ( 𝑃 ,  𝑈 ) ‘ 𝑁 ) 𝑃 ( 𝑈 ‘ ( 𝑁  +  1 ) ) ) ) | 
						
							| 49 |  | nfcv | ⊢ Ⅎ ℎ ( 𝑡  ∈  𝑇  ↦  ( ( 𝑓 ‘ 𝑡 )  ·  ( 𝑔 ‘ 𝑡 ) ) ) | 
						
							| 50 |  | nfcv | ⊢ Ⅎ 𝑙 ( 𝑡  ∈  𝑇  ↦  ( ( 𝑓 ‘ 𝑡 )  ·  ( 𝑔 ‘ 𝑡 ) ) ) | 
						
							| 51 |  | nfcv | ⊢ Ⅎ 𝑓 ( 𝑡  ∈  𝑇  ↦  ( ( ℎ ‘ 𝑡 )  ·  ( 𝑙 ‘ 𝑡 ) ) ) | 
						
							| 52 |  | nfcv | ⊢ Ⅎ 𝑔 ( 𝑡  ∈  𝑇  ↦  ( ( ℎ ‘ 𝑡 )  ·  ( 𝑙 ‘ 𝑡 ) ) ) | 
						
							| 53 |  | fveq1 | ⊢ ( 𝑓  =  ℎ  →  ( 𝑓 ‘ 𝑡 )  =  ( ℎ ‘ 𝑡 ) ) | 
						
							| 54 |  | fveq1 | ⊢ ( 𝑔  =  𝑙  →  ( 𝑔 ‘ 𝑡 )  =  ( 𝑙 ‘ 𝑡 ) ) | 
						
							| 55 | 53 54 | oveqan12d | ⊢ ( ( 𝑓  =  ℎ  ∧  𝑔  =  𝑙 )  →  ( ( 𝑓 ‘ 𝑡 )  ·  ( 𝑔 ‘ 𝑡 ) )  =  ( ( ℎ ‘ 𝑡 )  ·  ( 𝑙 ‘ 𝑡 ) ) ) | 
						
							| 56 | 55 | mpteq2dv | ⊢ ( ( 𝑓  =  ℎ  ∧  𝑔  =  𝑙 )  →  ( 𝑡  ∈  𝑇  ↦  ( ( 𝑓 ‘ 𝑡 )  ·  ( 𝑔 ‘ 𝑡 ) ) )  =  ( 𝑡  ∈  𝑇  ↦  ( ( ℎ ‘ 𝑡 )  ·  ( 𝑙 ‘ 𝑡 ) ) ) ) | 
						
							| 57 | 49 50 51 52 56 | cbvmpo | ⊢ ( 𝑓  ∈  𝑌 ,  𝑔  ∈  𝑌  ↦  ( 𝑡  ∈  𝑇  ↦  ( ( 𝑓 ‘ 𝑡 )  ·  ( 𝑔 ‘ 𝑡 ) ) ) )  =  ( ℎ  ∈  𝑌 ,  𝑙  ∈  𝑌  ↦  ( 𝑡  ∈  𝑇  ↦  ( ( ℎ ‘ 𝑡 )  ·  ( 𝑙 ‘ 𝑡 ) ) ) ) | 
						
							| 58 | 4 57 | eqtri | ⊢ 𝑃  =  ( ℎ  ∈  𝑌 ,  𝑙  ∈  𝑌  ↦  ( 𝑡  ∈  𝑇  ↦  ( ( ℎ ‘ 𝑡 )  ·  ( 𝑙 ‘ 𝑡 ) ) ) ) | 
						
							| 59 | 58 | a1i | ⊢ ( 𝜑  →  𝑃  =  ( ℎ  ∈  𝑌 ,  𝑙  ∈  𝑌  ↦  ( 𝑡  ∈  𝑇  ↦  ( ( ℎ ‘ 𝑡 )  ·  ( 𝑙 ‘ 𝑡 ) ) ) ) ) | 
						
							| 60 |  | nfcv | ⊢ Ⅎ 𝑡 1 | 
						
							| 61 |  | nfmpt1 | ⊢ Ⅎ 𝑡 ( 𝑡  ∈  𝑇  ↦  ( ( 𝑓 ‘ 𝑡 )  ·  ( 𝑔 ‘ 𝑡 ) ) ) | 
						
							| 62 | 3 3 61 | nfmpo | ⊢ Ⅎ 𝑡 ( 𝑓  ∈  𝑌 ,  𝑔  ∈  𝑌  ↦  ( 𝑡  ∈  𝑇  ↦  ( ( 𝑓 ‘ 𝑡 )  ·  ( 𝑔 ‘ 𝑡 ) ) ) ) | 
						
							| 63 | 4 62 | nfcxfr | ⊢ Ⅎ 𝑡 𝑃 | 
						
							| 64 |  | nfcv | ⊢ Ⅎ 𝑡 𝑈 | 
						
							| 65 | 60 63 64 | nfseq | ⊢ Ⅎ 𝑡 seq 1 ( 𝑃 ,  𝑈 ) | 
						
							| 66 |  | nfcv | ⊢ Ⅎ 𝑡 𝑁 | 
						
							| 67 | 65 66 | nffv | ⊢ Ⅎ 𝑡 ( seq 1 ( 𝑃 ,  𝑈 ) ‘ 𝑁 ) | 
						
							| 68 | 67 | nfeq2 | ⊢ Ⅎ 𝑡 ℎ  =  ( seq 1 ( 𝑃 ,  𝑈 ) ‘ 𝑁 ) | 
						
							| 69 |  | nfv | ⊢ Ⅎ 𝑡 𝑙  =  ( 𝑈 ‘ ( 𝑁  +  1 ) ) | 
						
							| 70 | 68 69 | nfan | ⊢ Ⅎ 𝑡 ( ℎ  =  ( seq 1 ( 𝑃 ,  𝑈 ) ‘ 𝑁 )  ∧  𝑙  =  ( 𝑈 ‘ ( 𝑁  +  1 ) ) ) | 
						
							| 71 |  | fveq1 | ⊢ ( ℎ  =  ( seq 1 ( 𝑃 ,  𝑈 ) ‘ 𝑁 )  →  ( ℎ ‘ 𝑡 )  =  ( ( seq 1 ( 𝑃 ,  𝑈 ) ‘ 𝑁 ) ‘ 𝑡 ) ) | 
						
							| 72 | 71 | ad2antrr | ⊢ ( ( ( ℎ  =  ( seq 1 ( 𝑃 ,  𝑈 ) ‘ 𝑁 )  ∧  𝑙  =  ( 𝑈 ‘ ( 𝑁  +  1 ) ) )  ∧  𝑡  ∈  𝑇 )  →  ( ℎ ‘ 𝑡 )  =  ( ( seq 1 ( 𝑃 ,  𝑈 ) ‘ 𝑁 ) ‘ 𝑡 ) ) | 
						
							| 73 |  | fveq1 | ⊢ ( 𝑙  =  ( 𝑈 ‘ ( 𝑁  +  1 ) )  →  ( 𝑙 ‘ 𝑡 )  =  ( ( 𝑈 ‘ ( 𝑁  +  1 ) ) ‘ 𝑡 ) ) | 
						
							| 74 | 73 | ad2antlr | ⊢ ( ( ( ℎ  =  ( seq 1 ( 𝑃 ,  𝑈 ) ‘ 𝑁 )  ∧  𝑙  =  ( 𝑈 ‘ ( 𝑁  +  1 ) ) )  ∧  𝑡  ∈  𝑇 )  →  ( 𝑙 ‘ 𝑡 )  =  ( ( 𝑈 ‘ ( 𝑁  +  1 ) ) ‘ 𝑡 ) ) | 
						
							| 75 | 72 74 | oveq12d | ⊢ ( ( ( ℎ  =  ( seq 1 ( 𝑃 ,  𝑈 ) ‘ 𝑁 )  ∧  𝑙  =  ( 𝑈 ‘ ( 𝑁  +  1 ) ) )  ∧  𝑡  ∈  𝑇 )  →  ( ( ℎ ‘ 𝑡 )  ·  ( 𝑙 ‘ 𝑡 ) )  =  ( ( ( seq 1 ( 𝑃 ,  𝑈 ) ‘ 𝑁 ) ‘ 𝑡 )  ·  ( ( 𝑈 ‘ ( 𝑁  +  1 ) ) ‘ 𝑡 ) ) ) | 
						
							| 76 | 70 75 | mpteq2da | ⊢ ( ( ℎ  =  ( seq 1 ( 𝑃 ,  𝑈 ) ‘ 𝑁 )  ∧  𝑙  =  ( 𝑈 ‘ ( 𝑁  +  1 ) ) )  →  ( 𝑡  ∈  𝑇  ↦  ( ( ℎ ‘ 𝑡 )  ·  ( 𝑙 ‘ 𝑡 ) ) )  =  ( 𝑡  ∈  𝑇  ↦  ( ( ( seq 1 ( 𝑃 ,  𝑈 ) ‘ 𝑁 ) ‘ 𝑡 )  ·  ( ( 𝑈 ‘ ( 𝑁  +  1 ) ) ‘ 𝑡 ) ) ) ) | 
						
							| 77 | 76 | adantl | ⊢ ( ( 𝜑  ∧  ( ℎ  =  ( seq 1 ( 𝑃 ,  𝑈 ) ‘ 𝑁 )  ∧  𝑙  =  ( 𝑈 ‘ ( 𝑁  +  1 ) ) ) )  →  ( 𝑡  ∈  𝑇  ↦  ( ( ℎ ‘ 𝑡 )  ·  ( 𝑙 ‘ 𝑡 ) ) )  =  ( 𝑡  ∈  𝑇  ↦  ( ( ( seq 1 ( 𝑃 ,  𝑈 ) ‘ 𝑁 ) ‘ 𝑡 )  ·  ( ( 𝑈 ‘ ( 𝑁  +  1 ) ) ‘ 𝑡 ) ) ) ) | 
						
							| 78 |  | eqid | ⊢ ( seq 1 ( 𝑃 ,  𝑈 ) ‘ 𝑁 )  =  ( seq 1 ( 𝑃 ,  𝑈 ) ‘ 𝑁 ) | 
						
							| 79 |  | 3simpc | ⊢ ( ( 𝜑  ∧  ℎ  ∈  𝑌  ∧  𝑙  ∈  𝑌 )  →  ( ℎ  ∈  𝑌  ∧  𝑙  ∈  𝑌 ) ) | 
						
							| 80 |  | nfcv | ⊢ Ⅎ 𝑓 ℎ | 
						
							| 81 |  | nfcv | ⊢ Ⅎ 𝑔 ℎ | 
						
							| 82 |  | nfcv | ⊢ Ⅎ 𝑔 𝑙 | 
						
							| 83 |  | nfv | ⊢ Ⅎ 𝑓 ℎ  ∈  𝑌 | 
						
							| 84 |  | nfv | ⊢ Ⅎ 𝑓 𝑔  ∈  𝑌 | 
						
							| 85 | 1 83 84 | nf3an | ⊢ Ⅎ 𝑓 ( 𝜑  ∧  ℎ  ∈  𝑌  ∧  𝑔  ∈  𝑌 ) | 
						
							| 86 |  | nfv | ⊢ Ⅎ 𝑓 ( 𝑡  ∈  𝑇  ↦  ( ( ℎ ‘ 𝑡 )  ·  ( 𝑔 ‘ 𝑡 ) ) )  ∈  𝑌 | 
						
							| 87 | 85 86 | nfim | ⊢ Ⅎ 𝑓 ( ( 𝜑  ∧  ℎ  ∈  𝑌  ∧  𝑔  ∈  𝑌 )  →  ( 𝑡  ∈  𝑇  ↦  ( ( ℎ ‘ 𝑡 )  ·  ( 𝑔 ‘ 𝑡 ) ) )  ∈  𝑌 ) | 
						
							| 88 |  | nfv | ⊢ Ⅎ 𝑔 ℎ  ∈  𝑌 | 
						
							| 89 |  | nfv | ⊢ Ⅎ 𝑔 𝑙  ∈  𝑌 | 
						
							| 90 | 2 88 89 | nf3an | ⊢ Ⅎ 𝑔 ( 𝜑  ∧  ℎ  ∈  𝑌  ∧  𝑙  ∈  𝑌 ) | 
						
							| 91 |  | nfv | ⊢ Ⅎ 𝑔 ( 𝑡  ∈  𝑇  ↦  ( ( ℎ ‘ 𝑡 )  ·  ( 𝑙 ‘ 𝑡 ) ) )  ∈  𝑌 | 
						
							| 92 | 90 91 | nfim | ⊢ Ⅎ 𝑔 ( ( 𝜑  ∧  ℎ  ∈  𝑌  ∧  𝑙  ∈  𝑌 )  →  ( 𝑡  ∈  𝑇  ↦  ( ( ℎ ‘ 𝑡 )  ·  ( 𝑙 ‘ 𝑡 ) ) )  ∈  𝑌 ) | 
						
							| 93 |  | eleq1 | ⊢ ( 𝑓  =  ℎ  →  ( 𝑓  ∈  𝑌  ↔  ℎ  ∈  𝑌 ) ) | 
						
							| 94 | 93 | 3anbi2d | ⊢ ( 𝑓  =  ℎ  →  ( ( 𝜑  ∧  𝑓  ∈  𝑌  ∧  𝑔  ∈  𝑌 )  ↔  ( 𝜑  ∧  ℎ  ∈  𝑌  ∧  𝑔  ∈  𝑌 ) ) ) | 
						
							| 95 | 53 | oveq1d | ⊢ ( 𝑓  =  ℎ  →  ( ( 𝑓 ‘ 𝑡 )  ·  ( 𝑔 ‘ 𝑡 ) )  =  ( ( ℎ ‘ 𝑡 )  ·  ( 𝑔 ‘ 𝑡 ) ) ) | 
						
							| 96 | 95 | mpteq2dv | ⊢ ( 𝑓  =  ℎ  →  ( 𝑡  ∈  𝑇  ↦  ( ( 𝑓 ‘ 𝑡 )  ·  ( 𝑔 ‘ 𝑡 ) ) )  =  ( 𝑡  ∈  𝑇  ↦  ( ( ℎ ‘ 𝑡 )  ·  ( 𝑔 ‘ 𝑡 ) ) ) ) | 
						
							| 97 | 96 | eleq1d | ⊢ ( 𝑓  =  ℎ  →  ( ( 𝑡  ∈  𝑇  ↦  ( ( 𝑓 ‘ 𝑡 )  ·  ( 𝑔 ‘ 𝑡 ) ) )  ∈  𝑌  ↔  ( 𝑡  ∈  𝑇  ↦  ( ( ℎ ‘ 𝑡 )  ·  ( 𝑔 ‘ 𝑡 ) ) )  ∈  𝑌 ) ) | 
						
							| 98 | 94 97 | imbi12d | ⊢ ( 𝑓  =  ℎ  →  ( ( ( 𝜑  ∧  𝑓  ∈  𝑌  ∧  𝑔  ∈  𝑌 )  →  ( 𝑡  ∈  𝑇  ↦  ( ( 𝑓 ‘ 𝑡 )  ·  ( 𝑔 ‘ 𝑡 ) ) )  ∈  𝑌 )  ↔  ( ( 𝜑  ∧  ℎ  ∈  𝑌  ∧  𝑔  ∈  𝑌 )  →  ( 𝑡  ∈  𝑇  ↦  ( ( ℎ ‘ 𝑡 )  ·  ( 𝑔 ‘ 𝑡 ) ) )  ∈  𝑌 ) ) ) | 
						
							| 99 |  | eleq1 | ⊢ ( 𝑔  =  𝑙  →  ( 𝑔  ∈  𝑌  ↔  𝑙  ∈  𝑌 ) ) | 
						
							| 100 | 99 | 3anbi3d | ⊢ ( 𝑔  =  𝑙  →  ( ( 𝜑  ∧  ℎ  ∈  𝑌  ∧  𝑔  ∈  𝑌 )  ↔  ( 𝜑  ∧  ℎ  ∈  𝑌  ∧  𝑙  ∈  𝑌 ) ) ) | 
						
							| 101 | 54 | oveq2d | ⊢ ( 𝑔  =  𝑙  →  ( ( ℎ ‘ 𝑡 )  ·  ( 𝑔 ‘ 𝑡 ) )  =  ( ( ℎ ‘ 𝑡 )  ·  ( 𝑙 ‘ 𝑡 ) ) ) | 
						
							| 102 | 101 | mpteq2dv | ⊢ ( 𝑔  =  𝑙  →  ( 𝑡  ∈  𝑇  ↦  ( ( ℎ ‘ 𝑡 )  ·  ( 𝑔 ‘ 𝑡 ) ) )  =  ( 𝑡  ∈  𝑇  ↦  ( ( ℎ ‘ 𝑡 )  ·  ( 𝑙 ‘ 𝑡 ) ) ) ) | 
						
							| 103 | 102 | eleq1d | ⊢ ( 𝑔  =  𝑙  →  ( ( 𝑡  ∈  𝑇  ↦  ( ( ℎ ‘ 𝑡 )  ·  ( 𝑔 ‘ 𝑡 ) ) )  ∈  𝑌  ↔  ( 𝑡  ∈  𝑇  ↦  ( ( ℎ ‘ 𝑡 )  ·  ( 𝑙 ‘ 𝑡 ) ) )  ∈  𝑌 ) ) | 
						
							| 104 | 100 103 | imbi12d | ⊢ ( 𝑔  =  𝑙  →  ( ( ( 𝜑  ∧  ℎ  ∈  𝑌  ∧  𝑔  ∈  𝑌 )  →  ( 𝑡  ∈  𝑇  ↦  ( ( ℎ ‘ 𝑡 )  ·  ( 𝑔 ‘ 𝑡 ) ) )  ∈  𝑌 )  ↔  ( ( 𝜑  ∧  ℎ  ∈  𝑌  ∧  𝑙  ∈  𝑌 )  →  ( 𝑡  ∈  𝑇  ↦  ( ( ℎ ‘ 𝑡 )  ·  ( 𝑙 ‘ 𝑡 ) ) )  ∈  𝑌 ) ) ) | 
						
							| 105 | 80 81 82 87 92 98 104 8 | vtocl2gf | ⊢ ( ( ℎ  ∈  𝑌  ∧  𝑙  ∈  𝑌 )  →  ( ( 𝜑  ∧  ℎ  ∈  𝑌  ∧  𝑙  ∈  𝑌 )  →  ( 𝑡  ∈  𝑇  ↦  ( ( ℎ ‘ 𝑡 )  ·  ( 𝑙 ‘ 𝑡 ) ) )  ∈  𝑌 ) ) | 
						
							| 106 | 79 105 | mpcom | ⊢ ( ( 𝜑  ∧  ℎ  ∈  𝑌  ∧  𝑙  ∈  𝑌 )  →  ( 𝑡  ∈  𝑇  ↦  ( ( ℎ ‘ 𝑡 )  ·  ( 𝑙 ‘ 𝑡 ) ) )  ∈  𝑌 ) | 
						
							| 107 | 58 78 9 7 106 6 | fmulcl | ⊢ ( 𝜑  →  ( seq 1 ( 𝑃 ,  𝑈 ) ‘ 𝑁 )  ∈  𝑌 ) | 
						
							| 108 |  | mptexg | ⊢ ( 𝑇  ∈  V  →  ( 𝑡  ∈  𝑇  ↦  ( ( ( seq 1 ( 𝑃 ,  𝑈 ) ‘ 𝑁 ) ‘ 𝑡 )  ·  ( ( 𝑈 ‘ ( 𝑁  +  1 ) ) ‘ 𝑡 ) ) )  ∈  V ) | 
						
							| 109 | 6 108 | syl | ⊢ ( 𝜑  →  ( 𝑡  ∈  𝑇  ↦  ( ( ( seq 1 ( 𝑃 ,  𝑈 ) ‘ 𝑁 ) ‘ 𝑡 )  ·  ( ( 𝑈 ‘ ( 𝑁  +  1 ) ) ‘ 𝑡 ) ) )  ∈  V ) | 
						
							| 110 | 59 77 107 26 109 | ovmpod | ⊢ ( 𝜑  →  ( ( seq 1 ( 𝑃 ,  𝑈 ) ‘ 𝑁 ) 𝑃 ( 𝑈 ‘ ( 𝑁  +  1 ) ) )  =  ( 𝑡  ∈  𝑇  ↦  ( ( ( seq 1 ( 𝑃 ,  𝑈 ) ‘ 𝑁 ) ‘ 𝑡 )  ·  ( ( 𝑈 ‘ ( 𝑁  +  1 ) ) ‘ 𝑡 ) ) ) ) | 
						
							| 111 | 48 110 | eqtrd | ⊢ ( 𝜑  →  ( seq 1 ( 𝑃 ,  𝑈 ) ‘ ( 𝑁  +  1 ) )  =  ( 𝑡  ∈  𝑇  ↦  ( ( ( seq 1 ( 𝑃 ,  𝑈 ) ‘ 𝑁 ) ‘ 𝑡 )  ·  ( ( 𝑈 ‘ ( 𝑁  +  1 ) ) ‘ 𝑡 ) ) ) ) | 
						
							| 112 | 107 | ancli | ⊢ ( 𝜑  →  ( 𝜑  ∧  ( seq 1 ( 𝑃 ,  𝑈 ) ‘ 𝑁 )  ∈  𝑌 ) ) | 
						
							| 113 |  | nfcv | ⊢ Ⅎ 𝑓 1 | 
						
							| 114 |  | nfmpo1 | ⊢ Ⅎ 𝑓 ( 𝑓  ∈  𝑌 ,  𝑔  ∈  𝑌  ↦  ( 𝑡  ∈  𝑇  ↦  ( ( 𝑓 ‘ 𝑡 )  ·  ( 𝑔 ‘ 𝑡 ) ) ) ) | 
						
							| 115 | 4 114 | nfcxfr | ⊢ Ⅎ 𝑓 𝑃 | 
						
							| 116 |  | nfcv | ⊢ Ⅎ 𝑓 𝑈 | 
						
							| 117 | 113 115 116 | nfseq | ⊢ Ⅎ 𝑓 seq 1 ( 𝑃 ,  𝑈 ) | 
						
							| 118 |  | nfcv | ⊢ Ⅎ 𝑓 𝑁 | 
						
							| 119 | 117 118 | nffv | ⊢ Ⅎ 𝑓 ( seq 1 ( 𝑃 ,  𝑈 ) ‘ 𝑁 ) | 
						
							| 120 | 119 | nfel1 | ⊢ Ⅎ 𝑓 ( seq 1 ( 𝑃 ,  𝑈 ) ‘ 𝑁 )  ∈  𝑌 | 
						
							| 121 | 1 120 | nfan | ⊢ Ⅎ 𝑓 ( 𝜑  ∧  ( seq 1 ( 𝑃 ,  𝑈 ) ‘ 𝑁 )  ∈  𝑌 ) | 
						
							| 122 |  | nfcv | ⊢ Ⅎ 𝑓 𝑇 | 
						
							| 123 |  | nfcv | ⊢ Ⅎ 𝑓 ℝ | 
						
							| 124 | 119 122 123 | nff | ⊢ Ⅎ 𝑓 ( seq 1 ( 𝑃 ,  𝑈 ) ‘ 𝑁 ) : 𝑇 ⟶ ℝ | 
						
							| 125 | 121 124 | nfim | ⊢ Ⅎ 𝑓 ( ( 𝜑  ∧  ( seq 1 ( 𝑃 ,  𝑈 ) ‘ 𝑁 )  ∈  𝑌 )  →  ( seq 1 ( 𝑃 ,  𝑈 ) ‘ 𝑁 ) : 𝑇 ⟶ ℝ ) | 
						
							| 126 |  | eleq1 | ⊢ ( 𝑓  =  ( seq 1 ( 𝑃 ,  𝑈 ) ‘ 𝑁 )  →  ( 𝑓  ∈  𝑌  ↔  ( seq 1 ( 𝑃 ,  𝑈 ) ‘ 𝑁 )  ∈  𝑌 ) ) | 
						
							| 127 | 126 | anbi2d | ⊢ ( 𝑓  =  ( seq 1 ( 𝑃 ,  𝑈 ) ‘ 𝑁 )  →  ( ( 𝜑  ∧  𝑓  ∈  𝑌 )  ↔  ( 𝜑  ∧  ( seq 1 ( 𝑃 ,  𝑈 ) ‘ 𝑁 )  ∈  𝑌 ) ) ) | 
						
							| 128 |  | feq1 | ⊢ ( 𝑓  =  ( seq 1 ( 𝑃 ,  𝑈 ) ‘ 𝑁 )  →  ( 𝑓 : 𝑇 ⟶ ℝ  ↔  ( seq 1 ( 𝑃 ,  𝑈 ) ‘ 𝑁 ) : 𝑇 ⟶ ℝ ) ) | 
						
							| 129 | 127 128 | imbi12d | ⊢ ( 𝑓  =  ( seq 1 ( 𝑃 ,  𝑈 ) ‘ 𝑁 )  →  ( ( ( 𝜑  ∧  𝑓  ∈  𝑌 )  →  𝑓 : 𝑇 ⟶ ℝ )  ↔  ( ( 𝜑  ∧  ( seq 1 ( 𝑃 ,  𝑈 ) ‘ 𝑁 )  ∈  𝑌 )  →  ( seq 1 ( 𝑃 ,  𝑈 ) ‘ 𝑁 ) : 𝑇 ⟶ ℝ ) ) ) | 
						
							| 130 | 119 125 129 12 | vtoclgf | ⊢ ( ( seq 1 ( 𝑃 ,  𝑈 ) ‘ 𝑁 )  ∈  𝑌  →  ( ( 𝜑  ∧  ( seq 1 ( 𝑃 ,  𝑈 ) ‘ 𝑁 )  ∈  𝑌 )  →  ( seq 1 ( 𝑃 ,  𝑈 ) ‘ 𝑁 ) : 𝑇 ⟶ ℝ ) ) | 
						
							| 131 | 107 112 130 | sylc | ⊢ ( 𝜑  →  ( seq 1 ( 𝑃 ,  𝑈 ) ‘ 𝑁 ) : 𝑇 ⟶ ℝ ) | 
						
							| 132 | 131 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  →  ( ( seq 1 ( 𝑃 ,  𝑈 ) ‘ 𝑁 ) ‘ 𝑡 )  ∈  ℝ ) | 
						
							| 133 | 132 39 | remulcld | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  →  ( ( ( seq 1 ( 𝑃 ,  𝑈 ) ‘ 𝑁 ) ‘ 𝑡 )  ·  ( ( 𝑈 ‘ ( 𝑁  +  1 ) ) ‘ 𝑡 ) )  ∈  ℝ ) | 
						
							| 134 | 111 133 | fvmpt2d | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  →  ( ( seq 1 ( 𝑃 ,  𝑈 ) ‘ ( 𝑁  +  1 ) ) ‘ 𝑡 )  =  ( ( ( seq 1 ( 𝑃 ,  𝑈 ) ‘ 𝑁 ) ‘ 𝑡 )  ·  ( ( 𝑈 ‘ ( 𝑁  +  1 ) ) ‘ 𝑡 ) ) ) | 
						
							| 135 | 11 | oveq1d | ⊢ ( 𝜑  →  ( ( ( seq 1 ( 𝑃 ,  𝑈 ) ‘ 𝑁 ) ‘ 𝑡 )  ·  ( ( 𝑈 ‘ ( 𝑁  +  1 ) ) ‘ 𝑡 ) )  =  ( ( seq 1 (  ·  ,  ( 𝐹 ‘ 𝑡 ) ) ‘ 𝑁 )  ·  ( ( 𝑈 ‘ ( 𝑁  +  1 ) ) ‘ 𝑡 ) ) ) | 
						
							| 136 | 135 | adantr | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  →  ( ( ( seq 1 ( 𝑃 ,  𝑈 ) ‘ 𝑁 ) ‘ 𝑡 )  ·  ( ( 𝑈 ‘ ( 𝑁  +  1 ) ) ‘ 𝑡 ) )  =  ( ( seq 1 (  ·  ,  ( 𝐹 ‘ 𝑡 ) ) ‘ 𝑁 )  ·  ( ( 𝑈 ‘ ( 𝑁  +  1 ) ) ‘ 𝑡 ) ) ) | 
						
							| 137 | 134 136 | eqtrd | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  →  ( ( seq 1 ( 𝑃 ,  𝑈 ) ‘ ( 𝑁  +  1 ) ) ‘ 𝑡 )  =  ( ( seq 1 (  ·  ,  ( 𝐹 ‘ 𝑡 ) ) ‘ 𝑁 )  ·  ( ( 𝑈 ‘ ( 𝑁  +  1 ) ) ‘ 𝑡 ) ) ) | 
						
							| 138 | 41 46 137 | 3eqtr4rd | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  →  ( ( seq 1 ( 𝑃 ,  𝑈 ) ‘ ( 𝑁  +  1 ) ) ‘ 𝑡 )  =  ( seq 1 (  ·  ,  ( 𝐹 ‘ 𝑡 ) ) ‘ ( 𝑁  +  1 ) ) ) |