| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fmul01lt1lem2.1 | ⊢ Ⅎ 𝑖 𝐵 | 
						
							| 2 |  | fmul01lt1lem2.2 | ⊢ Ⅎ 𝑖 𝜑 | 
						
							| 3 |  | fmul01lt1lem2.3 | ⊢ 𝐴  =  seq 𝐿 (  ·  ,  𝐵 ) | 
						
							| 4 |  | fmul01lt1lem2.4 | ⊢ ( 𝜑  →  𝐿  ∈  ℤ ) | 
						
							| 5 |  | fmul01lt1lem2.5 | ⊢ ( 𝜑  →  𝑀  ∈  ( ℤ≥ ‘ 𝐿 ) ) | 
						
							| 6 |  | fmul01lt1lem2.6 | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 𝐿 ... 𝑀 ) )  →  ( 𝐵 ‘ 𝑖 )  ∈  ℝ ) | 
						
							| 7 |  | fmul01lt1lem2.7 | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 𝐿 ... 𝑀 ) )  →  0  ≤  ( 𝐵 ‘ 𝑖 ) ) | 
						
							| 8 |  | fmul01lt1lem2.8 | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 𝐿 ... 𝑀 ) )  →  ( 𝐵 ‘ 𝑖 )  ≤  1 ) | 
						
							| 9 |  | fmul01lt1lem2.9 | ⊢ ( 𝜑  →  𝐸  ∈  ℝ+ ) | 
						
							| 10 |  | fmul01lt1lem2.10 | ⊢ ( 𝜑  →  𝐽  ∈  ( 𝐿 ... 𝑀 ) ) | 
						
							| 11 |  | fmul01lt1lem2.11 | ⊢ ( 𝜑  →  ( 𝐵 ‘ 𝐽 )  <  𝐸 ) | 
						
							| 12 |  | nfv | ⊢ Ⅎ 𝑖 𝐽  =  𝐿 | 
						
							| 13 | 2 12 | nfan | ⊢ Ⅎ 𝑖 ( 𝜑  ∧  𝐽  =  𝐿 ) | 
						
							| 14 | 4 | adantr | ⊢ ( ( 𝜑  ∧  𝐽  =  𝐿 )  →  𝐿  ∈  ℤ ) | 
						
							| 15 | 5 | adantr | ⊢ ( ( 𝜑  ∧  𝐽  =  𝐿 )  →  𝑀  ∈  ( ℤ≥ ‘ 𝐿 ) ) | 
						
							| 16 | 6 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝐽  =  𝐿 )  ∧  𝑖  ∈  ( 𝐿 ... 𝑀 ) )  →  ( 𝐵 ‘ 𝑖 )  ∈  ℝ ) | 
						
							| 17 | 7 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝐽  =  𝐿 )  ∧  𝑖  ∈  ( 𝐿 ... 𝑀 ) )  →  0  ≤  ( 𝐵 ‘ 𝑖 ) ) | 
						
							| 18 | 8 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝐽  =  𝐿 )  ∧  𝑖  ∈  ( 𝐿 ... 𝑀 ) )  →  ( 𝐵 ‘ 𝑖 )  ≤  1 ) | 
						
							| 19 | 9 | adantr | ⊢ ( ( 𝜑  ∧  𝐽  =  𝐿 )  →  𝐸  ∈  ℝ+ ) | 
						
							| 20 |  | simpr | ⊢ ( ( 𝜑  ∧  𝐽  =  𝐿 )  →  𝐽  =  𝐿 ) | 
						
							| 21 | 20 | fveq2d | ⊢ ( ( 𝜑  ∧  𝐽  =  𝐿 )  →  ( 𝐵 ‘ 𝐽 )  =  ( 𝐵 ‘ 𝐿 ) ) | 
						
							| 22 | 11 | adantr | ⊢ ( ( 𝜑  ∧  𝐽  =  𝐿 )  →  ( 𝐵 ‘ 𝐽 )  <  𝐸 ) | 
						
							| 23 | 21 22 | eqbrtrrd | ⊢ ( ( 𝜑  ∧  𝐽  =  𝐿 )  →  ( 𝐵 ‘ 𝐿 )  <  𝐸 ) | 
						
							| 24 | 1 13 3 14 15 16 17 18 19 23 | fmul01lt1lem1 | ⊢ ( ( 𝜑  ∧  𝐽  =  𝐿 )  →  ( 𝐴 ‘ 𝑀 )  <  𝐸 ) | 
						
							| 25 | 3 | fveq1i | ⊢ ( 𝐴 ‘ 𝑀 )  =  ( seq 𝐿 (  ·  ,  𝐵 ) ‘ 𝑀 ) | 
						
							| 26 |  | nfv | ⊢ Ⅎ 𝑖 𝑎  ∈  ( 𝐿 ... 𝑀 ) | 
						
							| 27 | 2 26 | nfan | ⊢ Ⅎ 𝑖 ( 𝜑  ∧  𝑎  ∈  ( 𝐿 ... 𝑀 ) ) | 
						
							| 28 |  | nfcv | ⊢ Ⅎ 𝑖 𝑎 | 
						
							| 29 | 1 28 | nffv | ⊢ Ⅎ 𝑖 ( 𝐵 ‘ 𝑎 ) | 
						
							| 30 | 29 | nfel1 | ⊢ Ⅎ 𝑖 ( 𝐵 ‘ 𝑎 )  ∈  ℝ | 
						
							| 31 | 27 30 | nfim | ⊢ Ⅎ 𝑖 ( ( 𝜑  ∧  𝑎  ∈  ( 𝐿 ... 𝑀 ) )  →  ( 𝐵 ‘ 𝑎 )  ∈  ℝ ) | 
						
							| 32 |  | eleq1w | ⊢ ( 𝑖  =  𝑎  →  ( 𝑖  ∈  ( 𝐿 ... 𝑀 )  ↔  𝑎  ∈  ( 𝐿 ... 𝑀 ) ) ) | 
						
							| 33 | 32 | anbi2d | ⊢ ( 𝑖  =  𝑎  →  ( ( 𝜑  ∧  𝑖  ∈  ( 𝐿 ... 𝑀 ) )  ↔  ( 𝜑  ∧  𝑎  ∈  ( 𝐿 ... 𝑀 ) ) ) ) | 
						
							| 34 |  | fveq2 | ⊢ ( 𝑖  =  𝑎  →  ( 𝐵 ‘ 𝑖 )  =  ( 𝐵 ‘ 𝑎 ) ) | 
						
							| 35 | 34 | eleq1d | ⊢ ( 𝑖  =  𝑎  →  ( ( 𝐵 ‘ 𝑖 )  ∈  ℝ  ↔  ( 𝐵 ‘ 𝑎 )  ∈  ℝ ) ) | 
						
							| 36 | 33 35 | imbi12d | ⊢ ( 𝑖  =  𝑎  →  ( ( ( 𝜑  ∧  𝑖  ∈  ( 𝐿 ... 𝑀 ) )  →  ( 𝐵 ‘ 𝑖 )  ∈  ℝ )  ↔  ( ( 𝜑  ∧  𝑎  ∈  ( 𝐿 ... 𝑀 ) )  →  ( 𝐵 ‘ 𝑎 )  ∈  ℝ ) ) ) | 
						
							| 37 | 31 36 6 | chvarfv | ⊢ ( ( 𝜑  ∧  𝑎  ∈  ( 𝐿 ... 𝑀 ) )  →  ( 𝐵 ‘ 𝑎 )  ∈  ℝ ) | 
						
							| 38 |  | remulcl | ⊢ ( ( 𝑎  ∈  ℝ  ∧  𝑗  ∈  ℝ )  →  ( 𝑎  ·  𝑗 )  ∈  ℝ ) | 
						
							| 39 | 38 | adantl | ⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  ℝ  ∧  𝑗  ∈  ℝ ) )  →  ( 𝑎  ·  𝑗 )  ∈  ℝ ) | 
						
							| 40 | 5 37 39 | seqcl | ⊢ ( 𝜑  →  ( seq 𝐿 (  ·  ,  𝐵 ) ‘ 𝑀 )  ∈  ℝ ) | 
						
							| 41 | 40 | adantr | ⊢ ( ( 𝜑  ∧  ¬  𝐽  =  𝐿 )  →  ( seq 𝐿 (  ·  ,  𝐵 ) ‘ 𝑀 )  ∈  ℝ ) | 
						
							| 42 |  | elfzuz3 | ⊢ ( 𝐽  ∈  ( 𝐿 ... 𝑀 )  →  𝑀  ∈  ( ℤ≥ ‘ 𝐽 ) ) | 
						
							| 43 | 10 42 | syl | ⊢ ( 𝜑  →  𝑀  ∈  ( ℤ≥ ‘ 𝐽 ) ) | 
						
							| 44 |  | nfv | ⊢ Ⅎ 𝑖 𝑎  ∈  ( 𝐽 ... 𝑀 ) | 
						
							| 45 | 2 44 | nfan | ⊢ Ⅎ 𝑖 ( 𝜑  ∧  𝑎  ∈  ( 𝐽 ... 𝑀 ) ) | 
						
							| 46 | 45 30 | nfim | ⊢ Ⅎ 𝑖 ( ( 𝜑  ∧  𝑎  ∈  ( 𝐽 ... 𝑀 ) )  →  ( 𝐵 ‘ 𝑎 )  ∈  ℝ ) | 
						
							| 47 |  | eleq1w | ⊢ ( 𝑖  =  𝑎  →  ( 𝑖  ∈  ( 𝐽 ... 𝑀 )  ↔  𝑎  ∈  ( 𝐽 ... 𝑀 ) ) ) | 
						
							| 48 | 47 | anbi2d | ⊢ ( 𝑖  =  𝑎  →  ( ( 𝜑  ∧  𝑖  ∈  ( 𝐽 ... 𝑀 ) )  ↔  ( 𝜑  ∧  𝑎  ∈  ( 𝐽 ... 𝑀 ) ) ) ) | 
						
							| 49 | 48 35 | imbi12d | ⊢ ( 𝑖  =  𝑎  →  ( ( ( 𝜑  ∧  𝑖  ∈  ( 𝐽 ... 𝑀 ) )  →  ( 𝐵 ‘ 𝑖 )  ∈  ℝ )  ↔  ( ( 𝜑  ∧  𝑎  ∈  ( 𝐽 ... 𝑀 ) )  →  ( 𝐵 ‘ 𝑎 )  ∈  ℝ ) ) ) | 
						
							| 50 | 4 | adantr | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 𝐽 ... 𝑀 ) )  →  𝐿  ∈  ℤ ) | 
						
							| 51 |  | eluzelz | ⊢ ( 𝑀  ∈  ( ℤ≥ ‘ 𝐿 )  →  𝑀  ∈  ℤ ) | 
						
							| 52 | 5 51 | syl | ⊢ ( 𝜑  →  𝑀  ∈  ℤ ) | 
						
							| 53 | 52 | adantr | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 𝐽 ... 𝑀 ) )  →  𝑀  ∈  ℤ ) | 
						
							| 54 |  | elfzelz | ⊢ ( 𝑖  ∈  ( 𝐽 ... 𝑀 )  →  𝑖  ∈  ℤ ) | 
						
							| 55 | 54 | adantl | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 𝐽 ... 𝑀 ) )  →  𝑖  ∈  ℤ ) | 
						
							| 56 | 4 | zred | ⊢ ( 𝜑  →  𝐿  ∈  ℝ ) | 
						
							| 57 | 56 | adantr | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 𝐽 ... 𝑀 ) )  →  𝐿  ∈  ℝ ) | 
						
							| 58 |  | elfzelz | ⊢ ( 𝐽  ∈  ( 𝐿 ... 𝑀 )  →  𝐽  ∈  ℤ ) | 
						
							| 59 | 10 58 | syl | ⊢ ( 𝜑  →  𝐽  ∈  ℤ ) | 
						
							| 60 | 59 | zred | ⊢ ( 𝜑  →  𝐽  ∈  ℝ ) | 
						
							| 61 | 60 | adantr | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 𝐽 ... 𝑀 ) )  →  𝐽  ∈  ℝ ) | 
						
							| 62 | 54 | zred | ⊢ ( 𝑖  ∈  ( 𝐽 ... 𝑀 )  →  𝑖  ∈  ℝ ) | 
						
							| 63 | 62 | adantl | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 𝐽 ... 𝑀 ) )  →  𝑖  ∈  ℝ ) | 
						
							| 64 |  | elfzle1 | ⊢ ( 𝐽  ∈  ( 𝐿 ... 𝑀 )  →  𝐿  ≤  𝐽 ) | 
						
							| 65 | 10 64 | syl | ⊢ ( 𝜑  →  𝐿  ≤  𝐽 ) | 
						
							| 66 | 65 | adantr | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 𝐽 ... 𝑀 ) )  →  𝐿  ≤  𝐽 ) | 
						
							| 67 |  | elfzle1 | ⊢ ( 𝑖  ∈  ( 𝐽 ... 𝑀 )  →  𝐽  ≤  𝑖 ) | 
						
							| 68 | 67 | adantl | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 𝐽 ... 𝑀 ) )  →  𝐽  ≤  𝑖 ) | 
						
							| 69 | 57 61 63 66 68 | letrd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 𝐽 ... 𝑀 ) )  →  𝐿  ≤  𝑖 ) | 
						
							| 70 |  | elfzle2 | ⊢ ( 𝑖  ∈  ( 𝐽 ... 𝑀 )  →  𝑖  ≤  𝑀 ) | 
						
							| 71 | 70 | adantl | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 𝐽 ... 𝑀 ) )  →  𝑖  ≤  𝑀 ) | 
						
							| 72 | 50 53 55 69 71 | elfzd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 𝐽 ... 𝑀 ) )  →  𝑖  ∈  ( 𝐿 ... 𝑀 ) ) | 
						
							| 73 | 72 6 | syldan | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 𝐽 ... 𝑀 ) )  →  ( 𝐵 ‘ 𝑖 )  ∈  ℝ ) | 
						
							| 74 | 46 49 73 | chvarfv | ⊢ ( ( 𝜑  ∧  𝑎  ∈  ( 𝐽 ... 𝑀 ) )  →  ( 𝐵 ‘ 𝑎 )  ∈  ℝ ) | 
						
							| 75 | 43 74 39 | seqcl | ⊢ ( 𝜑  →  ( seq 𝐽 (  ·  ,  𝐵 ) ‘ 𝑀 )  ∈  ℝ ) | 
						
							| 76 | 75 | adantr | ⊢ ( ( 𝜑  ∧  ¬  𝐽  =  𝐿 )  →  ( seq 𝐽 (  ·  ,  𝐵 ) ‘ 𝑀 )  ∈  ℝ ) | 
						
							| 77 | 9 | rpred | ⊢ ( 𝜑  →  𝐸  ∈  ℝ ) | 
						
							| 78 | 77 | adantr | ⊢ ( ( 𝜑  ∧  ¬  𝐽  =  𝐿 )  →  𝐸  ∈  ℝ ) | 
						
							| 79 |  | remulcl | ⊢ ( ( 𝑎  ∈  ℝ  ∧  𝑏  ∈  ℝ )  →  ( 𝑎  ·  𝑏 )  ∈  ℝ ) | 
						
							| 80 | 79 | adantl | ⊢ ( ( ( 𝜑  ∧  ¬  𝐽  =  𝐿 )  ∧  ( 𝑎  ∈  ℝ  ∧  𝑏  ∈  ℝ ) )  →  ( 𝑎  ·  𝑏 )  ∈  ℝ ) | 
						
							| 81 |  | simp1 | ⊢ ( ( 𝑎  ∈  ℝ  ∧  𝑏  ∈  ℝ  ∧  𝑐  ∈  ℝ )  →  𝑎  ∈  ℝ ) | 
						
							| 82 | 81 | recnd | ⊢ ( ( 𝑎  ∈  ℝ  ∧  𝑏  ∈  ℝ  ∧  𝑐  ∈  ℝ )  →  𝑎  ∈  ℂ ) | 
						
							| 83 |  | simp2 | ⊢ ( ( 𝑎  ∈  ℝ  ∧  𝑏  ∈  ℝ  ∧  𝑐  ∈  ℝ )  →  𝑏  ∈  ℝ ) | 
						
							| 84 | 83 | recnd | ⊢ ( ( 𝑎  ∈  ℝ  ∧  𝑏  ∈  ℝ  ∧  𝑐  ∈  ℝ )  →  𝑏  ∈  ℂ ) | 
						
							| 85 |  | simp3 | ⊢ ( ( 𝑎  ∈  ℝ  ∧  𝑏  ∈  ℝ  ∧  𝑐  ∈  ℝ )  →  𝑐  ∈  ℝ ) | 
						
							| 86 | 85 | recnd | ⊢ ( ( 𝑎  ∈  ℝ  ∧  𝑏  ∈  ℝ  ∧  𝑐  ∈  ℝ )  →  𝑐  ∈  ℂ ) | 
						
							| 87 | 82 84 86 | mulassd | ⊢ ( ( 𝑎  ∈  ℝ  ∧  𝑏  ∈  ℝ  ∧  𝑐  ∈  ℝ )  →  ( ( 𝑎  ·  𝑏 )  ·  𝑐 )  =  ( 𝑎  ·  ( 𝑏  ·  𝑐 ) ) ) | 
						
							| 88 | 87 | adantl | ⊢ ( ( ( 𝜑  ∧  ¬  𝐽  =  𝐿 )  ∧  ( 𝑎  ∈  ℝ  ∧  𝑏  ∈  ℝ  ∧  𝑐  ∈  ℝ ) )  →  ( ( 𝑎  ·  𝑏 )  ·  𝑐 )  =  ( 𝑎  ·  ( 𝑏  ·  𝑐 ) ) ) | 
						
							| 89 | 59 | zcnd | ⊢ ( 𝜑  →  𝐽  ∈  ℂ ) | 
						
							| 90 |  | 1cnd | ⊢ ( 𝜑  →  1  ∈  ℂ ) | 
						
							| 91 | 89 90 | npcand | ⊢ ( 𝜑  →  ( ( 𝐽  −  1 )  +  1 )  =  𝐽 ) | 
						
							| 92 | 91 | fveq2d | ⊢ ( 𝜑  →  ( ℤ≥ ‘ ( ( 𝐽  −  1 )  +  1 ) )  =  ( ℤ≥ ‘ 𝐽 ) ) | 
						
							| 93 | 43 92 | eleqtrrd | ⊢ ( 𝜑  →  𝑀  ∈  ( ℤ≥ ‘ ( ( 𝐽  −  1 )  +  1 ) ) ) | 
						
							| 94 | 93 | adantr | ⊢ ( ( 𝜑  ∧  ¬  𝐽  =  𝐿 )  →  𝑀  ∈  ( ℤ≥ ‘ ( ( 𝐽  −  1 )  +  1 ) ) ) | 
						
							| 95 | 4 | adantr | ⊢ ( ( 𝜑  ∧  ¬  𝐽  =  𝐿 )  →  𝐿  ∈  ℤ ) | 
						
							| 96 | 59 | adantr | ⊢ ( ( 𝜑  ∧  ¬  𝐽  =  𝐿 )  →  𝐽  ∈  ℤ ) | 
						
							| 97 |  | 1zzd | ⊢ ( ( 𝜑  ∧  ¬  𝐽  =  𝐿 )  →  1  ∈  ℤ ) | 
						
							| 98 | 96 97 | zsubcld | ⊢ ( ( 𝜑  ∧  ¬  𝐽  =  𝐿 )  →  ( 𝐽  −  1 )  ∈  ℤ ) | 
						
							| 99 |  | simpr | ⊢ ( ( 𝜑  ∧  ¬  𝐽  =  𝐿 )  →  ¬  𝐽  =  𝐿 ) | 
						
							| 100 |  | eqcom | ⊢ ( 𝐽  =  𝐿  ↔  𝐿  =  𝐽 ) | 
						
							| 101 | 99 100 | sylnib | ⊢ ( ( 𝜑  ∧  ¬  𝐽  =  𝐿 )  →  ¬  𝐿  =  𝐽 ) | 
						
							| 102 | 56 60 | leloed | ⊢ ( 𝜑  →  ( 𝐿  ≤  𝐽  ↔  ( 𝐿  <  𝐽  ∨  𝐿  =  𝐽 ) ) ) | 
						
							| 103 | 65 102 | mpbid | ⊢ ( 𝜑  →  ( 𝐿  <  𝐽  ∨  𝐿  =  𝐽 ) ) | 
						
							| 104 | 103 | adantr | ⊢ ( ( 𝜑  ∧  ¬  𝐽  =  𝐿 )  →  ( 𝐿  <  𝐽  ∨  𝐿  =  𝐽 ) ) | 
						
							| 105 |  | orel2 | ⊢ ( ¬  𝐿  =  𝐽  →  ( ( 𝐿  <  𝐽  ∨  𝐿  =  𝐽 )  →  𝐿  <  𝐽 ) ) | 
						
							| 106 | 101 104 105 | sylc | ⊢ ( ( 𝜑  ∧  ¬  𝐽  =  𝐿 )  →  𝐿  <  𝐽 ) | 
						
							| 107 |  | zltlem1 | ⊢ ( ( 𝐿  ∈  ℤ  ∧  𝐽  ∈  ℤ )  →  ( 𝐿  <  𝐽  ↔  𝐿  ≤  ( 𝐽  −  1 ) ) ) | 
						
							| 108 | 4 59 107 | syl2anc | ⊢ ( 𝜑  →  ( 𝐿  <  𝐽  ↔  𝐿  ≤  ( 𝐽  −  1 ) ) ) | 
						
							| 109 | 108 | adantr | ⊢ ( ( 𝜑  ∧  ¬  𝐽  =  𝐿 )  →  ( 𝐿  <  𝐽  ↔  𝐿  ≤  ( 𝐽  −  1 ) ) ) | 
						
							| 110 | 106 109 | mpbid | ⊢ ( ( 𝜑  ∧  ¬  𝐽  =  𝐿 )  →  𝐿  ≤  ( 𝐽  −  1 ) ) | 
						
							| 111 |  | eluz2 | ⊢ ( ( 𝐽  −  1 )  ∈  ( ℤ≥ ‘ 𝐿 )  ↔  ( 𝐿  ∈  ℤ  ∧  ( 𝐽  −  1 )  ∈  ℤ  ∧  𝐿  ≤  ( 𝐽  −  1 ) ) ) | 
						
							| 112 | 95 98 110 111 | syl3anbrc | ⊢ ( ( 𝜑  ∧  ¬  𝐽  =  𝐿 )  →  ( 𝐽  −  1 )  ∈  ( ℤ≥ ‘ 𝐿 ) ) | 
						
							| 113 |  | nfv | ⊢ Ⅎ 𝑖 ¬  𝐽  =  𝐿 | 
						
							| 114 | 2 113 | nfan | ⊢ Ⅎ 𝑖 ( 𝜑  ∧  ¬  𝐽  =  𝐿 ) | 
						
							| 115 | 114 26 | nfan | ⊢ Ⅎ 𝑖 ( ( 𝜑  ∧  ¬  𝐽  =  𝐿 )  ∧  𝑎  ∈  ( 𝐿 ... 𝑀 ) ) | 
						
							| 116 | 115 30 | nfim | ⊢ Ⅎ 𝑖 ( ( ( 𝜑  ∧  ¬  𝐽  =  𝐿 )  ∧  𝑎  ∈  ( 𝐿 ... 𝑀 ) )  →  ( 𝐵 ‘ 𝑎 )  ∈  ℝ ) | 
						
							| 117 | 32 | anbi2d | ⊢ ( 𝑖  =  𝑎  →  ( ( ( 𝜑  ∧  ¬  𝐽  =  𝐿 )  ∧  𝑖  ∈  ( 𝐿 ... 𝑀 ) )  ↔  ( ( 𝜑  ∧  ¬  𝐽  =  𝐿 )  ∧  𝑎  ∈  ( 𝐿 ... 𝑀 ) ) ) ) | 
						
							| 118 | 117 35 | imbi12d | ⊢ ( 𝑖  =  𝑎  →  ( ( ( ( 𝜑  ∧  ¬  𝐽  =  𝐿 )  ∧  𝑖  ∈  ( 𝐿 ... 𝑀 ) )  →  ( 𝐵 ‘ 𝑖 )  ∈  ℝ )  ↔  ( ( ( 𝜑  ∧  ¬  𝐽  =  𝐿 )  ∧  𝑎  ∈  ( 𝐿 ... 𝑀 ) )  →  ( 𝐵 ‘ 𝑎 )  ∈  ℝ ) ) ) | 
						
							| 119 | 6 | adantlr | ⊢ ( ( ( 𝜑  ∧  ¬  𝐽  =  𝐿 )  ∧  𝑖  ∈  ( 𝐿 ... 𝑀 ) )  →  ( 𝐵 ‘ 𝑖 )  ∈  ℝ ) | 
						
							| 120 | 116 118 119 | chvarfv | ⊢ ( ( ( 𝜑  ∧  ¬  𝐽  =  𝐿 )  ∧  𝑎  ∈  ( 𝐿 ... 𝑀 ) )  →  ( 𝐵 ‘ 𝑎 )  ∈  ℝ ) | 
						
							| 121 | 80 88 94 112 120 | seqsplit | ⊢ ( ( 𝜑  ∧  ¬  𝐽  =  𝐿 )  →  ( seq 𝐿 (  ·  ,  𝐵 ) ‘ 𝑀 )  =  ( ( seq 𝐿 (  ·  ,  𝐵 ) ‘ ( 𝐽  −  1 ) )  ·  ( seq ( ( 𝐽  −  1 )  +  1 ) (  ·  ,  𝐵 ) ‘ 𝑀 ) ) ) | 
						
							| 122 | 91 | adantr | ⊢ ( ( 𝜑  ∧  ¬  𝐽  =  𝐿 )  →  ( ( 𝐽  −  1 )  +  1 )  =  𝐽 ) | 
						
							| 123 | 122 | seqeq1d | ⊢ ( ( 𝜑  ∧  ¬  𝐽  =  𝐿 )  →  seq ( ( 𝐽  −  1 )  +  1 ) (  ·  ,  𝐵 )  =  seq 𝐽 (  ·  ,  𝐵 ) ) | 
						
							| 124 | 123 | fveq1d | ⊢ ( ( 𝜑  ∧  ¬  𝐽  =  𝐿 )  →  ( seq ( ( 𝐽  −  1 )  +  1 ) (  ·  ,  𝐵 ) ‘ 𝑀 )  =  ( seq 𝐽 (  ·  ,  𝐵 ) ‘ 𝑀 ) ) | 
						
							| 125 | 124 | oveq2d | ⊢ ( ( 𝜑  ∧  ¬  𝐽  =  𝐿 )  →  ( ( seq 𝐿 (  ·  ,  𝐵 ) ‘ ( 𝐽  −  1 ) )  ·  ( seq ( ( 𝐽  −  1 )  +  1 ) (  ·  ,  𝐵 ) ‘ 𝑀 ) )  =  ( ( seq 𝐿 (  ·  ,  𝐵 ) ‘ ( 𝐽  −  1 ) )  ·  ( seq 𝐽 (  ·  ,  𝐵 ) ‘ 𝑀 ) ) ) | 
						
							| 126 | 121 125 | eqtrd | ⊢ ( ( 𝜑  ∧  ¬  𝐽  =  𝐿 )  →  ( seq 𝐿 (  ·  ,  𝐵 ) ‘ 𝑀 )  =  ( ( seq 𝐿 (  ·  ,  𝐵 ) ‘ ( 𝐽  −  1 ) )  ·  ( seq 𝐽 (  ·  ,  𝐵 ) ‘ 𝑀 ) ) ) | 
						
							| 127 |  | nfv | ⊢ Ⅎ 𝑖 𝑎  ∈  ( 𝐿 ... ( 𝐽  −  1 ) ) | 
						
							| 128 | 114 127 | nfan | ⊢ Ⅎ 𝑖 ( ( 𝜑  ∧  ¬  𝐽  =  𝐿 )  ∧  𝑎  ∈  ( 𝐿 ... ( 𝐽  −  1 ) ) ) | 
						
							| 129 | 128 30 | nfim | ⊢ Ⅎ 𝑖 ( ( ( 𝜑  ∧  ¬  𝐽  =  𝐿 )  ∧  𝑎  ∈  ( 𝐿 ... ( 𝐽  −  1 ) ) )  →  ( 𝐵 ‘ 𝑎 )  ∈  ℝ ) | 
						
							| 130 |  | eleq1w | ⊢ ( 𝑖  =  𝑎  →  ( 𝑖  ∈  ( 𝐿 ... ( 𝐽  −  1 ) )  ↔  𝑎  ∈  ( 𝐿 ... ( 𝐽  −  1 ) ) ) ) | 
						
							| 131 | 130 | anbi2d | ⊢ ( 𝑖  =  𝑎  →  ( ( ( 𝜑  ∧  ¬  𝐽  =  𝐿 )  ∧  𝑖  ∈  ( 𝐿 ... ( 𝐽  −  1 ) ) )  ↔  ( ( 𝜑  ∧  ¬  𝐽  =  𝐿 )  ∧  𝑎  ∈  ( 𝐿 ... ( 𝐽  −  1 ) ) ) ) ) | 
						
							| 132 | 131 35 | imbi12d | ⊢ ( 𝑖  =  𝑎  →  ( ( ( ( 𝜑  ∧  ¬  𝐽  =  𝐿 )  ∧  𝑖  ∈  ( 𝐿 ... ( 𝐽  −  1 ) ) )  →  ( 𝐵 ‘ 𝑖 )  ∈  ℝ )  ↔  ( ( ( 𝜑  ∧  ¬  𝐽  =  𝐿 )  ∧  𝑎  ∈  ( 𝐿 ... ( 𝐽  −  1 ) ) )  →  ( 𝐵 ‘ 𝑎 )  ∈  ℝ ) ) ) | 
						
							| 133 | 4 | adantr | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 𝐿 ... ( 𝐽  −  1 ) ) )  →  𝐿  ∈  ℤ ) | 
						
							| 134 | 52 | adantr | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 𝐿 ... ( 𝐽  −  1 ) ) )  →  𝑀  ∈  ℤ ) | 
						
							| 135 |  | elfzelz | ⊢ ( 𝑖  ∈  ( 𝐿 ... ( 𝐽  −  1 ) )  →  𝑖  ∈  ℤ ) | 
						
							| 136 | 135 | adantl | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 𝐿 ... ( 𝐽  −  1 ) ) )  →  𝑖  ∈  ℤ ) | 
						
							| 137 |  | elfzle1 | ⊢ ( 𝑖  ∈  ( 𝐿 ... ( 𝐽  −  1 ) )  →  𝐿  ≤  𝑖 ) | 
						
							| 138 | 137 | adantl | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 𝐿 ... ( 𝐽  −  1 ) ) )  →  𝐿  ≤  𝑖 ) | 
						
							| 139 | 135 | zred | ⊢ ( 𝑖  ∈  ( 𝐿 ... ( 𝐽  −  1 ) )  →  𝑖  ∈  ℝ ) | 
						
							| 140 | 139 | adantl | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 𝐿 ... ( 𝐽  −  1 ) ) )  →  𝑖  ∈  ℝ ) | 
						
							| 141 | 60 | adantr | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 𝐿 ... ( 𝐽  −  1 ) ) )  →  𝐽  ∈  ℝ ) | 
						
							| 142 | 52 | zred | ⊢ ( 𝜑  →  𝑀  ∈  ℝ ) | 
						
							| 143 | 142 | adantr | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 𝐿 ... ( 𝐽  −  1 ) ) )  →  𝑀  ∈  ℝ ) | 
						
							| 144 |  | 1red | ⊢ ( 𝜑  →  1  ∈  ℝ ) | 
						
							| 145 | 60 144 | resubcld | ⊢ ( 𝜑  →  ( 𝐽  −  1 )  ∈  ℝ ) | 
						
							| 146 | 145 | adantr | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 𝐿 ... ( 𝐽  −  1 ) ) )  →  ( 𝐽  −  1 )  ∈  ℝ ) | 
						
							| 147 |  | elfzle2 | ⊢ ( 𝑖  ∈  ( 𝐿 ... ( 𝐽  −  1 ) )  →  𝑖  ≤  ( 𝐽  −  1 ) ) | 
						
							| 148 | 147 | adantl | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 𝐿 ... ( 𝐽  −  1 ) ) )  →  𝑖  ≤  ( 𝐽  −  1 ) ) | 
						
							| 149 | 60 | lem1d | ⊢ ( 𝜑  →  ( 𝐽  −  1 )  ≤  𝐽 ) | 
						
							| 150 | 149 | adantr | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 𝐿 ... ( 𝐽  −  1 ) ) )  →  ( 𝐽  −  1 )  ≤  𝐽 ) | 
						
							| 151 | 140 146 141 148 150 | letrd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 𝐿 ... ( 𝐽  −  1 ) ) )  →  𝑖  ≤  𝐽 ) | 
						
							| 152 |  | elfzle2 | ⊢ ( 𝐽  ∈  ( 𝐿 ... 𝑀 )  →  𝐽  ≤  𝑀 ) | 
						
							| 153 | 10 152 | syl | ⊢ ( 𝜑  →  𝐽  ≤  𝑀 ) | 
						
							| 154 | 153 | adantr | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 𝐿 ... ( 𝐽  −  1 ) ) )  →  𝐽  ≤  𝑀 ) | 
						
							| 155 | 140 141 143 151 154 | letrd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 𝐿 ... ( 𝐽  −  1 ) ) )  →  𝑖  ≤  𝑀 ) | 
						
							| 156 | 133 134 136 138 155 | elfzd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 𝐿 ... ( 𝐽  −  1 ) ) )  →  𝑖  ∈  ( 𝐿 ... 𝑀 ) ) | 
						
							| 157 | 156 6 | syldan | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 𝐿 ... ( 𝐽  −  1 ) ) )  →  ( 𝐵 ‘ 𝑖 )  ∈  ℝ ) | 
						
							| 158 | 157 | adantlr | ⊢ ( ( ( 𝜑  ∧  ¬  𝐽  =  𝐿 )  ∧  𝑖  ∈  ( 𝐿 ... ( 𝐽  −  1 ) ) )  →  ( 𝐵 ‘ 𝑖 )  ∈  ℝ ) | 
						
							| 159 | 129 132 158 | chvarfv | ⊢ ( ( ( 𝜑  ∧  ¬  𝐽  =  𝐿 )  ∧  𝑎  ∈  ( 𝐿 ... ( 𝐽  −  1 ) ) )  →  ( 𝐵 ‘ 𝑎 )  ∈  ℝ ) | 
						
							| 160 | 38 | adantl | ⊢ ( ( ( 𝜑  ∧  ¬  𝐽  =  𝐿 )  ∧  ( 𝑎  ∈  ℝ  ∧  𝑗  ∈  ℝ ) )  →  ( 𝑎  ·  𝑗 )  ∈  ℝ ) | 
						
							| 161 | 112 159 160 | seqcl | ⊢ ( ( 𝜑  ∧  ¬  𝐽  =  𝐿 )  →  ( seq 𝐿 (  ·  ,  𝐵 ) ‘ ( 𝐽  −  1 ) )  ∈  ℝ ) | 
						
							| 162 |  | 1red | ⊢ ( ( 𝜑  ∧  ¬  𝐽  =  𝐿 )  →  1  ∈  ℝ ) | 
						
							| 163 |  | eqid | ⊢ seq 𝐽 (  ·  ,  𝐵 )  =  seq 𝐽 (  ·  ,  𝐵 ) | 
						
							| 164 | 43 | adantr | ⊢ ( ( 𝜑  ∧  ¬  𝐽  =  𝐿 )  →  𝑀  ∈  ( ℤ≥ ‘ 𝐽 ) ) | 
						
							| 165 |  | eluzfz2 | ⊢ ( 𝑀  ∈  ( ℤ≥ ‘ 𝐽 )  →  𝑀  ∈  ( 𝐽 ... 𝑀 ) ) | 
						
							| 166 | 43 165 | syl | ⊢ ( 𝜑  →  𝑀  ∈  ( 𝐽 ... 𝑀 ) ) | 
						
							| 167 | 166 | adantr | ⊢ ( ( 𝜑  ∧  ¬  𝐽  =  𝐿 )  →  𝑀  ∈  ( 𝐽 ... 𝑀 ) ) | 
						
							| 168 | 73 | adantlr | ⊢ ( ( ( 𝜑  ∧  ¬  𝐽  =  𝐿 )  ∧  𝑖  ∈  ( 𝐽 ... 𝑀 ) )  →  ( 𝐵 ‘ 𝑖 )  ∈  ℝ ) | 
						
							| 169 | 72 7 | syldan | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 𝐽 ... 𝑀 ) )  →  0  ≤  ( 𝐵 ‘ 𝑖 ) ) | 
						
							| 170 | 169 | adantlr | ⊢ ( ( ( 𝜑  ∧  ¬  𝐽  =  𝐿 )  ∧  𝑖  ∈  ( 𝐽 ... 𝑀 ) )  →  0  ≤  ( 𝐵 ‘ 𝑖 ) ) | 
						
							| 171 | 72 8 | syldan | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 𝐽 ... 𝑀 ) )  →  ( 𝐵 ‘ 𝑖 )  ≤  1 ) | 
						
							| 172 | 171 | adantlr | ⊢ ( ( ( 𝜑  ∧  ¬  𝐽  =  𝐿 )  ∧  𝑖  ∈  ( 𝐽 ... 𝑀 ) )  →  ( 𝐵 ‘ 𝑖 )  ≤  1 ) | 
						
							| 173 | 1 114 163 96 164 167 168 170 172 | fmul01 | ⊢ ( ( 𝜑  ∧  ¬  𝐽  =  𝐿 )  →  ( 0  ≤  ( seq 𝐽 (  ·  ,  𝐵 ) ‘ 𝑀 )  ∧  ( seq 𝐽 (  ·  ,  𝐵 ) ‘ 𝑀 )  ≤  1 ) ) | 
						
							| 174 | 173 | simpld | ⊢ ( ( 𝜑  ∧  ¬  𝐽  =  𝐿 )  →  0  ≤  ( seq 𝐽 (  ·  ,  𝐵 ) ‘ 𝑀 ) ) | 
						
							| 175 |  | eqid | ⊢ seq 𝐿 (  ·  ,  𝐵 )  =  seq 𝐿 (  ·  ,  𝐵 ) | 
						
							| 176 | 5 | adantr | ⊢ ( ( 𝜑  ∧  ¬  𝐽  =  𝐿 )  →  𝑀  ∈  ( ℤ≥ ‘ 𝐿 ) ) | 
						
							| 177 |  | 1zzd | ⊢ ( 𝜑  →  1  ∈  ℤ ) | 
						
							| 178 | 59 177 | zsubcld | ⊢ ( 𝜑  →  ( 𝐽  −  1 )  ∈  ℤ ) | 
						
							| 179 | 4 52 178 | 3jca | ⊢ ( 𝜑  →  ( 𝐿  ∈  ℤ  ∧  𝑀  ∈  ℤ  ∧  ( 𝐽  −  1 )  ∈  ℤ ) ) | 
						
							| 180 | 179 | adantr | ⊢ ( ( 𝜑  ∧  ¬  𝐽  =  𝐿 )  →  ( 𝐿  ∈  ℤ  ∧  𝑀  ∈  ℤ  ∧  ( 𝐽  −  1 )  ∈  ℤ ) ) | 
						
							| 181 | 145 60 142 | 3jca | ⊢ ( 𝜑  →  ( ( 𝐽  −  1 )  ∈  ℝ  ∧  𝐽  ∈  ℝ  ∧  𝑀  ∈  ℝ ) ) | 
						
							| 182 | 181 | adantr | ⊢ ( ( 𝜑  ∧  ¬  𝐽  =  𝐿 )  →  ( ( 𝐽  −  1 )  ∈  ℝ  ∧  𝐽  ∈  ℝ  ∧  𝑀  ∈  ℝ ) ) | 
						
							| 183 | 60 | adantr | ⊢ ( ( 𝜑  ∧  ¬  𝐽  =  𝐿 )  →  𝐽  ∈  ℝ ) | 
						
							| 184 | 183 | lem1d | ⊢ ( ( 𝜑  ∧  ¬  𝐽  =  𝐿 )  →  ( 𝐽  −  1 )  ≤  𝐽 ) | 
						
							| 185 | 153 | adantr | ⊢ ( ( 𝜑  ∧  ¬  𝐽  =  𝐿 )  →  𝐽  ≤  𝑀 ) | 
						
							| 186 | 184 185 | jca | ⊢ ( ( 𝜑  ∧  ¬  𝐽  =  𝐿 )  →  ( ( 𝐽  −  1 )  ≤  𝐽  ∧  𝐽  ≤  𝑀 ) ) | 
						
							| 187 |  | letr | ⊢ ( ( ( 𝐽  −  1 )  ∈  ℝ  ∧  𝐽  ∈  ℝ  ∧  𝑀  ∈  ℝ )  →  ( ( ( 𝐽  −  1 )  ≤  𝐽  ∧  𝐽  ≤  𝑀 )  →  ( 𝐽  −  1 )  ≤  𝑀 ) ) | 
						
							| 188 | 182 186 187 | sylc | ⊢ ( ( 𝜑  ∧  ¬  𝐽  =  𝐿 )  →  ( 𝐽  −  1 )  ≤  𝑀 ) | 
						
							| 189 | 110 188 | jca | ⊢ ( ( 𝜑  ∧  ¬  𝐽  =  𝐿 )  →  ( 𝐿  ≤  ( 𝐽  −  1 )  ∧  ( 𝐽  −  1 )  ≤  𝑀 ) ) | 
						
							| 190 |  | elfz2 | ⊢ ( ( 𝐽  −  1 )  ∈  ( 𝐿 ... 𝑀 )  ↔  ( ( 𝐿  ∈  ℤ  ∧  𝑀  ∈  ℤ  ∧  ( 𝐽  −  1 )  ∈  ℤ )  ∧  ( 𝐿  ≤  ( 𝐽  −  1 )  ∧  ( 𝐽  −  1 )  ≤  𝑀 ) ) ) | 
						
							| 191 | 180 189 190 | sylanbrc | ⊢ ( ( 𝜑  ∧  ¬  𝐽  =  𝐿 )  →  ( 𝐽  −  1 )  ∈  ( 𝐿 ... 𝑀 ) ) | 
						
							| 192 | 7 | adantlr | ⊢ ( ( ( 𝜑  ∧  ¬  𝐽  =  𝐿 )  ∧  𝑖  ∈  ( 𝐿 ... 𝑀 ) )  →  0  ≤  ( 𝐵 ‘ 𝑖 ) ) | 
						
							| 193 | 8 | adantlr | ⊢ ( ( ( 𝜑  ∧  ¬  𝐽  =  𝐿 )  ∧  𝑖  ∈  ( 𝐿 ... 𝑀 ) )  →  ( 𝐵 ‘ 𝑖 )  ≤  1 ) | 
						
							| 194 | 1 114 175 95 176 191 119 192 193 | fmul01 | ⊢ ( ( 𝜑  ∧  ¬  𝐽  =  𝐿 )  →  ( 0  ≤  ( seq 𝐿 (  ·  ,  𝐵 ) ‘ ( 𝐽  −  1 ) )  ∧  ( seq 𝐿 (  ·  ,  𝐵 ) ‘ ( 𝐽  −  1 ) )  ≤  1 ) ) | 
						
							| 195 | 194 | simprd | ⊢ ( ( 𝜑  ∧  ¬  𝐽  =  𝐿 )  →  ( seq 𝐿 (  ·  ,  𝐵 ) ‘ ( 𝐽  −  1 ) )  ≤  1 ) | 
						
							| 196 | 161 162 76 174 195 | lemul1ad | ⊢ ( ( 𝜑  ∧  ¬  𝐽  =  𝐿 )  →  ( ( seq 𝐿 (  ·  ,  𝐵 ) ‘ ( 𝐽  −  1 ) )  ·  ( seq 𝐽 (  ·  ,  𝐵 ) ‘ 𝑀 ) )  ≤  ( 1  ·  ( seq 𝐽 (  ·  ,  𝐵 ) ‘ 𝑀 ) ) ) | 
						
							| 197 | 126 196 | eqbrtrd | ⊢ ( ( 𝜑  ∧  ¬  𝐽  =  𝐿 )  →  ( seq 𝐿 (  ·  ,  𝐵 ) ‘ 𝑀 )  ≤  ( 1  ·  ( seq 𝐽 (  ·  ,  𝐵 ) ‘ 𝑀 ) ) ) | 
						
							| 198 | 76 | recnd | ⊢ ( ( 𝜑  ∧  ¬  𝐽  =  𝐿 )  →  ( seq 𝐽 (  ·  ,  𝐵 ) ‘ 𝑀 )  ∈  ℂ ) | 
						
							| 199 | 198 | mullidd | ⊢ ( ( 𝜑  ∧  ¬  𝐽  =  𝐿 )  →  ( 1  ·  ( seq 𝐽 (  ·  ,  𝐵 ) ‘ 𝑀 ) )  =  ( seq 𝐽 (  ·  ,  𝐵 ) ‘ 𝑀 ) ) | 
						
							| 200 | 197 199 | breqtrd | ⊢ ( ( 𝜑  ∧  ¬  𝐽  =  𝐿 )  →  ( seq 𝐿 (  ·  ,  𝐵 ) ‘ 𝑀 )  ≤  ( seq 𝐽 (  ·  ,  𝐵 ) ‘ 𝑀 ) ) | 
						
							| 201 | 1 2 163 59 43 73 169 171 9 11 | fmul01lt1lem1 | ⊢ ( 𝜑  →  ( seq 𝐽 (  ·  ,  𝐵 ) ‘ 𝑀 )  <  𝐸 ) | 
						
							| 202 | 201 | adantr | ⊢ ( ( 𝜑  ∧  ¬  𝐽  =  𝐿 )  →  ( seq 𝐽 (  ·  ,  𝐵 ) ‘ 𝑀 )  <  𝐸 ) | 
						
							| 203 | 41 76 78 200 202 | lelttrd | ⊢ ( ( 𝜑  ∧  ¬  𝐽  =  𝐿 )  →  ( seq 𝐿 (  ·  ,  𝐵 ) ‘ 𝑀 )  <  𝐸 ) | 
						
							| 204 | 25 203 | eqbrtrid | ⊢ ( ( 𝜑  ∧  ¬  𝐽  =  𝐿 )  →  ( 𝐴 ‘ 𝑀 )  <  𝐸 ) | 
						
							| 205 | 24 204 | pm2.61dan | ⊢ ( 𝜑  →  ( 𝐴 ‘ 𝑀 )  <  𝐸 ) |