| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fmul01lt1lem2.1 |  |-  F/_ i B | 
						
							| 2 |  | fmul01lt1lem2.2 |  |-  F/ i ph | 
						
							| 3 |  | fmul01lt1lem2.3 |  |-  A = seq L ( x. , B ) | 
						
							| 4 |  | fmul01lt1lem2.4 |  |-  ( ph -> L e. ZZ ) | 
						
							| 5 |  | fmul01lt1lem2.5 |  |-  ( ph -> M e. ( ZZ>= ` L ) ) | 
						
							| 6 |  | fmul01lt1lem2.6 |  |-  ( ( ph /\ i e. ( L ... M ) ) -> ( B ` i ) e. RR ) | 
						
							| 7 |  | fmul01lt1lem2.7 |  |-  ( ( ph /\ i e. ( L ... M ) ) -> 0 <_ ( B ` i ) ) | 
						
							| 8 |  | fmul01lt1lem2.8 |  |-  ( ( ph /\ i e. ( L ... M ) ) -> ( B ` i ) <_ 1 ) | 
						
							| 9 |  | fmul01lt1lem2.9 |  |-  ( ph -> E e. RR+ ) | 
						
							| 10 |  | fmul01lt1lem2.10 |  |-  ( ph -> J e. ( L ... M ) ) | 
						
							| 11 |  | fmul01lt1lem2.11 |  |-  ( ph -> ( B ` J ) < E ) | 
						
							| 12 |  | nfv |  |-  F/ i J = L | 
						
							| 13 | 2 12 | nfan |  |-  F/ i ( ph /\ J = L ) | 
						
							| 14 | 4 | adantr |  |-  ( ( ph /\ J = L ) -> L e. ZZ ) | 
						
							| 15 | 5 | adantr |  |-  ( ( ph /\ J = L ) -> M e. ( ZZ>= ` L ) ) | 
						
							| 16 | 6 | adantlr |  |-  ( ( ( ph /\ J = L ) /\ i e. ( L ... M ) ) -> ( B ` i ) e. RR ) | 
						
							| 17 | 7 | adantlr |  |-  ( ( ( ph /\ J = L ) /\ i e. ( L ... M ) ) -> 0 <_ ( B ` i ) ) | 
						
							| 18 | 8 | adantlr |  |-  ( ( ( ph /\ J = L ) /\ i e. ( L ... M ) ) -> ( B ` i ) <_ 1 ) | 
						
							| 19 | 9 | adantr |  |-  ( ( ph /\ J = L ) -> E e. RR+ ) | 
						
							| 20 |  | simpr |  |-  ( ( ph /\ J = L ) -> J = L ) | 
						
							| 21 | 20 | fveq2d |  |-  ( ( ph /\ J = L ) -> ( B ` J ) = ( B ` L ) ) | 
						
							| 22 | 11 | adantr |  |-  ( ( ph /\ J = L ) -> ( B ` J ) < E ) | 
						
							| 23 | 21 22 | eqbrtrrd |  |-  ( ( ph /\ J = L ) -> ( B ` L ) < E ) | 
						
							| 24 | 1 13 3 14 15 16 17 18 19 23 | fmul01lt1lem1 |  |-  ( ( ph /\ J = L ) -> ( A ` M ) < E ) | 
						
							| 25 | 3 | fveq1i |  |-  ( A ` M ) = ( seq L ( x. , B ) ` M ) | 
						
							| 26 |  | nfv |  |-  F/ i a e. ( L ... M ) | 
						
							| 27 | 2 26 | nfan |  |-  F/ i ( ph /\ a e. ( L ... M ) ) | 
						
							| 28 |  | nfcv |  |-  F/_ i a | 
						
							| 29 | 1 28 | nffv |  |-  F/_ i ( B ` a ) | 
						
							| 30 | 29 | nfel1 |  |-  F/ i ( B ` a ) e. RR | 
						
							| 31 | 27 30 | nfim |  |-  F/ i ( ( ph /\ a e. ( L ... M ) ) -> ( B ` a ) e. RR ) | 
						
							| 32 |  | eleq1w |  |-  ( i = a -> ( i e. ( L ... M ) <-> a e. ( L ... M ) ) ) | 
						
							| 33 | 32 | anbi2d |  |-  ( i = a -> ( ( ph /\ i e. ( L ... M ) ) <-> ( ph /\ a e. ( L ... M ) ) ) ) | 
						
							| 34 |  | fveq2 |  |-  ( i = a -> ( B ` i ) = ( B ` a ) ) | 
						
							| 35 | 34 | eleq1d |  |-  ( i = a -> ( ( B ` i ) e. RR <-> ( B ` a ) e. RR ) ) | 
						
							| 36 | 33 35 | imbi12d |  |-  ( i = a -> ( ( ( ph /\ i e. ( L ... M ) ) -> ( B ` i ) e. RR ) <-> ( ( ph /\ a e. ( L ... M ) ) -> ( B ` a ) e. RR ) ) ) | 
						
							| 37 | 31 36 6 | chvarfv |  |-  ( ( ph /\ a e. ( L ... M ) ) -> ( B ` a ) e. RR ) | 
						
							| 38 |  | remulcl |  |-  ( ( a e. RR /\ j e. RR ) -> ( a x. j ) e. RR ) | 
						
							| 39 | 38 | adantl |  |-  ( ( ph /\ ( a e. RR /\ j e. RR ) ) -> ( a x. j ) e. RR ) | 
						
							| 40 | 5 37 39 | seqcl |  |-  ( ph -> ( seq L ( x. , B ) ` M ) e. RR ) | 
						
							| 41 | 40 | adantr |  |-  ( ( ph /\ -. J = L ) -> ( seq L ( x. , B ) ` M ) e. RR ) | 
						
							| 42 |  | elfzuz3 |  |-  ( J e. ( L ... M ) -> M e. ( ZZ>= ` J ) ) | 
						
							| 43 | 10 42 | syl |  |-  ( ph -> M e. ( ZZ>= ` J ) ) | 
						
							| 44 |  | nfv |  |-  F/ i a e. ( J ... M ) | 
						
							| 45 | 2 44 | nfan |  |-  F/ i ( ph /\ a e. ( J ... M ) ) | 
						
							| 46 | 45 30 | nfim |  |-  F/ i ( ( ph /\ a e. ( J ... M ) ) -> ( B ` a ) e. RR ) | 
						
							| 47 |  | eleq1w |  |-  ( i = a -> ( i e. ( J ... M ) <-> a e. ( J ... M ) ) ) | 
						
							| 48 | 47 | anbi2d |  |-  ( i = a -> ( ( ph /\ i e. ( J ... M ) ) <-> ( ph /\ a e. ( J ... M ) ) ) ) | 
						
							| 49 | 48 35 | imbi12d |  |-  ( i = a -> ( ( ( ph /\ i e. ( J ... M ) ) -> ( B ` i ) e. RR ) <-> ( ( ph /\ a e. ( J ... M ) ) -> ( B ` a ) e. RR ) ) ) | 
						
							| 50 | 4 | adantr |  |-  ( ( ph /\ i e. ( J ... M ) ) -> L e. ZZ ) | 
						
							| 51 |  | eluzelz |  |-  ( M e. ( ZZ>= ` L ) -> M e. ZZ ) | 
						
							| 52 | 5 51 | syl |  |-  ( ph -> M e. ZZ ) | 
						
							| 53 | 52 | adantr |  |-  ( ( ph /\ i e. ( J ... M ) ) -> M e. ZZ ) | 
						
							| 54 |  | elfzelz |  |-  ( i e. ( J ... M ) -> i e. ZZ ) | 
						
							| 55 | 54 | adantl |  |-  ( ( ph /\ i e. ( J ... M ) ) -> i e. ZZ ) | 
						
							| 56 | 4 | zred |  |-  ( ph -> L e. RR ) | 
						
							| 57 | 56 | adantr |  |-  ( ( ph /\ i e. ( J ... M ) ) -> L e. RR ) | 
						
							| 58 |  | elfzelz |  |-  ( J e. ( L ... M ) -> J e. ZZ ) | 
						
							| 59 | 10 58 | syl |  |-  ( ph -> J e. ZZ ) | 
						
							| 60 | 59 | zred |  |-  ( ph -> J e. RR ) | 
						
							| 61 | 60 | adantr |  |-  ( ( ph /\ i e. ( J ... M ) ) -> J e. RR ) | 
						
							| 62 | 54 | zred |  |-  ( i e. ( J ... M ) -> i e. RR ) | 
						
							| 63 | 62 | adantl |  |-  ( ( ph /\ i e. ( J ... M ) ) -> i e. RR ) | 
						
							| 64 |  | elfzle1 |  |-  ( J e. ( L ... M ) -> L <_ J ) | 
						
							| 65 | 10 64 | syl |  |-  ( ph -> L <_ J ) | 
						
							| 66 | 65 | adantr |  |-  ( ( ph /\ i e. ( J ... M ) ) -> L <_ J ) | 
						
							| 67 |  | elfzle1 |  |-  ( i e. ( J ... M ) -> J <_ i ) | 
						
							| 68 | 67 | adantl |  |-  ( ( ph /\ i e. ( J ... M ) ) -> J <_ i ) | 
						
							| 69 | 57 61 63 66 68 | letrd |  |-  ( ( ph /\ i e. ( J ... M ) ) -> L <_ i ) | 
						
							| 70 |  | elfzle2 |  |-  ( i e. ( J ... M ) -> i <_ M ) | 
						
							| 71 | 70 | adantl |  |-  ( ( ph /\ i e. ( J ... M ) ) -> i <_ M ) | 
						
							| 72 | 50 53 55 69 71 | elfzd |  |-  ( ( ph /\ i e. ( J ... M ) ) -> i e. ( L ... M ) ) | 
						
							| 73 | 72 6 | syldan |  |-  ( ( ph /\ i e. ( J ... M ) ) -> ( B ` i ) e. RR ) | 
						
							| 74 | 46 49 73 | chvarfv |  |-  ( ( ph /\ a e. ( J ... M ) ) -> ( B ` a ) e. RR ) | 
						
							| 75 | 43 74 39 | seqcl |  |-  ( ph -> ( seq J ( x. , B ) ` M ) e. RR ) | 
						
							| 76 | 75 | adantr |  |-  ( ( ph /\ -. J = L ) -> ( seq J ( x. , B ) ` M ) e. RR ) | 
						
							| 77 | 9 | rpred |  |-  ( ph -> E e. RR ) | 
						
							| 78 | 77 | adantr |  |-  ( ( ph /\ -. J = L ) -> E e. RR ) | 
						
							| 79 |  | remulcl |  |-  ( ( a e. RR /\ b e. RR ) -> ( a x. b ) e. RR ) | 
						
							| 80 | 79 | adantl |  |-  ( ( ( ph /\ -. J = L ) /\ ( a e. RR /\ b e. RR ) ) -> ( a x. b ) e. RR ) | 
						
							| 81 |  | simp1 |  |-  ( ( a e. RR /\ b e. RR /\ c e. RR ) -> a e. RR ) | 
						
							| 82 | 81 | recnd |  |-  ( ( a e. RR /\ b e. RR /\ c e. RR ) -> a e. CC ) | 
						
							| 83 |  | simp2 |  |-  ( ( a e. RR /\ b e. RR /\ c e. RR ) -> b e. RR ) | 
						
							| 84 | 83 | recnd |  |-  ( ( a e. RR /\ b e. RR /\ c e. RR ) -> b e. CC ) | 
						
							| 85 |  | simp3 |  |-  ( ( a e. RR /\ b e. RR /\ c e. RR ) -> c e. RR ) | 
						
							| 86 | 85 | recnd |  |-  ( ( a e. RR /\ b e. RR /\ c e. RR ) -> c e. CC ) | 
						
							| 87 | 82 84 86 | mulassd |  |-  ( ( a e. RR /\ b e. RR /\ c e. RR ) -> ( ( a x. b ) x. c ) = ( a x. ( b x. c ) ) ) | 
						
							| 88 | 87 | adantl |  |-  ( ( ( ph /\ -. J = L ) /\ ( a e. RR /\ b e. RR /\ c e. RR ) ) -> ( ( a x. b ) x. c ) = ( a x. ( b x. c ) ) ) | 
						
							| 89 | 59 | zcnd |  |-  ( ph -> J e. CC ) | 
						
							| 90 |  | 1cnd |  |-  ( ph -> 1 e. CC ) | 
						
							| 91 | 89 90 | npcand |  |-  ( ph -> ( ( J - 1 ) + 1 ) = J ) | 
						
							| 92 | 91 | fveq2d |  |-  ( ph -> ( ZZ>= ` ( ( J - 1 ) + 1 ) ) = ( ZZ>= ` J ) ) | 
						
							| 93 | 43 92 | eleqtrrd |  |-  ( ph -> M e. ( ZZ>= ` ( ( J - 1 ) + 1 ) ) ) | 
						
							| 94 | 93 | adantr |  |-  ( ( ph /\ -. J = L ) -> M e. ( ZZ>= ` ( ( J - 1 ) + 1 ) ) ) | 
						
							| 95 | 4 | adantr |  |-  ( ( ph /\ -. J = L ) -> L e. ZZ ) | 
						
							| 96 | 59 | adantr |  |-  ( ( ph /\ -. J = L ) -> J e. ZZ ) | 
						
							| 97 |  | 1zzd |  |-  ( ( ph /\ -. J = L ) -> 1 e. ZZ ) | 
						
							| 98 | 96 97 | zsubcld |  |-  ( ( ph /\ -. J = L ) -> ( J - 1 ) e. ZZ ) | 
						
							| 99 |  | simpr |  |-  ( ( ph /\ -. J = L ) -> -. J = L ) | 
						
							| 100 |  | eqcom |  |-  ( J = L <-> L = J ) | 
						
							| 101 | 99 100 | sylnib |  |-  ( ( ph /\ -. J = L ) -> -. L = J ) | 
						
							| 102 | 56 60 | leloed |  |-  ( ph -> ( L <_ J <-> ( L < J \/ L = J ) ) ) | 
						
							| 103 | 65 102 | mpbid |  |-  ( ph -> ( L < J \/ L = J ) ) | 
						
							| 104 | 103 | adantr |  |-  ( ( ph /\ -. J = L ) -> ( L < J \/ L = J ) ) | 
						
							| 105 |  | orel2 |  |-  ( -. L = J -> ( ( L < J \/ L = J ) -> L < J ) ) | 
						
							| 106 | 101 104 105 | sylc |  |-  ( ( ph /\ -. J = L ) -> L < J ) | 
						
							| 107 |  | zltlem1 |  |-  ( ( L e. ZZ /\ J e. ZZ ) -> ( L < J <-> L <_ ( J - 1 ) ) ) | 
						
							| 108 | 4 59 107 | syl2anc |  |-  ( ph -> ( L < J <-> L <_ ( J - 1 ) ) ) | 
						
							| 109 | 108 | adantr |  |-  ( ( ph /\ -. J = L ) -> ( L < J <-> L <_ ( J - 1 ) ) ) | 
						
							| 110 | 106 109 | mpbid |  |-  ( ( ph /\ -. J = L ) -> L <_ ( J - 1 ) ) | 
						
							| 111 |  | eluz2 |  |-  ( ( J - 1 ) e. ( ZZ>= ` L ) <-> ( L e. ZZ /\ ( J - 1 ) e. ZZ /\ L <_ ( J - 1 ) ) ) | 
						
							| 112 | 95 98 110 111 | syl3anbrc |  |-  ( ( ph /\ -. J = L ) -> ( J - 1 ) e. ( ZZ>= ` L ) ) | 
						
							| 113 |  | nfv |  |-  F/ i -. J = L | 
						
							| 114 | 2 113 | nfan |  |-  F/ i ( ph /\ -. J = L ) | 
						
							| 115 | 114 26 | nfan |  |-  F/ i ( ( ph /\ -. J = L ) /\ a e. ( L ... M ) ) | 
						
							| 116 | 115 30 | nfim |  |-  F/ i ( ( ( ph /\ -. J = L ) /\ a e. ( L ... M ) ) -> ( B ` a ) e. RR ) | 
						
							| 117 | 32 | anbi2d |  |-  ( i = a -> ( ( ( ph /\ -. J = L ) /\ i e. ( L ... M ) ) <-> ( ( ph /\ -. J = L ) /\ a e. ( L ... M ) ) ) ) | 
						
							| 118 | 117 35 | imbi12d |  |-  ( i = a -> ( ( ( ( ph /\ -. J = L ) /\ i e. ( L ... M ) ) -> ( B ` i ) e. RR ) <-> ( ( ( ph /\ -. J = L ) /\ a e. ( L ... M ) ) -> ( B ` a ) e. RR ) ) ) | 
						
							| 119 | 6 | adantlr |  |-  ( ( ( ph /\ -. J = L ) /\ i e. ( L ... M ) ) -> ( B ` i ) e. RR ) | 
						
							| 120 | 116 118 119 | chvarfv |  |-  ( ( ( ph /\ -. J = L ) /\ a e. ( L ... M ) ) -> ( B ` a ) e. RR ) | 
						
							| 121 | 80 88 94 112 120 | seqsplit |  |-  ( ( ph /\ -. J = L ) -> ( seq L ( x. , B ) ` M ) = ( ( seq L ( x. , B ) ` ( J - 1 ) ) x. ( seq ( ( J - 1 ) + 1 ) ( x. , B ) ` M ) ) ) | 
						
							| 122 | 91 | adantr |  |-  ( ( ph /\ -. J = L ) -> ( ( J - 1 ) + 1 ) = J ) | 
						
							| 123 | 122 | seqeq1d |  |-  ( ( ph /\ -. J = L ) -> seq ( ( J - 1 ) + 1 ) ( x. , B ) = seq J ( x. , B ) ) | 
						
							| 124 | 123 | fveq1d |  |-  ( ( ph /\ -. J = L ) -> ( seq ( ( J - 1 ) + 1 ) ( x. , B ) ` M ) = ( seq J ( x. , B ) ` M ) ) | 
						
							| 125 | 124 | oveq2d |  |-  ( ( ph /\ -. J = L ) -> ( ( seq L ( x. , B ) ` ( J - 1 ) ) x. ( seq ( ( J - 1 ) + 1 ) ( x. , B ) ` M ) ) = ( ( seq L ( x. , B ) ` ( J - 1 ) ) x. ( seq J ( x. , B ) ` M ) ) ) | 
						
							| 126 | 121 125 | eqtrd |  |-  ( ( ph /\ -. J = L ) -> ( seq L ( x. , B ) ` M ) = ( ( seq L ( x. , B ) ` ( J - 1 ) ) x. ( seq J ( x. , B ) ` M ) ) ) | 
						
							| 127 |  | nfv |  |-  F/ i a e. ( L ... ( J - 1 ) ) | 
						
							| 128 | 114 127 | nfan |  |-  F/ i ( ( ph /\ -. J = L ) /\ a e. ( L ... ( J - 1 ) ) ) | 
						
							| 129 | 128 30 | nfim |  |-  F/ i ( ( ( ph /\ -. J = L ) /\ a e. ( L ... ( J - 1 ) ) ) -> ( B ` a ) e. RR ) | 
						
							| 130 |  | eleq1w |  |-  ( i = a -> ( i e. ( L ... ( J - 1 ) ) <-> a e. ( L ... ( J - 1 ) ) ) ) | 
						
							| 131 | 130 | anbi2d |  |-  ( i = a -> ( ( ( ph /\ -. J = L ) /\ i e. ( L ... ( J - 1 ) ) ) <-> ( ( ph /\ -. J = L ) /\ a e. ( L ... ( J - 1 ) ) ) ) ) | 
						
							| 132 | 131 35 | imbi12d |  |-  ( i = a -> ( ( ( ( ph /\ -. J = L ) /\ i e. ( L ... ( J - 1 ) ) ) -> ( B ` i ) e. RR ) <-> ( ( ( ph /\ -. J = L ) /\ a e. ( L ... ( J - 1 ) ) ) -> ( B ` a ) e. RR ) ) ) | 
						
							| 133 | 4 | adantr |  |-  ( ( ph /\ i e. ( L ... ( J - 1 ) ) ) -> L e. ZZ ) | 
						
							| 134 | 52 | adantr |  |-  ( ( ph /\ i e. ( L ... ( J - 1 ) ) ) -> M e. ZZ ) | 
						
							| 135 |  | elfzelz |  |-  ( i e. ( L ... ( J - 1 ) ) -> i e. ZZ ) | 
						
							| 136 | 135 | adantl |  |-  ( ( ph /\ i e. ( L ... ( J - 1 ) ) ) -> i e. ZZ ) | 
						
							| 137 |  | elfzle1 |  |-  ( i e. ( L ... ( J - 1 ) ) -> L <_ i ) | 
						
							| 138 | 137 | adantl |  |-  ( ( ph /\ i e. ( L ... ( J - 1 ) ) ) -> L <_ i ) | 
						
							| 139 | 135 | zred |  |-  ( i e. ( L ... ( J - 1 ) ) -> i e. RR ) | 
						
							| 140 | 139 | adantl |  |-  ( ( ph /\ i e. ( L ... ( J - 1 ) ) ) -> i e. RR ) | 
						
							| 141 | 60 | adantr |  |-  ( ( ph /\ i e. ( L ... ( J - 1 ) ) ) -> J e. RR ) | 
						
							| 142 | 52 | zred |  |-  ( ph -> M e. RR ) | 
						
							| 143 | 142 | adantr |  |-  ( ( ph /\ i e. ( L ... ( J - 1 ) ) ) -> M e. RR ) | 
						
							| 144 |  | 1red |  |-  ( ph -> 1 e. RR ) | 
						
							| 145 | 60 144 | resubcld |  |-  ( ph -> ( J - 1 ) e. RR ) | 
						
							| 146 | 145 | adantr |  |-  ( ( ph /\ i e. ( L ... ( J - 1 ) ) ) -> ( J - 1 ) e. RR ) | 
						
							| 147 |  | elfzle2 |  |-  ( i e. ( L ... ( J - 1 ) ) -> i <_ ( J - 1 ) ) | 
						
							| 148 | 147 | adantl |  |-  ( ( ph /\ i e. ( L ... ( J - 1 ) ) ) -> i <_ ( J - 1 ) ) | 
						
							| 149 | 60 | lem1d |  |-  ( ph -> ( J - 1 ) <_ J ) | 
						
							| 150 | 149 | adantr |  |-  ( ( ph /\ i e. ( L ... ( J - 1 ) ) ) -> ( J - 1 ) <_ J ) | 
						
							| 151 | 140 146 141 148 150 | letrd |  |-  ( ( ph /\ i e. ( L ... ( J - 1 ) ) ) -> i <_ J ) | 
						
							| 152 |  | elfzle2 |  |-  ( J e. ( L ... M ) -> J <_ M ) | 
						
							| 153 | 10 152 | syl |  |-  ( ph -> J <_ M ) | 
						
							| 154 | 153 | adantr |  |-  ( ( ph /\ i e. ( L ... ( J - 1 ) ) ) -> J <_ M ) | 
						
							| 155 | 140 141 143 151 154 | letrd |  |-  ( ( ph /\ i e. ( L ... ( J - 1 ) ) ) -> i <_ M ) | 
						
							| 156 | 133 134 136 138 155 | elfzd |  |-  ( ( ph /\ i e. ( L ... ( J - 1 ) ) ) -> i e. ( L ... M ) ) | 
						
							| 157 | 156 6 | syldan |  |-  ( ( ph /\ i e. ( L ... ( J - 1 ) ) ) -> ( B ` i ) e. RR ) | 
						
							| 158 | 157 | adantlr |  |-  ( ( ( ph /\ -. J = L ) /\ i e. ( L ... ( J - 1 ) ) ) -> ( B ` i ) e. RR ) | 
						
							| 159 | 129 132 158 | chvarfv |  |-  ( ( ( ph /\ -. J = L ) /\ a e. ( L ... ( J - 1 ) ) ) -> ( B ` a ) e. RR ) | 
						
							| 160 | 38 | adantl |  |-  ( ( ( ph /\ -. J = L ) /\ ( a e. RR /\ j e. RR ) ) -> ( a x. j ) e. RR ) | 
						
							| 161 | 112 159 160 | seqcl |  |-  ( ( ph /\ -. J = L ) -> ( seq L ( x. , B ) ` ( J - 1 ) ) e. RR ) | 
						
							| 162 |  | 1red |  |-  ( ( ph /\ -. J = L ) -> 1 e. RR ) | 
						
							| 163 |  | eqid |  |-  seq J ( x. , B ) = seq J ( x. , B ) | 
						
							| 164 | 43 | adantr |  |-  ( ( ph /\ -. J = L ) -> M e. ( ZZ>= ` J ) ) | 
						
							| 165 |  | eluzfz2 |  |-  ( M e. ( ZZ>= ` J ) -> M e. ( J ... M ) ) | 
						
							| 166 | 43 165 | syl |  |-  ( ph -> M e. ( J ... M ) ) | 
						
							| 167 | 166 | adantr |  |-  ( ( ph /\ -. J = L ) -> M e. ( J ... M ) ) | 
						
							| 168 | 73 | adantlr |  |-  ( ( ( ph /\ -. J = L ) /\ i e. ( J ... M ) ) -> ( B ` i ) e. RR ) | 
						
							| 169 | 72 7 | syldan |  |-  ( ( ph /\ i e. ( J ... M ) ) -> 0 <_ ( B ` i ) ) | 
						
							| 170 | 169 | adantlr |  |-  ( ( ( ph /\ -. J = L ) /\ i e. ( J ... M ) ) -> 0 <_ ( B ` i ) ) | 
						
							| 171 | 72 8 | syldan |  |-  ( ( ph /\ i e. ( J ... M ) ) -> ( B ` i ) <_ 1 ) | 
						
							| 172 | 171 | adantlr |  |-  ( ( ( ph /\ -. J = L ) /\ i e. ( J ... M ) ) -> ( B ` i ) <_ 1 ) | 
						
							| 173 | 1 114 163 96 164 167 168 170 172 | fmul01 |  |-  ( ( ph /\ -. J = L ) -> ( 0 <_ ( seq J ( x. , B ) ` M ) /\ ( seq J ( x. , B ) ` M ) <_ 1 ) ) | 
						
							| 174 | 173 | simpld |  |-  ( ( ph /\ -. J = L ) -> 0 <_ ( seq J ( x. , B ) ` M ) ) | 
						
							| 175 |  | eqid |  |-  seq L ( x. , B ) = seq L ( x. , B ) | 
						
							| 176 | 5 | adantr |  |-  ( ( ph /\ -. J = L ) -> M e. ( ZZ>= ` L ) ) | 
						
							| 177 |  | 1zzd |  |-  ( ph -> 1 e. ZZ ) | 
						
							| 178 | 59 177 | zsubcld |  |-  ( ph -> ( J - 1 ) e. ZZ ) | 
						
							| 179 | 4 52 178 | 3jca |  |-  ( ph -> ( L e. ZZ /\ M e. ZZ /\ ( J - 1 ) e. ZZ ) ) | 
						
							| 180 | 179 | adantr |  |-  ( ( ph /\ -. J = L ) -> ( L e. ZZ /\ M e. ZZ /\ ( J - 1 ) e. ZZ ) ) | 
						
							| 181 | 145 60 142 | 3jca |  |-  ( ph -> ( ( J - 1 ) e. RR /\ J e. RR /\ M e. RR ) ) | 
						
							| 182 | 181 | adantr |  |-  ( ( ph /\ -. J = L ) -> ( ( J - 1 ) e. RR /\ J e. RR /\ M e. RR ) ) | 
						
							| 183 | 60 | adantr |  |-  ( ( ph /\ -. J = L ) -> J e. RR ) | 
						
							| 184 | 183 | lem1d |  |-  ( ( ph /\ -. J = L ) -> ( J - 1 ) <_ J ) | 
						
							| 185 | 153 | adantr |  |-  ( ( ph /\ -. J = L ) -> J <_ M ) | 
						
							| 186 | 184 185 | jca |  |-  ( ( ph /\ -. J = L ) -> ( ( J - 1 ) <_ J /\ J <_ M ) ) | 
						
							| 187 |  | letr |  |-  ( ( ( J - 1 ) e. RR /\ J e. RR /\ M e. RR ) -> ( ( ( J - 1 ) <_ J /\ J <_ M ) -> ( J - 1 ) <_ M ) ) | 
						
							| 188 | 182 186 187 | sylc |  |-  ( ( ph /\ -. J = L ) -> ( J - 1 ) <_ M ) | 
						
							| 189 | 110 188 | jca |  |-  ( ( ph /\ -. J = L ) -> ( L <_ ( J - 1 ) /\ ( J - 1 ) <_ M ) ) | 
						
							| 190 |  | elfz2 |  |-  ( ( J - 1 ) e. ( L ... M ) <-> ( ( L e. ZZ /\ M e. ZZ /\ ( J - 1 ) e. ZZ ) /\ ( L <_ ( J - 1 ) /\ ( J - 1 ) <_ M ) ) ) | 
						
							| 191 | 180 189 190 | sylanbrc |  |-  ( ( ph /\ -. J = L ) -> ( J - 1 ) e. ( L ... M ) ) | 
						
							| 192 | 7 | adantlr |  |-  ( ( ( ph /\ -. J = L ) /\ i e. ( L ... M ) ) -> 0 <_ ( B ` i ) ) | 
						
							| 193 | 8 | adantlr |  |-  ( ( ( ph /\ -. J = L ) /\ i e. ( L ... M ) ) -> ( B ` i ) <_ 1 ) | 
						
							| 194 | 1 114 175 95 176 191 119 192 193 | fmul01 |  |-  ( ( ph /\ -. J = L ) -> ( 0 <_ ( seq L ( x. , B ) ` ( J - 1 ) ) /\ ( seq L ( x. , B ) ` ( J - 1 ) ) <_ 1 ) ) | 
						
							| 195 | 194 | simprd |  |-  ( ( ph /\ -. J = L ) -> ( seq L ( x. , B ) ` ( J - 1 ) ) <_ 1 ) | 
						
							| 196 | 161 162 76 174 195 | lemul1ad |  |-  ( ( ph /\ -. J = L ) -> ( ( seq L ( x. , B ) ` ( J - 1 ) ) x. ( seq J ( x. , B ) ` M ) ) <_ ( 1 x. ( seq J ( x. , B ) ` M ) ) ) | 
						
							| 197 | 126 196 | eqbrtrd |  |-  ( ( ph /\ -. J = L ) -> ( seq L ( x. , B ) ` M ) <_ ( 1 x. ( seq J ( x. , B ) ` M ) ) ) | 
						
							| 198 | 76 | recnd |  |-  ( ( ph /\ -. J = L ) -> ( seq J ( x. , B ) ` M ) e. CC ) | 
						
							| 199 | 198 | mullidd |  |-  ( ( ph /\ -. J = L ) -> ( 1 x. ( seq J ( x. , B ) ` M ) ) = ( seq J ( x. , B ) ` M ) ) | 
						
							| 200 | 197 199 | breqtrd |  |-  ( ( ph /\ -. J = L ) -> ( seq L ( x. , B ) ` M ) <_ ( seq J ( x. , B ) ` M ) ) | 
						
							| 201 | 1 2 163 59 43 73 169 171 9 11 | fmul01lt1lem1 |  |-  ( ph -> ( seq J ( x. , B ) ` M ) < E ) | 
						
							| 202 | 201 | adantr |  |-  ( ( ph /\ -. J = L ) -> ( seq J ( x. , B ) ` M ) < E ) | 
						
							| 203 | 41 76 78 200 202 | lelttrd |  |-  ( ( ph /\ -. J = L ) -> ( seq L ( x. , B ) ` M ) < E ) | 
						
							| 204 | 25 203 | eqbrtrid |  |-  ( ( ph /\ -. J = L ) -> ( A ` M ) < E ) | 
						
							| 205 | 24 204 | pm2.61dan |  |-  ( ph -> ( A ` M ) < E ) |