| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fmul01lt1.1 |  |-  F/_ i B | 
						
							| 2 |  | fmul01lt1.2 |  |-  F/ i ph | 
						
							| 3 |  | fmul01lt1.3 |  |-  F/_ j A | 
						
							| 4 |  | fmul01lt1.4 |  |-  A = seq 1 ( x. , B ) | 
						
							| 5 |  | fmul01lt1.5 |  |-  ( ph -> M e. NN ) | 
						
							| 6 |  | fmul01lt1.6 |  |-  ( ph -> B : ( 1 ... M ) --> RR ) | 
						
							| 7 |  | fmul01lt1.7 |  |-  ( ( ph /\ i e. ( 1 ... M ) ) -> 0 <_ ( B ` i ) ) | 
						
							| 8 |  | fmul01lt1.8 |  |-  ( ( ph /\ i e. ( 1 ... M ) ) -> ( B ` i ) <_ 1 ) | 
						
							| 9 |  | fmul01lt1.9 |  |-  ( ph -> E e. RR+ ) | 
						
							| 10 |  | fmul01lt1.10 |  |-  ( ph -> E. j e. ( 1 ... M ) ( B ` j ) < E ) | 
						
							| 11 |  | nfv |  |-  F/ j ph | 
						
							| 12 |  | nfcv |  |-  F/_ j M | 
						
							| 13 | 3 12 | nffv |  |-  F/_ j ( A ` M ) | 
						
							| 14 |  | nfcv |  |-  F/_ j < | 
						
							| 15 |  | nfcv |  |-  F/_ j E | 
						
							| 16 | 13 14 15 | nfbr |  |-  F/ j ( A ` M ) < E | 
						
							| 17 |  | nfv |  |-  F/ i j e. ( 1 ... M ) | 
						
							| 18 |  | nfcv |  |-  F/_ i j | 
						
							| 19 | 1 18 | nffv |  |-  F/_ i ( B ` j ) | 
						
							| 20 |  | nfcv |  |-  F/_ i < | 
						
							| 21 |  | nfcv |  |-  F/_ i E | 
						
							| 22 | 19 20 21 | nfbr |  |-  F/ i ( B ` j ) < E | 
						
							| 23 | 2 17 22 | nf3an |  |-  F/ i ( ph /\ j e. ( 1 ... M ) /\ ( B ` j ) < E ) | 
						
							| 24 |  | 1zzd |  |-  ( ( ph /\ j e. ( 1 ... M ) /\ ( B ` j ) < E ) -> 1 e. ZZ ) | 
						
							| 25 |  | elnnuz |  |-  ( M e. NN <-> M e. ( ZZ>= ` 1 ) ) | 
						
							| 26 | 5 25 | sylib |  |-  ( ph -> M e. ( ZZ>= ` 1 ) ) | 
						
							| 27 | 26 | 3ad2ant1 |  |-  ( ( ph /\ j e. ( 1 ... M ) /\ ( B ` j ) < E ) -> M e. ( ZZ>= ` 1 ) ) | 
						
							| 28 | 6 | ffvelcdmda |  |-  ( ( ph /\ i e. ( 1 ... M ) ) -> ( B ` i ) e. RR ) | 
						
							| 29 | 28 | 3ad2antl1 |  |-  ( ( ( ph /\ j e. ( 1 ... M ) /\ ( B ` j ) < E ) /\ i e. ( 1 ... M ) ) -> ( B ` i ) e. RR ) | 
						
							| 30 | 7 | 3ad2antl1 |  |-  ( ( ( ph /\ j e. ( 1 ... M ) /\ ( B ` j ) < E ) /\ i e. ( 1 ... M ) ) -> 0 <_ ( B ` i ) ) | 
						
							| 31 | 8 | 3ad2antl1 |  |-  ( ( ( ph /\ j e. ( 1 ... M ) /\ ( B ` j ) < E ) /\ i e. ( 1 ... M ) ) -> ( B ` i ) <_ 1 ) | 
						
							| 32 | 9 | 3ad2ant1 |  |-  ( ( ph /\ j e. ( 1 ... M ) /\ ( B ` j ) < E ) -> E e. RR+ ) | 
						
							| 33 |  | simp2 |  |-  ( ( ph /\ j e. ( 1 ... M ) /\ ( B ` j ) < E ) -> j e. ( 1 ... M ) ) | 
						
							| 34 |  | simp3 |  |-  ( ( ph /\ j e. ( 1 ... M ) /\ ( B ` j ) < E ) -> ( B ` j ) < E ) | 
						
							| 35 | 1 23 4 24 27 29 30 31 32 33 34 | fmul01lt1lem2 |  |-  ( ( ph /\ j e. ( 1 ... M ) /\ ( B ` j ) < E ) -> ( A ` M ) < E ) | 
						
							| 36 | 35 | 3exp |  |-  ( ph -> ( j e. ( 1 ... M ) -> ( ( B ` j ) < E -> ( A ` M ) < E ) ) ) | 
						
							| 37 | 11 16 36 | rexlimd |  |-  ( ph -> ( E. j e. ( 1 ... M ) ( B ` j ) < E -> ( A ` M ) < E ) ) | 
						
							| 38 | 10 37 | mpd |  |-  ( ph -> ( A ` M ) < E ) |