Metamath Proof Explorer


Theorem fmul01lt1

Description: Given a finite multiplication of values betweeen 0 and 1, a value E larger than any multiplicand, is larger than the whole multiplication. (Contributed by Glauco Siliprandi, 20-Apr-2017)

Ref Expression
Hypotheses fmul01lt1.1 _iB
fmul01lt1.2 iφ
fmul01lt1.3 _jA
fmul01lt1.4 A=seq1×B
fmul01lt1.5 φM
fmul01lt1.6 φB:1M
fmul01lt1.7 φi1M0Bi
fmul01lt1.8 φi1MBi1
fmul01lt1.9 φE+
fmul01lt1.10 φj1MBj<E
Assertion fmul01lt1 φAM<E

Proof

Step Hyp Ref Expression
1 fmul01lt1.1 _iB
2 fmul01lt1.2 iφ
3 fmul01lt1.3 _jA
4 fmul01lt1.4 A=seq1×B
5 fmul01lt1.5 φM
6 fmul01lt1.6 φB:1M
7 fmul01lt1.7 φi1M0Bi
8 fmul01lt1.8 φi1MBi1
9 fmul01lt1.9 φE+
10 fmul01lt1.10 φj1MBj<E
11 nfv jφ
12 nfcv _jM
13 3 12 nffv _jAM
14 nfcv _j<
15 nfcv _jE
16 13 14 15 nfbr jAM<E
17 nfv ij1M
18 nfcv _ij
19 1 18 nffv _iBj
20 nfcv _i<
21 nfcv _iE
22 19 20 21 nfbr iBj<E
23 2 17 22 nf3an iφj1MBj<E
24 1zzd φj1MBj<E1
25 elnnuz MM1
26 5 25 sylib φM1
27 26 3ad2ant1 φj1MBj<EM1
28 6 ffvelcdmda φi1MBi
29 28 3ad2antl1 φj1MBj<Ei1MBi
30 7 3ad2antl1 φj1MBj<Ei1M0Bi
31 8 3ad2antl1 φj1MBj<Ei1MBi1
32 9 3ad2ant1 φj1MBj<EE+
33 simp2 φj1MBj<Ej1M
34 simp3 φj1MBj<EBj<E
35 1 23 4 24 27 29 30 31 32 33 34 fmul01lt1lem2 φj1MBj<EAM<E
36 35 3exp φj1MBj<EAM<E
37 11 16 36 rexlimd φj1MBj<EAM<E
38 10 37 mpd φAM<E