Metamath Proof Explorer


Theorem fmul01lt1lem2

Description: Given a finite multiplication of values betweeen 0 and 1, a value E larger than any multiplicand, is larger than the whole multiplication. (Contributed by Glauco Siliprandi, 20-Apr-2017)

Ref Expression
Hypotheses fmul01lt1lem2.1 _ i B
fmul01lt1lem2.2 i φ
fmul01lt1lem2.3 A = seq L × B
fmul01lt1lem2.4 φ L
fmul01lt1lem2.5 φ M L
fmul01lt1lem2.6 φ i L M B i
fmul01lt1lem2.7 φ i L M 0 B i
fmul01lt1lem2.8 φ i L M B i 1
fmul01lt1lem2.9 φ E +
fmul01lt1lem2.10 φ J L M
fmul01lt1lem2.11 φ B J < E
Assertion fmul01lt1lem2 φ A M < E

Proof

Step Hyp Ref Expression
1 fmul01lt1lem2.1 _ i B
2 fmul01lt1lem2.2 i φ
3 fmul01lt1lem2.3 A = seq L × B
4 fmul01lt1lem2.4 φ L
5 fmul01lt1lem2.5 φ M L
6 fmul01lt1lem2.6 φ i L M B i
7 fmul01lt1lem2.7 φ i L M 0 B i
8 fmul01lt1lem2.8 φ i L M B i 1
9 fmul01lt1lem2.9 φ E +
10 fmul01lt1lem2.10 φ J L M
11 fmul01lt1lem2.11 φ B J < E
12 nfv i J = L
13 2 12 nfan i φ J = L
14 4 adantr φ J = L L
15 5 adantr φ J = L M L
16 6 adantlr φ J = L i L M B i
17 7 adantlr φ J = L i L M 0 B i
18 8 adantlr φ J = L i L M B i 1
19 9 adantr φ J = L E +
20 simpr φ J = L J = L
21 20 fveq2d φ J = L B J = B L
22 11 adantr φ J = L B J < E
23 21 22 eqbrtrrd φ J = L B L < E
24 1 13 3 14 15 16 17 18 19 23 fmul01lt1lem1 φ J = L A M < E
25 3 fveq1i A M = seq L × B M
26 nfv i a L M
27 2 26 nfan i φ a L M
28 nfcv _ i a
29 1 28 nffv _ i B a
30 29 nfel1 i B a
31 27 30 nfim i φ a L M B a
32 eleq1w i = a i L M a L M
33 32 anbi2d i = a φ i L M φ a L M
34 fveq2 i = a B i = B a
35 34 eleq1d i = a B i B a
36 33 35 imbi12d i = a φ i L M B i φ a L M B a
37 31 36 6 chvarfv φ a L M B a
38 remulcl a j a j
39 38 adantl φ a j a j
40 5 37 39 seqcl φ seq L × B M
41 40 adantr φ ¬ J = L seq L × B M
42 elfzuz3 J L M M J
43 10 42 syl φ M J
44 nfv i a J M
45 2 44 nfan i φ a J M
46 45 30 nfim i φ a J M B a
47 eleq1w i = a i J M a J M
48 47 anbi2d i = a φ i J M φ a J M
49 48 35 imbi12d i = a φ i J M B i φ a J M B a
50 4 adantr φ i J M L
51 eluzelz M L M
52 5 51 syl φ M
53 52 adantr φ i J M M
54 elfzelz i J M i
55 54 adantl φ i J M i
56 50 53 55 3jca φ i J M L M i
57 4 zred φ L
58 57 adantr φ i J M L
59 elfzelz J L M J
60 10 59 syl φ J
61 60 zred φ J
62 61 adantr φ i J M J
63 54 zred i J M i
64 63 adantl φ i J M i
65 elfzle1 J L M L J
66 10 65 syl φ L J
67 66 adantr φ i J M L J
68 elfzle1 i J M J i
69 68 adantl φ i J M J i
70 58 62 64 67 69 letrd φ i J M L i
71 elfzle2 i J M i M
72 71 adantl φ i J M i M
73 70 72 jca φ i J M L i i M
74 elfz2 i L M L M i L i i M
75 56 73 74 sylanbrc φ i J M i L M
76 75 6 syldan φ i J M B i
77 46 49 76 chvarfv φ a J M B a
78 43 77 39 seqcl φ seq J × B M
79 78 adantr φ ¬ J = L seq J × B M
80 9 rpred φ E
81 80 adantr φ ¬ J = L E
82 remulcl a b a b
83 82 adantl φ ¬ J = L a b a b
84 simp1 a b c a
85 84 recnd a b c a
86 simp2 a b c b
87 86 recnd a b c b
88 simp3 a b c c
89 88 recnd a b c c
90 85 87 89 mulassd a b c a b c = a b c
91 90 adantl φ ¬ J = L a b c a b c = a b c
92 60 zcnd φ J
93 1cnd φ 1
94 92 93 npcand φ J - 1 + 1 = J
95 94 fveq2d φ J - 1 + 1 = J
96 43 95 eleqtrrd φ M J - 1 + 1
97 96 adantr φ ¬ J = L M J - 1 + 1
98 4 adantr φ ¬ J = L L
99 60 adantr φ ¬ J = L J
100 1zzd φ ¬ J = L 1
101 99 100 zsubcld φ ¬ J = L J 1
102 simpr φ ¬ J = L ¬ J = L
103 eqcom J = L L = J
104 102 103 sylnib φ ¬ J = L ¬ L = J
105 57 61 leloed φ L J L < J L = J
106 66 105 mpbid φ L < J L = J
107 106 adantr φ ¬ J = L L < J L = J
108 orel2 ¬ L = J L < J L = J L < J
109 104 107 108 sylc φ ¬ J = L L < J
110 zltlem1 L J L < J L J 1
111 4 60 110 syl2anc φ L < J L J 1
112 111 adantr φ ¬ J = L L < J L J 1
113 109 112 mpbid φ ¬ J = L L J 1
114 eluz2 J 1 L L J 1 L J 1
115 98 101 113 114 syl3anbrc φ ¬ J = L J 1 L
116 nfv i ¬ J = L
117 2 116 nfan i φ ¬ J = L
118 117 26 nfan i φ ¬ J = L a L M
119 118 30 nfim i φ ¬ J = L a L M B a
120 32 anbi2d i = a φ ¬ J = L i L M φ ¬ J = L a L M
121 120 35 imbi12d i = a φ ¬ J = L i L M B i φ ¬ J = L a L M B a
122 6 adantlr φ ¬ J = L i L M B i
123 119 121 122 chvarfv φ ¬ J = L a L M B a
124 83 91 97 115 123 seqsplit φ ¬ J = L seq L × B M = seq L × B J 1 seq J - 1 + 1 × B M
125 94 adantr φ ¬ J = L J - 1 + 1 = J
126 125 seqeq1d φ ¬ J = L seq J - 1 + 1 × B = seq J × B
127 126 fveq1d φ ¬ J = L seq J - 1 + 1 × B M = seq J × B M
128 127 oveq2d φ ¬ J = L seq L × B J 1 seq J - 1 + 1 × B M = seq L × B J 1 seq J × B M
129 124 128 eqtrd φ ¬ J = L seq L × B M = seq L × B J 1 seq J × B M
130 nfv i a L J 1
131 117 130 nfan i φ ¬ J = L a L J 1
132 131 30 nfim i φ ¬ J = L a L J 1 B a
133 eleq1w i = a i L J 1 a L J 1
134 133 anbi2d i = a φ ¬ J = L i L J 1 φ ¬ J = L a L J 1
135 134 35 imbi12d i = a φ ¬ J = L i L J 1 B i φ ¬ J = L a L J 1 B a
136 4 adantr φ i L J 1 L
137 52 adantr φ i L J 1 M
138 elfzelz i L J 1 i
139 138 adantl φ i L J 1 i
140 136 137 139 3jca φ i L J 1 L M i
141 elfzle1 i L J 1 L i
142 141 adantl φ i L J 1 L i
143 138 zred i L J 1 i
144 143 adantl φ i L J 1 i
145 61 adantr φ i L J 1 J
146 52 zred φ M
147 146 adantr φ i L J 1 M
148 1red φ 1
149 61 148 resubcld φ J 1
150 149 adantr φ i L J 1 J 1
151 elfzle2 i L J 1 i J 1
152 151 adantl φ i L J 1 i J 1
153 61 lem1d φ J 1 J
154 153 adantr φ i L J 1 J 1 J
155 144 150 145 152 154 letrd φ i L J 1 i J
156 elfzle2 J L M J M
157 10 156 syl φ J M
158 157 adantr φ i L J 1 J M
159 144 145 147 155 158 letrd φ i L J 1 i M
160 142 159 jca φ i L J 1 L i i M
161 140 160 74 sylanbrc φ i L J 1 i L M
162 161 6 syldan φ i L J 1 B i
163 162 adantlr φ ¬ J = L i L J 1 B i
164 132 135 163 chvarfv φ ¬ J = L a L J 1 B a
165 38 adantl φ ¬ J = L a j a j
166 115 164 165 seqcl φ ¬ J = L seq L × B J 1
167 1red φ ¬ J = L 1
168 eqid seq J × B = seq J × B
169 43 adantr φ ¬ J = L M J
170 eluzfz2 M J M J M
171 43 170 syl φ M J M
172 171 adantr φ ¬ J = L M J M
173 76 adantlr φ ¬ J = L i J M B i
174 75 7 syldan φ i J M 0 B i
175 174 adantlr φ ¬ J = L i J M 0 B i
176 75 8 syldan φ i J M B i 1
177 176 adantlr φ ¬ J = L i J M B i 1
178 1 117 168 99 169 172 173 175 177 fmul01 φ ¬ J = L 0 seq J × B M seq J × B M 1
179 178 simpld φ ¬ J = L 0 seq J × B M
180 eqid seq L × B = seq L × B
181 5 adantr φ ¬ J = L M L
182 1zzd φ 1
183 60 182 zsubcld φ J 1
184 4 52 183 3jca φ L M J 1
185 184 adantr φ ¬ J = L L M J 1
186 149 61 146 3jca φ J 1 J M
187 186 adantr φ ¬ J = L J 1 J M
188 61 adantr φ ¬ J = L J
189 188 lem1d φ ¬ J = L J 1 J
190 157 adantr φ ¬ J = L J M
191 189 190 jca φ ¬ J = L J 1 J J M
192 letr J 1 J M J 1 J J M J 1 M
193 187 191 192 sylc φ ¬ J = L J 1 M
194 113 193 jca φ ¬ J = L L J 1 J 1 M
195 elfz2 J 1 L M L M J 1 L J 1 J 1 M
196 185 194 195 sylanbrc φ ¬ J = L J 1 L M
197 7 adantlr φ ¬ J = L i L M 0 B i
198 8 adantlr φ ¬ J = L i L M B i 1
199 1 117 180 98 181 196 122 197 198 fmul01 φ ¬ J = L 0 seq L × B J 1 seq L × B J 1 1
200 199 simprd φ ¬ J = L seq L × B J 1 1
201 166 167 79 179 200 lemul1ad φ ¬ J = L seq L × B J 1 seq J × B M 1 seq J × B M
202 129 201 eqbrtrd φ ¬ J = L seq L × B M 1 seq J × B M
203 79 recnd φ ¬ J = L seq J × B M
204 203 mulid2d φ ¬ J = L 1 seq J × B M = seq J × B M
205 202 204 breqtrd φ ¬ J = L seq L × B M seq J × B M
206 1 2 168 60 43 76 174 176 9 11 fmul01lt1lem1 φ seq J × B M < E
207 206 adantr φ ¬ J = L seq J × B M < E
208 41 79 81 205 207 lelttrd φ ¬ J = L seq L × B M < E
209 25 208 eqbrtrid φ ¬ J = L A M < E
210 24 209 pm2.61dan φ A M < E