| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fmul01lt1.1 | ⊢ Ⅎ 𝑖 𝐵 | 
						
							| 2 |  | fmul01lt1.2 | ⊢ Ⅎ 𝑖 𝜑 | 
						
							| 3 |  | fmul01lt1.3 | ⊢ Ⅎ 𝑗 𝐴 | 
						
							| 4 |  | fmul01lt1.4 | ⊢ 𝐴  =  seq 1 (  ·  ,  𝐵 ) | 
						
							| 5 |  | fmul01lt1.5 | ⊢ ( 𝜑  →  𝑀  ∈  ℕ ) | 
						
							| 6 |  | fmul01lt1.6 | ⊢ ( 𝜑  →  𝐵 : ( 1 ... 𝑀 ) ⟶ ℝ ) | 
						
							| 7 |  | fmul01lt1.7 | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... 𝑀 ) )  →  0  ≤  ( 𝐵 ‘ 𝑖 ) ) | 
						
							| 8 |  | fmul01lt1.8 | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... 𝑀 ) )  →  ( 𝐵 ‘ 𝑖 )  ≤  1 ) | 
						
							| 9 |  | fmul01lt1.9 | ⊢ ( 𝜑  →  𝐸  ∈  ℝ+ ) | 
						
							| 10 |  | fmul01lt1.10 | ⊢ ( 𝜑  →  ∃ 𝑗  ∈  ( 1 ... 𝑀 ) ( 𝐵 ‘ 𝑗 )  <  𝐸 ) | 
						
							| 11 |  | nfv | ⊢ Ⅎ 𝑗 𝜑 | 
						
							| 12 |  | nfcv | ⊢ Ⅎ 𝑗 𝑀 | 
						
							| 13 | 3 12 | nffv | ⊢ Ⅎ 𝑗 ( 𝐴 ‘ 𝑀 ) | 
						
							| 14 |  | nfcv | ⊢ Ⅎ 𝑗  < | 
						
							| 15 |  | nfcv | ⊢ Ⅎ 𝑗 𝐸 | 
						
							| 16 | 13 14 15 | nfbr | ⊢ Ⅎ 𝑗 ( 𝐴 ‘ 𝑀 )  <  𝐸 | 
						
							| 17 |  | nfv | ⊢ Ⅎ 𝑖 𝑗  ∈  ( 1 ... 𝑀 ) | 
						
							| 18 |  | nfcv | ⊢ Ⅎ 𝑖 𝑗 | 
						
							| 19 | 1 18 | nffv | ⊢ Ⅎ 𝑖 ( 𝐵 ‘ 𝑗 ) | 
						
							| 20 |  | nfcv | ⊢ Ⅎ 𝑖  < | 
						
							| 21 |  | nfcv | ⊢ Ⅎ 𝑖 𝐸 | 
						
							| 22 | 19 20 21 | nfbr | ⊢ Ⅎ 𝑖 ( 𝐵 ‘ 𝑗 )  <  𝐸 | 
						
							| 23 | 2 17 22 | nf3an | ⊢ Ⅎ 𝑖 ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑀 )  ∧  ( 𝐵 ‘ 𝑗 )  <  𝐸 ) | 
						
							| 24 |  | 1zzd | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑀 )  ∧  ( 𝐵 ‘ 𝑗 )  <  𝐸 )  →  1  ∈  ℤ ) | 
						
							| 25 |  | elnnuz | ⊢ ( 𝑀  ∈  ℕ  ↔  𝑀  ∈  ( ℤ≥ ‘ 1 ) ) | 
						
							| 26 | 5 25 | sylib | ⊢ ( 𝜑  →  𝑀  ∈  ( ℤ≥ ‘ 1 ) ) | 
						
							| 27 | 26 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑀 )  ∧  ( 𝐵 ‘ 𝑗 )  <  𝐸 )  →  𝑀  ∈  ( ℤ≥ ‘ 1 ) ) | 
						
							| 28 | 6 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... 𝑀 ) )  →  ( 𝐵 ‘ 𝑖 )  ∈  ℝ ) | 
						
							| 29 | 28 | 3ad2antl1 | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑀 )  ∧  ( 𝐵 ‘ 𝑗 )  <  𝐸 )  ∧  𝑖  ∈  ( 1 ... 𝑀 ) )  →  ( 𝐵 ‘ 𝑖 )  ∈  ℝ ) | 
						
							| 30 | 7 | 3ad2antl1 | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑀 )  ∧  ( 𝐵 ‘ 𝑗 )  <  𝐸 )  ∧  𝑖  ∈  ( 1 ... 𝑀 ) )  →  0  ≤  ( 𝐵 ‘ 𝑖 ) ) | 
						
							| 31 | 8 | 3ad2antl1 | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑀 )  ∧  ( 𝐵 ‘ 𝑗 )  <  𝐸 )  ∧  𝑖  ∈  ( 1 ... 𝑀 ) )  →  ( 𝐵 ‘ 𝑖 )  ≤  1 ) | 
						
							| 32 | 9 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑀 )  ∧  ( 𝐵 ‘ 𝑗 )  <  𝐸 )  →  𝐸  ∈  ℝ+ ) | 
						
							| 33 |  | simp2 | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑀 )  ∧  ( 𝐵 ‘ 𝑗 )  <  𝐸 )  →  𝑗  ∈  ( 1 ... 𝑀 ) ) | 
						
							| 34 |  | simp3 | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑀 )  ∧  ( 𝐵 ‘ 𝑗 )  <  𝐸 )  →  ( 𝐵 ‘ 𝑗 )  <  𝐸 ) | 
						
							| 35 | 1 23 4 24 27 29 30 31 32 33 34 | fmul01lt1lem2 | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 1 ... 𝑀 )  ∧  ( 𝐵 ‘ 𝑗 )  <  𝐸 )  →  ( 𝐴 ‘ 𝑀 )  <  𝐸 ) | 
						
							| 36 | 35 | 3exp | ⊢ ( 𝜑  →  ( 𝑗  ∈  ( 1 ... 𝑀 )  →  ( ( 𝐵 ‘ 𝑗 )  <  𝐸  →  ( 𝐴 ‘ 𝑀 )  <  𝐸 ) ) ) | 
						
							| 37 | 11 16 36 | rexlimd | ⊢ ( 𝜑  →  ( ∃ 𝑗  ∈  ( 1 ... 𝑀 ) ( 𝐵 ‘ 𝑗 )  <  𝐸  →  ( 𝐴 ‘ 𝑀 )  <  𝐸 ) ) | 
						
							| 38 | 10 37 | mpd | ⊢ ( 𝜑  →  ( 𝐴 ‘ 𝑀 )  <  𝐸 ) |