Metamath Proof Explorer


Theorem cncfmptss

Description: A continuous complex function restricted to a subset is continuous, using maps-to notation. (Contributed by Glauco Siliprandi, 29-Jun-2017)

Ref Expression
Hypotheses cncfmptss.1 𝑥 𝐹
cncfmptss.2 ( 𝜑𝐹 ∈ ( 𝐴cn𝐵 ) )
cncfmptss.3 ( 𝜑𝐶𝐴 )
Assertion cncfmptss ( 𝜑 → ( 𝑥𝐶 ↦ ( 𝐹𝑥 ) ) ∈ ( 𝐶cn𝐵 ) )

Proof

Step Hyp Ref Expression
1 cncfmptss.1 𝑥 𝐹
2 cncfmptss.2 ( 𝜑𝐹 ∈ ( 𝐴cn𝐵 ) )
3 cncfmptss.3 ( 𝜑𝐶𝐴 )
4 3 resmptd ( 𝜑 → ( ( 𝑦𝐴 ↦ ( 𝐹𝑦 ) ) ↾ 𝐶 ) = ( 𝑦𝐶 ↦ ( 𝐹𝑦 ) ) )
5 cncff ( 𝐹 ∈ ( 𝐴cn𝐵 ) → 𝐹 : 𝐴𝐵 )
6 2 5 syl ( 𝜑𝐹 : 𝐴𝐵 )
7 6 feqmptd ( 𝜑𝐹 = ( 𝑦𝐴 ↦ ( 𝐹𝑦 ) ) )
8 7 reseq1d ( 𝜑 → ( 𝐹𝐶 ) = ( ( 𝑦𝐴 ↦ ( 𝐹𝑦 ) ) ↾ 𝐶 ) )
9 nfcv 𝑦 𝐹
10 nfcv 𝑦 𝑥
11 9 10 nffv 𝑦 ( 𝐹𝑥 )
12 nfcv 𝑥 𝑦
13 1 12 nffv 𝑥 ( 𝐹𝑦 )
14 fveq2 ( 𝑥 = 𝑦 → ( 𝐹𝑥 ) = ( 𝐹𝑦 ) )
15 11 13 14 cbvmpt ( 𝑥𝐶 ↦ ( 𝐹𝑥 ) ) = ( 𝑦𝐶 ↦ ( 𝐹𝑦 ) )
16 15 a1i ( 𝜑 → ( 𝑥𝐶 ↦ ( 𝐹𝑥 ) ) = ( 𝑦𝐶 ↦ ( 𝐹𝑦 ) ) )
17 4 8 16 3eqtr4rd ( 𝜑 → ( 𝑥𝐶 ↦ ( 𝐹𝑥 ) ) = ( 𝐹𝐶 ) )
18 rescncf ( 𝐶𝐴 → ( 𝐹 ∈ ( 𝐴cn𝐵 ) → ( 𝐹𝐶 ) ∈ ( 𝐶cn𝐵 ) ) )
19 3 2 18 sylc ( 𝜑 → ( 𝐹𝐶 ) ∈ ( 𝐶cn𝐵 ) )
20 17 19 eqeltrd ( 𝜑 → ( 𝑥𝐶 ↦ ( 𝐹𝑥 ) ) ∈ ( 𝐶cn𝐵 ) )