Metamath Proof Explorer


Theorem refsum2cn

Description: The sum of two continuus real functions (from a common topological space) is continuous. (Contributed by Glauco Siliprandi, 20-Apr-2017)

Ref Expression
Hypotheses refsum2cn.1 _xF
refsum2cn.2 _xG
refsum2cn.3 xφ
refsum2cn.4 K=topGenran.
refsum2cn.5 φJTopOnX
refsum2cn.6 φFJCnK
refsum2cn.7 φGJCnK
Assertion refsum2cn φxXFx+GxJCnK

Proof

Step Hyp Ref Expression
1 refsum2cn.1 _xF
2 refsum2cn.2 _xG
3 refsum2cn.3 xφ
4 refsum2cn.4 K=topGenran.
5 refsum2cn.5 φJTopOnX
6 refsum2cn.6 φFJCnK
7 refsum2cn.7 φGJCnK
8 nfcv _x12
9 nfv xk=1
10 9 1 2 nfif _xifk=1FG
11 8 10 nfmpt _xk12ifk=1FG
12 eqid k12ifk=1FG=k12ifk=1FG
13 11 1 2 3 12 4 5 6 7 refsum2cnlem1 φxXFx+GxJCnK