Metamath Proof Explorer


Theorem refsum2cn

Description: The sum of two continuus real functions (from a common topological space) is continuous. (Contributed by Glauco Siliprandi, 20-Apr-2017)

Ref Expression
Hypotheses refsum2cn.1
|- F/_ x F
refsum2cn.2
|- F/_ x G
refsum2cn.3
|- F/ x ph
refsum2cn.4
|- K = ( topGen ` ran (,) )
refsum2cn.5
|- ( ph -> J e. ( TopOn ` X ) )
refsum2cn.6
|- ( ph -> F e. ( J Cn K ) )
refsum2cn.7
|- ( ph -> G e. ( J Cn K ) )
Assertion refsum2cn
|- ( ph -> ( x e. X |-> ( ( F ` x ) + ( G ` x ) ) ) e. ( J Cn K ) )

Proof

Step Hyp Ref Expression
1 refsum2cn.1
 |-  F/_ x F
2 refsum2cn.2
 |-  F/_ x G
3 refsum2cn.3
 |-  F/ x ph
4 refsum2cn.4
 |-  K = ( topGen ` ran (,) )
5 refsum2cn.5
 |-  ( ph -> J e. ( TopOn ` X ) )
6 refsum2cn.6
 |-  ( ph -> F e. ( J Cn K ) )
7 refsum2cn.7
 |-  ( ph -> G e. ( J Cn K ) )
8 nfcv
 |-  F/_ x { 1 , 2 }
9 nfv
 |-  F/ x k = 1
10 9 1 2 nfif
 |-  F/_ x if ( k = 1 , F , G )
11 8 10 nfmpt
 |-  F/_ x ( k e. { 1 , 2 } |-> if ( k = 1 , F , G ) )
12 eqid
 |-  ( k e. { 1 , 2 } |-> if ( k = 1 , F , G ) ) = ( k e. { 1 , 2 } |-> if ( k = 1 , F , G ) )
13 11 1 2 3 12 4 5 6 7 refsum2cnlem1
 |-  ( ph -> ( x e. X |-> ( ( F ` x ) + ( G ` x ) ) ) e. ( J Cn K ) )