Description: The sum of two continuus real functions (from a common topological space) is continuous. (Contributed by Glauco Siliprandi, 20-Apr-2017)
Ref | Expression | ||
---|---|---|---|
Hypotheses | refsum2cn.1 | |- F/_ x F |
|
refsum2cn.2 | |- F/_ x G |
||
refsum2cn.3 | |- F/ x ph |
||
refsum2cn.4 | |- K = ( topGen ` ran (,) ) |
||
refsum2cn.5 | |- ( ph -> J e. ( TopOn ` X ) ) |
||
refsum2cn.6 | |- ( ph -> F e. ( J Cn K ) ) |
||
refsum2cn.7 | |- ( ph -> G e. ( J Cn K ) ) |
||
Assertion | refsum2cn | |- ( ph -> ( x e. X |-> ( ( F ` x ) + ( G ` x ) ) ) e. ( J Cn K ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | refsum2cn.1 | |- F/_ x F |
|
2 | refsum2cn.2 | |- F/_ x G |
|
3 | refsum2cn.3 | |- F/ x ph |
|
4 | refsum2cn.4 | |- K = ( topGen ` ran (,) ) |
|
5 | refsum2cn.5 | |- ( ph -> J e. ( TopOn ` X ) ) |
|
6 | refsum2cn.6 | |- ( ph -> F e. ( J Cn K ) ) |
|
7 | refsum2cn.7 | |- ( ph -> G e. ( J Cn K ) ) |
|
8 | nfcv | |- F/_ x { 1 , 2 } |
|
9 | nfv | |- F/ x k = 1 |
|
10 | 9 1 2 | nfif | |- F/_ x if ( k = 1 , F , G ) |
11 | 8 10 | nfmpt | |- F/_ x ( k e. { 1 , 2 } |-> if ( k = 1 , F , G ) ) |
12 | eqid | |- ( k e. { 1 , 2 } |-> if ( k = 1 , F , G ) ) = ( k e. { 1 , 2 } |-> if ( k = 1 , F , G ) ) |
|
13 | 11 1 2 3 12 4 5 6 7 | refsum2cnlem1 | |- ( ph -> ( x e. X |-> ( ( F ` x ) + ( G ` x ) ) ) e. ( J Cn K ) ) |