| Step |
Hyp |
Ref |
Expression |
| 1 |
|
refsum2cnlem1.1 |
|- F/_ x A |
| 2 |
|
refsum2cnlem1.2 |
|- F/_ x F |
| 3 |
|
refsum2cnlem1.3 |
|- F/_ x G |
| 4 |
|
refsum2cnlem1.4 |
|- F/ x ph |
| 5 |
|
refsum2cnlem1.5 |
|- A = ( k e. { 1 , 2 } |-> if ( k = 1 , F , G ) ) |
| 6 |
|
refsum2cnlem1.6 |
|- K = ( topGen ` ran (,) ) |
| 7 |
|
refsum2cnlem1.7 |
|- ( ph -> J e. ( TopOn ` X ) ) |
| 8 |
|
refsum2cnlem1.8 |
|- ( ph -> F e. ( J Cn K ) ) |
| 9 |
|
refsum2cnlem1.9 |
|- ( ph -> G e. ( J Cn K ) ) |
| 10 |
|
nfmpt1 |
|- F/_ k ( k e. { 1 , 2 } |-> if ( k = 1 , F , G ) ) |
| 11 |
5 10
|
nfcxfr |
|- F/_ k A |
| 12 |
|
nfcv |
|- F/_ k 1 |
| 13 |
11 12
|
nffv |
|- F/_ k ( A ` 1 ) |
| 14 |
|
nfcv |
|- F/_ k x |
| 15 |
13 14
|
nffv |
|- F/_ k ( ( A ` 1 ) ` x ) |
| 16 |
15
|
a1i |
|- ( ( ph /\ x e. X ) -> F/_ k ( ( A ` 1 ) ` x ) ) |
| 17 |
|
nfcv |
|- F/_ k 2 |
| 18 |
11 17
|
nffv |
|- F/_ k ( A ` 2 ) |
| 19 |
18 14
|
nffv |
|- F/_ k ( ( A ` 2 ) ` x ) |
| 20 |
19
|
a1i |
|- ( ( ph /\ x e. X ) -> F/_ k ( ( A ` 2 ) ` x ) ) |
| 21 |
|
1cnd |
|- ( ( ph /\ x e. X ) -> 1 e. CC ) |
| 22 |
|
2cnd |
|- ( ( ph /\ x e. X ) -> 2 e. CC ) |
| 23 |
|
1ex |
|- 1 e. _V |
| 24 |
23
|
prid1 |
|- 1 e. { 1 , 2 } |
| 25 |
8 9
|
ifcld |
|- ( ph -> if ( 1 = 1 , F , G ) e. ( J Cn K ) ) |
| 26 |
|
eqeq1 |
|- ( k = 1 -> ( k = 1 <-> 1 = 1 ) ) |
| 27 |
26
|
ifbid |
|- ( k = 1 -> if ( k = 1 , F , G ) = if ( 1 = 1 , F , G ) ) |
| 28 |
27 5
|
fvmptg |
|- ( ( 1 e. { 1 , 2 } /\ if ( 1 = 1 , F , G ) e. ( J Cn K ) ) -> ( A ` 1 ) = if ( 1 = 1 , F , G ) ) |
| 29 |
24 25 28
|
sylancr |
|- ( ph -> ( A ` 1 ) = if ( 1 = 1 , F , G ) ) |
| 30 |
|
eqid |
|- 1 = 1 |
| 31 |
30
|
iftruei |
|- if ( 1 = 1 , F , G ) = F |
| 32 |
29 31
|
eqtrdi |
|- ( ph -> ( A ` 1 ) = F ) |
| 33 |
32
|
adantr |
|- ( ( ph /\ x e. X ) -> ( A ` 1 ) = F ) |
| 34 |
33
|
fveq1d |
|- ( ( ph /\ x e. X ) -> ( ( A ` 1 ) ` x ) = ( F ` x ) ) |
| 35 |
|
eqid |
|- U. J = U. J |
| 36 |
|
eqid |
|- U. K = U. K |
| 37 |
35 36
|
cnf |
|- ( F e. ( J Cn K ) -> F : U. J --> U. K ) |
| 38 |
8 37
|
syl |
|- ( ph -> F : U. J --> U. K ) |
| 39 |
|
toponuni |
|- ( J e. ( TopOn ` X ) -> X = U. J ) |
| 40 |
7 39
|
syl |
|- ( ph -> X = U. J ) |
| 41 |
40
|
eqcomd |
|- ( ph -> U. J = X ) |
| 42 |
6
|
unieqi |
|- U. K = U. ( topGen ` ran (,) ) |
| 43 |
|
uniretop |
|- RR = U. ( topGen ` ran (,) ) |
| 44 |
42 43
|
eqtr4i |
|- U. K = RR |
| 45 |
44
|
a1i |
|- ( ph -> U. K = RR ) |
| 46 |
41 45
|
feq23d |
|- ( ph -> ( F : U. J --> U. K <-> F : X --> RR ) ) |
| 47 |
38 46
|
mpbid |
|- ( ph -> F : X --> RR ) |
| 48 |
47
|
anim1i |
|- ( ( ph /\ x e. X ) -> ( F : X --> RR /\ x e. X ) ) |
| 49 |
|
ffvelcdm |
|- ( ( F : X --> RR /\ x e. X ) -> ( F ` x ) e. RR ) |
| 50 |
|
recn |
|- ( ( F ` x ) e. RR -> ( F ` x ) e. CC ) |
| 51 |
48 49 50
|
3syl |
|- ( ( ph /\ x e. X ) -> ( F ` x ) e. CC ) |
| 52 |
34 51
|
eqeltrd |
|- ( ( ph /\ x e. X ) -> ( ( A ` 1 ) ` x ) e. CC ) |
| 53 |
|
2ex |
|- 2 e. _V |
| 54 |
53
|
prid2 |
|- 2 e. { 1 , 2 } |
| 55 |
8 9
|
ifcld |
|- ( ph -> if ( 2 = 1 , F , G ) e. ( J Cn K ) ) |
| 56 |
|
eqeq1 |
|- ( k = 2 -> ( k = 1 <-> 2 = 1 ) ) |
| 57 |
56
|
ifbid |
|- ( k = 2 -> if ( k = 1 , F , G ) = if ( 2 = 1 , F , G ) ) |
| 58 |
57 5
|
fvmptg |
|- ( ( 2 e. { 1 , 2 } /\ if ( 2 = 1 , F , G ) e. ( J Cn K ) ) -> ( A ` 2 ) = if ( 2 = 1 , F , G ) ) |
| 59 |
54 55 58
|
sylancr |
|- ( ph -> ( A ` 2 ) = if ( 2 = 1 , F , G ) ) |
| 60 |
|
1ne2 |
|- 1 =/= 2 |
| 61 |
60
|
nesymi |
|- -. 2 = 1 |
| 62 |
61
|
iffalsei |
|- if ( 2 = 1 , F , G ) = G |
| 63 |
59 62
|
eqtrdi |
|- ( ph -> ( A ` 2 ) = G ) |
| 64 |
63
|
adantr |
|- ( ( ph /\ x e. X ) -> ( A ` 2 ) = G ) |
| 65 |
64
|
fveq1d |
|- ( ( ph /\ x e. X ) -> ( ( A ` 2 ) ` x ) = ( G ` x ) ) |
| 66 |
35 36
|
cnf |
|- ( G e. ( J Cn K ) -> G : U. J --> U. K ) |
| 67 |
9 66
|
syl |
|- ( ph -> G : U. J --> U. K ) |
| 68 |
41 45
|
feq23d |
|- ( ph -> ( G : U. J --> U. K <-> G : X --> RR ) ) |
| 69 |
67 68
|
mpbid |
|- ( ph -> G : X --> RR ) |
| 70 |
69
|
anim1i |
|- ( ( ph /\ x e. X ) -> ( G : X --> RR /\ x e. X ) ) |
| 71 |
|
ffvelcdm |
|- ( ( G : X --> RR /\ x e. X ) -> ( G ` x ) e. RR ) |
| 72 |
|
recn |
|- ( ( G ` x ) e. RR -> ( G ` x ) e. CC ) |
| 73 |
70 71 72
|
3syl |
|- ( ( ph /\ x e. X ) -> ( G ` x ) e. CC ) |
| 74 |
65 73
|
eqeltrd |
|- ( ( ph /\ x e. X ) -> ( ( A ` 2 ) ` x ) e. CC ) |
| 75 |
60
|
a1i |
|- ( ( ph /\ x e. X ) -> 1 =/= 2 ) |
| 76 |
|
fveq2 |
|- ( k = 1 -> ( A ` k ) = ( A ` 1 ) ) |
| 77 |
76
|
fveq1d |
|- ( k = 1 -> ( ( A ` k ) ` x ) = ( ( A ` 1 ) ` x ) ) |
| 78 |
77
|
adantl |
|- ( ( ( ph /\ x e. X ) /\ k = 1 ) -> ( ( A ` k ) ` x ) = ( ( A ` 1 ) ` x ) ) |
| 79 |
|
fveq2 |
|- ( k = 2 -> ( A ` k ) = ( A ` 2 ) ) |
| 80 |
79
|
fveq1d |
|- ( k = 2 -> ( ( A ` k ) ` x ) = ( ( A ` 2 ) ` x ) ) |
| 81 |
80
|
adantl |
|- ( ( ( ph /\ x e. X ) /\ k = 2 ) -> ( ( A ` k ) ` x ) = ( ( A ` 2 ) ` x ) ) |
| 82 |
16 20 21 22 52 74 75 78 81
|
sumpair |
|- ( ( ph /\ x e. X ) -> sum_ k e. { 1 , 2 } ( ( A ` k ) ` x ) = ( ( ( A ` 1 ) ` x ) + ( ( A ` 2 ) ` x ) ) ) |
| 83 |
34 65
|
oveq12d |
|- ( ( ph /\ x e. X ) -> ( ( ( A ` 1 ) ` x ) + ( ( A ` 2 ) ` x ) ) = ( ( F ` x ) + ( G ` x ) ) ) |
| 84 |
82 83
|
eqtrd |
|- ( ( ph /\ x e. X ) -> sum_ k e. { 1 , 2 } ( ( A ` k ) ` x ) = ( ( F ` x ) + ( G ` x ) ) ) |
| 85 |
4 84
|
mpteq2da |
|- ( ph -> ( x e. X |-> sum_ k e. { 1 , 2 } ( ( A ` k ) ` x ) ) = ( x e. X |-> ( ( F ` x ) + ( G ` x ) ) ) ) |
| 86 |
|
prfi |
|- { 1 , 2 } e. Fin |
| 87 |
86
|
a1i |
|- ( ph -> { 1 , 2 } e. Fin ) |
| 88 |
|
eqid |
|- X = X |
| 89 |
88
|
ax-gen |
|- A. x X = X |
| 90 |
|
nfcv |
|- F/_ x k |
| 91 |
1 90
|
nffv |
|- F/_ x ( A ` k ) |
| 92 |
91 2
|
nfeq |
|- F/ x ( A ` k ) = F |
| 93 |
|
fveq1 |
|- ( ( A ` k ) = F -> ( ( A ` k ) ` x ) = ( F ` x ) ) |
| 94 |
93
|
a1d |
|- ( ( A ` k ) = F -> ( x e. X -> ( ( A ` k ) ` x ) = ( F ` x ) ) ) |
| 95 |
92 94
|
ralrimi |
|- ( ( A ` k ) = F -> A. x e. X ( ( A ` k ) ` x ) = ( F ` x ) ) |
| 96 |
|
mpteq12f |
|- ( ( A. x X = X /\ A. x e. X ( ( A ` k ) ` x ) = ( F ` x ) ) -> ( x e. X |-> ( ( A ` k ) ` x ) ) = ( x e. X |-> ( F ` x ) ) ) |
| 97 |
89 95 96
|
sylancr |
|- ( ( A ` k ) = F -> ( x e. X |-> ( ( A ` k ) ` x ) ) = ( x e. X |-> ( F ` x ) ) ) |
| 98 |
97
|
adantl |
|- ( ( ph /\ ( A ` k ) = F ) -> ( x e. X |-> ( ( A ` k ) ` x ) ) = ( x e. X |-> ( F ` x ) ) ) |
| 99 |
|
retopon |
|- ( topGen ` ran (,) ) e. ( TopOn ` RR ) |
| 100 |
6 99
|
eqeltri |
|- K e. ( TopOn ` RR ) |
| 101 |
100
|
a1i |
|- ( ph -> K e. ( TopOn ` RR ) ) |
| 102 |
|
cnf2 |
|- ( ( J e. ( TopOn ` X ) /\ K e. ( TopOn ` RR ) /\ F e. ( J Cn K ) ) -> F : X --> RR ) |
| 103 |
7 101 8 102
|
syl3anc |
|- ( ph -> F : X --> RR ) |
| 104 |
103
|
ffnd |
|- ( ph -> F Fn X ) |
| 105 |
2
|
dffn5f |
|- ( F Fn X <-> F = ( x e. X |-> ( F ` x ) ) ) |
| 106 |
104 105
|
sylib |
|- ( ph -> F = ( x e. X |-> ( F ` x ) ) ) |
| 107 |
106
|
adantr |
|- ( ( ph /\ ( A ` k ) = F ) -> F = ( x e. X |-> ( F ` x ) ) ) |
| 108 |
98 107
|
eqtr4d |
|- ( ( ph /\ ( A ` k ) = F ) -> ( x e. X |-> ( ( A ` k ) ` x ) ) = F ) |
| 109 |
8
|
adantr |
|- ( ( ph /\ ( A ` k ) = F ) -> F e. ( J Cn K ) ) |
| 110 |
108 109
|
eqeltrd |
|- ( ( ph /\ ( A ` k ) = F ) -> ( x e. X |-> ( ( A ` k ) ` x ) ) e. ( J Cn K ) ) |
| 111 |
110
|
adantlr |
|- ( ( ( ph /\ k e. { 1 , 2 } ) /\ ( A ` k ) = F ) -> ( x e. X |-> ( ( A ` k ) ` x ) ) e. ( J Cn K ) ) |
| 112 |
91 3
|
nfeq |
|- F/ x ( A ` k ) = G |
| 113 |
|
fveq1 |
|- ( ( A ` k ) = G -> ( ( A ` k ) ` x ) = ( G ` x ) ) |
| 114 |
113
|
a1d |
|- ( ( A ` k ) = G -> ( x e. X -> ( ( A ` k ) ` x ) = ( G ` x ) ) ) |
| 115 |
112 114
|
ralrimi |
|- ( ( A ` k ) = G -> A. x e. X ( ( A ` k ) ` x ) = ( G ` x ) ) |
| 116 |
|
mpteq12f |
|- ( ( A. x X = X /\ A. x e. X ( ( A ` k ) ` x ) = ( G ` x ) ) -> ( x e. X |-> ( ( A ` k ) ` x ) ) = ( x e. X |-> ( G ` x ) ) ) |
| 117 |
89 115 116
|
sylancr |
|- ( ( A ` k ) = G -> ( x e. X |-> ( ( A ` k ) ` x ) ) = ( x e. X |-> ( G ` x ) ) ) |
| 118 |
117
|
adantl |
|- ( ( ph /\ ( A ` k ) = G ) -> ( x e. X |-> ( ( A ` k ) ` x ) ) = ( x e. X |-> ( G ` x ) ) ) |
| 119 |
|
cnf2 |
|- ( ( J e. ( TopOn ` X ) /\ K e. ( TopOn ` RR ) /\ G e. ( J Cn K ) ) -> G : X --> RR ) |
| 120 |
7 101 9 119
|
syl3anc |
|- ( ph -> G : X --> RR ) |
| 121 |
120
|
ffnd |
|- ( ph -> G Fn X ) |
| 122 |
3
|
dffn5f |
|- ( G Fn X <-> G = ( x e. X |-> ( G ` x ) ) ) |
| 123 |
121 122
|
sylib |
|- ( ph -> G = ( x e. X |-> ( G ` x ) ) ) |
| 124 |
123
|
adantr |
|- ( ( ph /\ ( A ` k ) = G ) -> G = ( x e. X |-> ( G ` x ) ) ) |
| 125 |
118 124
|
eqtr4d |
|- ( ( ph /\ ( A ` k ) = G ) -> ( x e. X |-> ( ( A ` k ) ` x ) ) = G ) |
| 126 |
9
|
adantr |
|- ( ( ph /\ ( A ` k ) = G ) -> G e. ( J Cn K ) ) |
| 127 |
125 126
|
eqeltrd |
|- ( ( ph /\ ( A ` k ) = G ) -> ( x e. X |-> ( ( A ` k ) ` x ) ) e. ( J Cn K ) ) |
| 128 |
127
|
adantlr |
|- ( ( ( ph /\ k e. { 1 , 2 } ) /\ ( A ` k ) = G ) -> ( x e. X |-> ( ( A ` k ) ` x ) ) e. ( J Cn K ) ) |
| 129 |
|
simpr |
|- ( ( ph /\ k e. { 1 , 2 } ) -> k e. { 1 , 2 } ) |
| 130 |
8 9
|
ifcld |
|- ( ph -> if ( k = 1 , F , G ) e. ( J Cn K ) ) |
| 131 |
130
|
adantr |
|- ( ( ph /\ k e. { 1 , 2 } ) -> if ( k = 1 , F , G ) e. ( J Cn K ) ) |
| 132 |
5
|
fvmpt2 |
|- ( ( k e. { 1 , 2 } /\ if ( k = 1 , F , G ) e. ( J Cn K ) ) -> ( A ` k ) = if ( k = 1 , F , G ) ) |
| 133 |
129 131 132
|
syl2anc |
|- ( ( ph /\ k e. { 1 , 2 } ) -> ( A ` k ) = if ( k = 1 , F , G ) ) |
| 134 |
|
iftrue |
|- ( k = 1 -> if ( k = 1 , F , G ) = F ) |
| 135 |
133 134
|
sylan9eq |
|- ( ( ( ph /\ k e. { 1 , 2 } ) /\ k = 1 ) -> ( A ` k ) = F ) |
| 136 |
135
|
orcd |
|- ( ( ( ph /\ k e. { 1 , 2 } ) /\ k = 1 ) -> ( ( A ` k ) = F \/ ( A ` k ) = G ) ) |
| 137 |
133
|
adantr |
|- ( ( ( ph /\ k e. { 1 , 2 } ) /\ k = 2 ) -> ( A ` k ) = if ( k = 1 , F , G ) ) |
| 138 |
|
neeq2 |
|- ( k = 2 -> ( 1 =/= k <-> 1 =/= 2 ) ) |
| 139 |
60 138
|
mpbiri |
|- ( k = 2 -> 1 =/= k ) |
| 140 |
139
|
necomd |
|- ( k = 2 -> k =/= 1 ) |
| 141 |
140
|
neneqd |
|- ( k = 2 -> -. k = 1 ) |
| 142 |
141
|
adantl |
|- ( ( ( ph /\ k e. { 1 , 2 } ) /\ k = 2 ) -> -. k = 1 ) |
| 143 |
142
|
iffalsed |
|- ( ( ( ph /\ k e. { 1 , 2 } ) /\ k = 2 ) -> if ( k = 1 , F , G ) = G ) |
| 144 |
137 143
|
eqtrd |
|- ( ( ( ph /\ k e. { 1 , 2 } ) /\ k = 2 ) -> ( A ` k ) = G ) |
| 145 |
144
|
olcd |
|- ( ( ( ph /\ k e. { 1 , 2 } ) /\ k = 2 ) -> ( ( A ` k ) = F \/ ( A ` k ) = G ) ) |
| 146 |
|
elpri |
|- ( k e. { 1 , 2 } -> ( k = 1 \/ k = 2 ) ) |
| 147 |
146
|
adantl |
|- ( ( ph /\ k e. { 1 , 2 } ) -> ( k = 1 \/ k = 2 ) ) |
| 148 |
136 145 147
|
mpjaodan |
|- ( ( ph /\ k e. { 1 , 2 } ) -> ( ( A ` k ) = F \/ ( A ` k ) = G ) ) |
| 149 |
111 128 148
|
mpjaodan |
|- ( ( ph /\ k e. { 1 , 2 } ) -> ( x e. X |-> ( ( A ` k ) ` x ) ) e. ( J Cn K ) ) |
| 150 |
4 6 7 87 149
|
refsumcn |
|- ( ph -> ( x e. X |-> sum_ k e. { 1 , 2 } ( ( A ` k ) ` x ) ) e. ( J Cn K ) ) |
| 151 |
85 150
|
eqeltrrd |
|- ( ph -> ( x e. X |-> ( ( F ` x ) + ( G ` x ) ) ) e. ( J Cn K ) ) |