| Step |
Hyp |
Ref |
Expression |
| 1 |
|
refsum2cnlem1.1 |
|
| 2 |
|
refsum2cnlem1.2 |
|
| 3 |
|
refsum2cnlem1.3 |
|
| 4 |
|
refsum2cnlem1.4 |
|
| 5 |
|
refsum2cnlem1.5 |
|
| 6 |
|
refsum2cnlem1.6 |
|
| 7 |
|
refsum2cnlem1.7 |
|
| 8 |
|
refsum2cnlem1.8 |
|
| 9 |
|
refsum2cnlem1.9 |
|
| 10 |
|
nfmpt1 |
|
| 11 |
5 10
|
nfcxfr |
|
| 12 |
|
nfcv |
|
| 13 |
11 12
|
nffv |
|
| 14 |
|
nfcv |
|
| 15 |
13 14
|
nffv |
|
| 16 |
15
|
a1i |
|
| 17 |
|
nfcv |
|
| 18 |
11 17
|
nffv |
|
| 19 |
18 14
|
nffv |
|
| 20 |
19
|
a1i |
|
| 21 |
|
1cnd |
|
| 22 |
|
2cnd |
|
| 23 |
|
1ex |
|
| 24 |
23
|
prid1 |
|
| 25 |
8 9
|
ifcld |
|
| 26 |
|
eqeq1 |
|
| 27 |
26
|
ifbid |
|
| 28 |
27 5
|
fvmptg |
|
| 29 |
24 25 28
|
sylancr |
|
| 30 |
|
eqid |
|
| 31 |
30
|
iftruei |
|
| 32 |
29 31
|
eqtrdi |
|
| 33 |
32
|
adantr |
|
| 34 |
33
|
fveq1d |
|
| 35 |
|
eqid |
|
| 36 |
|
eqid |
|
| 37 |
35 36
|
cnf |
|
| 38 |
8 37
|
syl |
|
| 39 |
|
toponuni |
|
| 40 |
7 39
|
syl |
|
| 41 |
40
|
eqcomd |
|
| 42 |
6
|
unieqi |
|
| 43 |
|
uniretop |
|
| 44 |
42 43
|
eqtr4i |
|
| 45 |
44
|
a1i |
|
| 46 |
41 45
|
feq23d |
|
| 47 |
38 46
|
mpbid |
|
| 48 |
47
|
anim1i |
|
| 49 |
|
ffvelcdm |
|
| 50 |
|
recn |
|
| 51 |
48 49 50
|
3syl |
|
| 52 |
34 51
|
eqeltrd |
|
| 53 |
|
2ex |
|
| 54 |
53
|
prid2 |
|
| 55 |
8 9
|
ifcld |
|
| 56 |
|
eqeq1 |
|
| 57 |
56
|
ifbid |
|
| 58 |
57 5
|
fvmptg |
|
| 59 |
54 55 58
|
sylancr |
|
| 60 |
|
1ne2 |
|
| 61 |
60
|
nesymi |
|
| 62 |
61
|
iffalsei |
|
| 63 |
59 62
|
eqtrdi |
|
| 64 |
63
|
adantr |
|
| 65 |
64
|
fveq1d |
|
| 66 |
35 36
|
cnf |
|
| 67 |
9 66
|
syl |
|
| 68 |
41 45
|
feq23d |
|
| 69 |
67 68
|
mpbid |
|
| 70 |
69
|
anim1i |
|
| 71 |
|
ffvelcdm |
|
| 72 |
|
recn |
|
| 73 |
70 71 72
|
3syl |
|
| 74 |
65 73
|
eqeltrd |
|
| 75 |
60
|
a1i |
|
| 76 |
|
fveq2 |
|
| 77 |
76
|
fveq1d |
|
| 78 |
77
|
adantl |
|
| 79 |
|
fveq2 |
|
| 80 |
79
|
fveq1d |
|
| 81 |
80
|
adantl |
|
| 82 |
16 20 21 22 52 74 75 78 81
|
sumpair |
|
| 83 |
34 65
|
oveq12d |
|
| 84 |
82 83
|
eqtrd |
|
| 85 |
4 84
|
mpteq2da |
|
| 86 |
|
prfi |
|
| 87 |
86
|
a1i |
|
| 88 |
|
eqid |
|
| 89 |
88
|
ax-gen |
|
| 90 |
|
nfcv |
|
| 91 |
1 90
|
nffv |
|
| 92 |
91 2
|
nfeq |
|
| 93 |
|
fveq1 |
|
| 94 |
93
|
a1d |
|
| 95 |
92 94
|
ralrimi |
|
| 96 |
|
mpteq12f |
|
| 97 |
89 95 96
|
sylancr |
|
| 98 |
97
|
adantl |
|
| 99 |
|
retopon |
|
| 100 |
6 99
|
eqeltri |
|
| 101 |
100
|
a1i |
|
| 102 |
|
cnf2 |
|
| 103 |
7 101 8 102
|
syl3anc |
|
| 104 |
103
|
ffnd |
|
| 105 |
2
|
dffn5f |
|
| 106 |
104 105
|
sylib |
|
| 107 |
106
|
adantr |
|
| 108 |
98 107
|
eqtr4d |
|
| 109 |
8
|
adantr |
|
| 110 |
108 109
|
eqeltrd |
|
| 111 |
110
|
adantlr |
|
| 112 |
91 3
|
nfeq |
|
| 113 |
|
fveq1 |
|
| 114 |
113
|
a1d |
|
| 115 |
112 114
|
ralrimi |
|
| 116 |
|
mpteq12f |
|
| 117 |
89 115 116
|
sylancr |
|
| 118 |
117
|
adantl |
|
| 119 |
|
cnf2 |
|
| 120 |
7 101 9 119
|
syl3anc |
|
| 121 |
120
|
ffnd |
|
| 122 |
3
|
dffn5f |
|
| 123 |
121 122
|
sylib |
|
| 124 |
123
|
adantr |
|
| 125 |
118 124
|
eqtr4d |
|
| 126 |
9
|
adantr |
|
| 127 |
125 126
|
eqeltrd |
|
| 128 |
127
|
adantlr |
|
| 129 |
|
simpr |
|
| 130 |
8 9
|
ifcld |
|
| 131 |
130
|
adantr |
|
| 132 |
5
|
fvmpt2 |
|
| 133 |
129 131 132
|
syl2anc |
|
| 134 |
|
iftrue |
|
| 135 |
133 134
|
sylan9eq |
|
| 136 |
135
|
orcd |
|
| 137 |
133
|
adantr |
|
| 138 |
|
neeq2 |
|
| 139 |
60 138
|
mpbiri |
|
| 140 |
139
|
necomd |
|
| 141 |
140
|
neneqd |
|
| 142 |
141
|
adantl |
|
| 143 |
142
|
iffalsed |
|
| 144 |
137 143
|
eqtrd |
|
| 145 |
144
|
olcd |
|
| 146 |
|
elpri |
|
| 147 |
146
|
adantl |
|
| 148 |
136 145 147
|
mpjaodan |
|
| 149 |
111 128 148
|
mpjaodan |
|
| 150 |
4 6 7 87 149
|
refsumcn |
|
| 151 |
85 150
|
eqeltrrd |
|