| Step |
Hyp |
Ref |
Expression |
| 1 |
|
refsumcn.1 |
|
| 2 |
|
refsumcn.2 |
|
| 3 |
|
refsumcn.3 |
|
| 4 |
|
refsumcn.4 |
|
| 5 |
|
refsumcn.5 |
|
| 6 |
|
eqid |
|
| 7 |
|
tgioo4 |
|
| 8 |
2 7
|
eqtri |
|
| 9 |
8
|
oveq2i |
|
| 10 |
5 9
|
eleqtrdi |
|
| 11 |
6
|
cnfldtopon |
|
| 12 |
11
|
a1i |
|
| 13 |
3
|
adantr |
|
| 14 |
|
retopon |
|
| 15 |
2 14
|
eqeltri |
|
| 16 |
15
|
a1i |
|
| 17 |
|
cnf2 |
|
| 18 |
13 16 5 17
|
syl3anc |
|
| 19 |
18
|
frnd |
|
| 20 |
|
ax-resscn |
|
| 21 |
20
|
a1i |
|
| 22 |
|
cnrest2 |
|
| 23 |
12 19 21 22
|
syl3anc |
|
| 24 |
10 23
|
mpbird |
|
| 25 |
6 3 4 24
|
fsumcnf |
|
| 26 |
11
|
a1i |
|
| 27 |
4
|
adantr |
|
| 28 |
|
simpll |
|
| 29 |
|
simpr |
|
| 30 |
28 29
|
jca |
|
| 31 |
|
simplr |
|
| 32 |
|
eqid |
|
| 33 |
32
|
fmpt |
|
| 34 |
18 33
|
sylibr |
|
| 35 |
|
rsp |
|
| 36 |
34 35
|
syl |
|
| 37 |
30 31 36
|
sylc |
|
| 38 |
27 37
|
fsumrecl |
|
| 39 |
38
|
ex |
|
| 40 |
1 39
|
ralrimi |
|
| 41 |
|
eqid |
|
| 42 |
41
|
fnmpt |
|
| 43 |
40 42
|
syl |
|
| 44 |
|
nfcv |
|
| 45 |
|
nfcv |
|
| 46 |
|
nfmpt1 |
|
| 47 |
44 45 46
|
fvelrnbf |
|
| 48 |
43 47
|
syl |
|
| 49 |
48
|
biimpa |
|
| 50 |
46
|
nfrn |
|
| 51 |
50
|
nfcri |
|
| 52 |
1 51
|
nfan |
|
| 53 |
|
nfcv |
|
| 54 |
53
|
nfcri |
|
| 55 |
|
simpr |
|
| 56 |
55 38
|
jca |
|
| 57 |
41
|
fvmpt2 |
|
| 58 |
56 57
|
syl |
|
| 59 |
58
|
3adant3 |
|
| 60 |
|
simp3 |
|
| 61 |
59 60
|
eqtr3d |
|
| 62 |
38
|
3adant3 |
|
| 63 |
61 62
|
eqeltrrd |
|
| 64 |
63
|
3adant1r |
|
| 65 |
64
|
3exp |
|
| 66 |
52 54 65
|
rexlimd |
|
| 67 |
49 66
|
mpd |
|
| 68 |
67
|
ex |
|
| 69 |
68
|
ssrdv |
|
| 70 |
20
|
a1i |
|
| 71 |
|
cnrest2 |
|
| 72 |
26 69 70 71
|
syl3anc |
|
| 73 |
25 72
|
mpbid |
|
| 74 |
73 9
|
eleqtrrdi |
|