Metamath Proof Explorer


Theorem fsumcnf

Description: A finite sum of functions to complex numbers from a common topological space is continuous, without disjoint var constraint x ph. The class expression for B normally contains free variables k and x to index it. (Contributed by Glauco Siliprandi, 20-Apr-2017)

Ref Expression
Hypotheses fsumcnf.1 K=TopOpenfld
fsumcnf.2 φJTopOnX
fsumcnf.3 φAFin
fsumcnf.4 φkAxXBJCnK
Assertion fsumcnf φxXkABJCnK

Proof

Step Hyp Ref Expression
1 fsumcnf.1 K=TopOpenfld
2 fsumcnf.2 φJTopOnX
3 fsumcnf.3 φAFin
4 fsumcnf.4 φkAxXBJCnK
5 nfcv _ykAB
6 nfcv _xA
7 nfcsb1v _xy/xB
8 6 7 nfsum _xkAy/xB
9 csbeq1a x=yB=y/xB
10 9 sumeq2sdv x=ykAB=kAy/xB
11 5 8 10 cbvmpt xXkAB=yXkAy/xB
12 nfcv _yB
13 12 7 9 cbvmpt xXB=yXy/xB
14 13 4 eqeltrrid φkAyXy/xBJCnK
15 1 2 3 14 fsumcn φyXkAy/xBJCnK
16 11 15 eqeltrid φxXkABJCnK