Metamath Proof Explorer


Theorem fsumcnf

Description: A finite sum of functions to complex numbers from a common topological space is continuous, without disjoint var constraint x ph. The class expression for B normally contains free variables k and x to index it. (Contributed by Glauco Siliprandi, 20-Apr-2017)

Ref Expression
Hypotheses fsumcnf.1
|- K = ( TopOpen ` CCfld )
fsumcnf.2
|- ( ph -> J e. ( TopOn ` X ) )
fsumcnf.3
|- ( ph -> A e. Fin )
fsumcnf.4
|- ( ( ph /\ k e. A ) -> ( x e. X |-> B ) e. ( J Cn K ) )
Assertion fsumcnf
|- ( ph -> ( x e. X |-> sum_ k e. A B ) e. ( J Cn K ) )

Proof

Step Hyp Ref Expression
1 fsumcnf.1
 |-  K = ( TopOpen ` CCfld )
2 fsumcnf.2
 |-  ( ph -> J e. ( TopOn ` X ) )
3 fsumcnf.3
 |-  ( ph -> A e. Fin )
4 fsumcnf.4
 |-  ( ( ph /\ k e. A ) -> ( x e. X |-> B ) e. ( J Cn K ) )
5 nfcv
 |-  F/_ y sum_ k e. A B
6 nfcv
 |-  F/_ x A
7 nfcsb1v
 |-  F/_ x [_ y / x ]_ B
8 6 7 nfsum
 |-  F/_ x sum_ k e. A [_ y / x ]_ B
9 csbeq1a
 |-  ( x = y -> B = [_ y / x ]_ B )
10 9 sumeq2sdv
 |-  ( x = y -> sum_ k e. A B = sum_ k e. A [_ y / x ]_ B )
11 5 8 10 cbvmpt
 |-  ( x e. X |-> sum_ k e. A B ) = ( y e. X |-> sum_ k e. A [_ y / x ]_ B )
12 nfcv
 |-  F/_ y B
13 12 7 9 cbvmpt
 |-  ( x e. X |-> B ) = ( y e. X |-> [_ y / x ]_ B )
14 13 4 eqeltrrid
 |-  ( ( ph /\ k e. A ) -> ( y e. X |-> [_ y / x ]_ B ) e. ( J Cn K ) )
15 1 2 3 14 fsumcn
 |-  ( ph -> ( y e. X |-> sum_ k e. A [_ y / x ]_ B ) e. ( J Cn K ) )
16 11 15 eqeltrid
 |-  ( ph -> ( x e. X |-> sum_ k e. A B ) e. ( J Cn K ) )