| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fsumcnf.1 |
|- K = ( TopOpen ` CCfld ) |
| 2 |
|
fsumcnf.2 |
|- ( ph -> J e. ( TopOn ` X ) ) |
| 3 |
|
fsumcnf.3 |
|- ( ph -> A e. Fin ) |
| 4 |
|
fsumcnf.4 |
|- ( ( ph /\ k e. A ) -> ( x e. X |-> B ) e. ( J Cn K ) ) |
| 5 |
|
nfcv |
|- F/_ y sum_ k e. A B |
| 6 |
|
nfcv |
|- F/_ x A |
| 7 |
|
nfcsb1v |
|- F/_ x [_ y / x ]_ B |
| 8 |
6 7
|
nfsum |
|- F/_ x sum_ k e. A [_ y / x ]_ B |
| 9 |
|
csbeq1a |
|- ( x = y -> B = [_ y / x ]_ B ) |
| 10 |
9
|
sumeq2sdv |
|- ( x = y -> sum_ k e. A B = sum_ k e. A [_ y / x ]_ B ) |
| 11 |
5 8 10
|
cbvmpt |
|- ( x e. X |-> sum_ k e. A B ) = ( y e. X |-> sum_ k e. A [_ y / x ]_ B ) |
| 12 |
|
nfcv |
|- F/_ y B |
| 13 |
12 7 9
|
cbvmpt |
|- ( x e. X |-> B ) = ( y e. X |-> [_ y / x ]_ B ) |
| 14 |
13 4
|
eqeltrrid |
|- ( ( ph /\ k e. A ) -> ( y e. X |-> [_ y / x ]_ B ) e. ( J Cn K ) ) |
| 15 |
1 2 3 14
|
fsumcn |
|- ( ph -> ( y e. X |-> sum_ k e. A [_ y / x ]_ B ) e. ( J Cn K ) ) |
| 16 |
11 15
|
eqeltrid |
|- ( ph -> ( x e. X |-> sum_ k e. A B ) e. ( J Cn K ) ) |