| Step |
Hyp |
Ref |
Expression |
| 1 |
|
refsum2cnlem1.1 |
⊢ Ⅎ 𝑥 𝐴 |
| 2 |
|
refsum2cnlem1.2 |
⊢ Ⅎ 𝑥 𝐹 |
| 3 |
|
refsum2cnlem1.3 |
⊢ Ⅎ 𝑥 𝐺 |
| 4 |
|
refsum2cnlem1.4 |
⊢ Ⅎ 𝑥 𝜑 |
| 5 |
|
refsum2cnlem1.5 |
⊢ 𝐴 = ( 𝑘 ∈ { 1 , 2 } ↦ if ( 𝑘 = 1 , 𝐹 , 𝐺 ) ) |
| 6 |
|
refsum2cnlem1.6 |
⊢ 𝐾 = ( topGen ‘ ran (,) ) |
| 7 |
|
refsum2cnlem1.7 |
⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
| 8 |
|
refsum2cnlem1.8 |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) |
| 9 |
|
refsum2cnlem1.9 |
⊢ ( 𝜑 → 𝐺 ∈ ( 𝐽 Cn 𝐾 ) ) |
| 10 |
|
nfmpt1 |
⊢ Ⅎ 𝑘 ( 𝑘 ∈ { 1 , 2 } ↦ if ( 𝑘 = 1 , 𝐹 , 𝐺 ) ) |
| 11 |
5 10
|
nfcxfr |
⊢ Ⅎ 𝑘 𝐴 |
| 12 |
|
nfcv |
⊢ Ⅎ 𝑘 1 |
| 13 |
11 12
|
nffv |
⊢ Ⅎ 𝑘 ( 𝐴 ‘ 1 ) |
| 14 |
|
nfcv |
⊢ Ⅎ 𝑘 𝑥 |
| 15 |
13 14
|
nffv |
⊢ Ⅎ 𝑘 ( ( 𝐴 ‘ 1 ) ‘ 𝑥 ) |
| 16 |
15
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → Ⅎ 𝑘 ( ( 𝐴 ‘ 1 ) ‘ 𝑥 ) ) |
| 17 |
|
nfcv |
⊢ Ⅎ 𝑘 2 |
| 18 |
11 17
|
nffv |
⊢ Ⅎ 𝑘 ( 𝐴 ‘ 2 ) |
| 19 |
18 14
|
nffv |
⊢ Ⅎ 𝑘 ( ( 𝐴 ‘ 2 ) ‘ 𝑥 ) |
| 20 |
19
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → Ⅎ 𝑘 ( ( 𝐴 ‘ 2 ) ‘ 𝑥 ) ) |
| 21 |
|
1cnd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 1 ∈ ℂ ) |
| 22 |
|
2cnd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 2 ∈ ℂ ) |
| 23 |
|
1ex |
⊢ 1 ∈ V |
| 24 |
23
|
prid1 |
⊢ 1 ∈ { 1 , 2 } |
| 25 |
8 9
|
ifcld |
⊢ ( 𝜑 → if ( 1 = 1 , 𝐹 , 𝐺 ) ∈ ( 𝐽 Cn 𝐾 ) ) |
| 26 |
|
eqeq1 |
⊢ ( 𝑘 = 1 → ( 𝑘 = 1 ↔ 1 = 1 ) ) |
| 27 |
26
|
ifbid |
⊢ ( 𝑘 = 1 → if ( 𝑘 = 1 , 𝐹 , 𝐺 ) = if ( 1 = 1 , 𝐹 , 𝐺 ) ) |
| 28 |
27 5
|
fvmptg |
⊢ ( ( 1 ∈ { 1 , 2 } ∧ if ( 1 = 1 , 𝐹 , 𝐺 ) ∈ ( 𝐽 Cn 𝐾 ) ) → ( 𝐴 ‘ 1 ) = if ( 1 = 1 , 𝐹 , 𝐺 ) ) |
| 29 |
24 25 28
|
sylancr |
⊢ ( 𝜑 → ( 𝐴 ‘ 1 ) = if ( 1 = 1 , 𝐹 , 𝐺 ) ) |
| 30 |
|
eqid |
⊢ 1 = 1 |
| 31 |
30
|
iftruei |
⊢ if ( 1 = 1 , 𝐹 , 𝐺 ) = 𝐹 |
| 32 |
29 31
|
eqtrdi |
⊢ ( 𝜑 → ( 𝐴 ‘ 1 ) = 𝐹 ) |
| 33 |
32
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( 𝐴 ‘ 1 ) = 𝐹 ) |
| 34 |
33
|
fveq1d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( ( 𝐴 ‘ 1 ) ‘ 𝑥 ) = ( 𝐹 ‘ 𝑥 ) ) |
| 35 |
|
eqid |
⊢ ∪ 𝐽 = ∪ 𝐽 |
| 36 |
|
eqid |
⊢ ∪ 𝐾 = ∪ 𝐾 |
| 37 |
35 36
|
cnf |
⊢ ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) → 𝐹 : ∪ 𝐽 ⟶ ∪ 𝐾 ) |
| 38 |
8 37
|
syl |
⊢ ( 𝜑 → 𝐹 : ∪ 𝐽 ⟶ ∪ 𝐾 ) |
| 39 |
|
toponuni |
⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → 𝑋 = ∪ 𝐽 ) |
| 40 |
7 39
|
syl |
⊢ ( 𝜑 → 𝑋 = ∪ 𝐽 ) |
| 41 |
40
|
eqcomd |
⊢ ( 𝜑 → ∪ 𝐽 = 𝑋 ) |
| 42 |
6
|
unieqi |
⊢ ∪ 𝐾 = ∪ ( topGen ‘ ran (,) ) |
| 43 |
|
uniretop |
⊢ ℝ = ∪ ( topGen ‘ ran (,) ) |
| 44 |
42 43
|
eqtr4i |
⊢ ∪ 𝐾 = ℝ |
| 45 |
44
|
a1i |
⊢ ( 𝜑 → ∪ 𝐾 = ℝ ) |
| 46 |
41 45
|
feq23d |
⊢ ( 𝜑 → ( 𝐹 : ∪ 𝐽 ⟶ ∪ 𝐾 ↔ 𝐹 : 𝑋 ⟶ ℝ ) ) |
| 47 |
38 46
|
mpbid |
⊢ ( 𝜑 → 𝐹 : 𝑋 ⟶ ℝ ) |
| 48 |
47
|
anim1i |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( 𝐹 : 𝑋 ⟶ ℝ ∧ 𝑥 ∈ 𝑋 ) ) |
| 49 |
|
ffvelcdm |
⊢ ( ( 𝐹 : 𝑋 ⟶ ℝ ∧ 𝑥 ∈ 𝑋 ) → ( 𝐹 ‘ 𝑥 ) ∈ ℝ ) |
| 50 |
|
recn |
⊢ ( ( 𝐹 ‘ 𝑥 ) ∈ ℝ → ( 𝐹 ‘ 𝑥 ) ∈ ℂ ) |
| 51 |
48 49 50
|
3syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( 𝐹 ‘ 𝑥 ) ∈ ℂ ) |
| 52 |
34 51
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( ( 𝐴 ‘ 1 ) ‘ 𝑥 ) ∈ ℂ ) |
| 53 |
|
2ex |
⊢ 2 ∈ V |
| 54 |
53
|
prid2 |
⊢ 2 ∈ { 1 , 2 } |
| 55 |
8 9
|
ifcld |
⊢ ( 𝜑 → if ( 2 = 1 , 𝐹 , 𝐺 ) ∈ ( 𝐽 Cn 𝐾 ) ) |
| 56 |
|
eqeq1 |
⊢ ( 𝑘 = 2 → ( 𝑘 = 1 ↔ 2 = 1 ) ) |
| 57 |
56
|
ifbid |
⊢ ( 𝑘 = 2 → if ( 𝑘 = 1 , 𝐹 , 𝐺 ) = if ( 2 = 1 , 𝐹 , 𝐺 ) ) |
| 58 |
57 5
|
fvmptg |
⊢ ( ( 2 ∈ { 1 , 2 } ∧ if ( 2 = 1 , 𝐹 , 𝐺 ) ∈ ( 𝐽 Cn 𝐾 ) ) → ( 𝐴 ‘ 2 ) = if ( 2 = 1 , 𝐹 , 𝐺 ) ) |
| 59 |
54 55 58
|
sylancr |
⊢ ( 𝜑 → ( 𝐴 ‘ 2 ) = if ( 2 = 1 , 𝐹 , 𝐺 ) ) |
| 60 |
|
1ne2 |
⊢ 1 ≠ 2 |
| 61 |
60
|
nesymi |
⊢ ¬ 2 = 1 |
| 62 |
61
|
iffalsei |
⊢ if ( 2 = 1 , 𝐹 , 𝐺 ) = 𝐺 |
| 63 |
59 62
|
eqtrdi |
⊢ ( 𝜑 → ( 𝐴 ‘ 2 ) = 𝐺 ) |
| 64 |
63
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( 𝐴 ‘ 2 ) = 𝐺 ) |
| 65 |
64
|
fveq1d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( ( 𝐴 ‘ 2 ) ‘ 𝑥 ) = ( 𝐺 ‘ 𝑥 ) ) |
| 66 |
35 36
|
cnf |
⊢ ( 𝐺 ∈ ( 𝐽 Cn 𝐾 ) → 𝐺 : ∪ 𝐽 ⟶ ∪ 𝐾 ) |
| 67 |
9 66
|
syl |
⊢ ( 𝜑 → 𝐺 : ∪ 𝐽 ⟶ ∪ 𝐾 ) |
| 68 |
41 45
|
feq23d |
⊢ ( 𝜑 → ( 𝐺 : ∪ 𝐽 ⟶ ∪ 𝐾 ↔ 𝐺 : 𝑋 ⟶ ℝ ) ) |
| 69 |
67 68
|
mpbid |
⊢ ( 𝜑 → 𝐺 : 𝑋 ⟶ ℝ ) |
| 70 |
69
|
anim1i |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( 𝐺 : 𝑋 ⟶ ℝ ∧ 𝑥 ∈ 𝑋 ) ) |
| 71 |
|
ffvelcdm |
⊢ ( ( 𝐺 : 𝑋 ⟶ ℝ ∧ 𝑥 ∈ 𝑋 ) → ( 𝐺 ‘ 𝑥 ) ∈ ℝ ) |
| 72 |
|
recn |
⊢ ( ( 𝐺 ‘ 𝑥 ) ∈ ℝ → ( 𝐺 ‘ 𝑥 ) ∈ ℂ ) |
| 73 |
70 71 72
|
3syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( 𝐺 ‘ 𝑥 ) ∈ ℂ ) |
| 74 |
65 73
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( ( 𝐴 ‘ 2 ) ‘ 𝑥 ) ∈ ℂ ) |
| 75 |
60
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 1 ≠ 2 ) |
| 76 |
|
fveq2 |
⊢ ( 𝑘 = 1 → ( 𝐴 ‘ 𝑘 ) = ( 𝐴 ‘ 1 ) ) |
| 77 |
76
|
fveq1d |
⊢ ( 𝑘 = 1 → ( ( 𝐴 ‘ 𝑘 ) ‘ 𝑥 ) = ( ( 𝐴 ‘ 1 ) ‘ 𝑥 ) ) |
| 78 |
77
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑘 = 1 ) → ( ( 𝐴 ‘ 𝑘 ) ‘ 𝑥 ) = ( ( 𝐴 ‘ 1 ) ‘ 𝑥 ) ) |
| 79 |
|
fveq2 |
⊢ ( 𝑘 = 2 → ( 𝐴 ‘ 𝑘 ) = ( 𝐴 ‘ 2 ) ) |
| 80 |
79
|
fveq1d |
⊢ ( 𝑘 = 2 → ( ( 𝐴 ‘ 𝑘 ) ‘ 𝑥 ) = ( ( 𝐴 ‘ 2 ) ‘ 𝑥 ) ) |
| 81 |
80
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑘 = 2 ) → ( ( 𝐴 ‘ 𝑘 ) ‘ 𝑥 ) = ( ( 𝐴 ‘ 2 ) ‘ 𝑥 ) ) |
| 82 |
16 20 21 22 52 74 75 78 81
|
sumpair |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → Σ 𝑘 ∈ { 1 , 2 } ( ( 𝐴 ‘ 𝑘 ) ‘ 𝑥 ) = ( ( ( 𝐴 ‘ 1 ) ‘ 𝑥 ) + ( ( 𝐴 ‘ 2 ) ‘ 𝑥 ) ) ) |
| 83 |
34 65
|
oveq12d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( ( ( 𝐴 ‘ 1 ) ‘ 𝑥 ) + ( ( 𝐴 ‘ 2 ) ‘ 𝑥 ) ) = ( ( 𝐹 ‘ 𝑥 ) + ( 𝐺 ‘ 𝑥 ) ) ) |
| 84 |
82 83
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → Σ 𝑘 ∈ { 1 , 2 } ( ( 𝐴 ‘ 𝑘 ) ‘ 𝑥 ) = ( ( 𝐹 ‘ 𝑥 ) + ( 𝐺 ‘ 𝑥 ) ) ) |
| 85 |
4 84
|
mpteq2da |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ Σ 𝑘 ∈ { 1 , 2 } ( ( 𝐴 ‘ 𝑘 ) ‘ 𝑥 ) ) = ( 𝑥 ∈ 𝑋 ↦ ( ( 𝐹 ‘ 𝑥 ) + ( 𝐺 ‘ 𝑥 ) ) ) ) |
| 86 |
|
prfi |
⊢ { 1 , 2 } ∈ Fin |
| 87 |
86
|
a1i |
⊢ ( 𝜑 → { 1 , 2 } ∈ Fin ) |
| 88 |
|
eqid |
⊢ 𝑋 = 𝑋 |
| 89 |
88
|
ax-gen |
⊢ ∀ 𝑥 𝑋 = 𝑋 |
| 90 |
|
nfcv |
⊢ Ⅎ 𝑥 𝑘 |
| 91 |
1 90
|
nffv |
⊢ Ⅎ 𝑥 ( 𝐴 ‘ 𝑘 ) |
| 92 |
91 2
|
nfeq |
⊢ Ⅎ 𝑥 ( 𝐴 ‘ 𝑘 ) = 𝐹 |
| 93 |
|
fveq1 |
⊢ ( ( 𝐴 ‘ 𝑘 ) = 𝐹 → ( ( 𝐴 ‘ 𝑘 ) ‘ 𝑥 ) = ( 𝐹 ‘ 𝑥 ) ) |
| 94 |
93
|
a1d |
⊢ ( ( 𝐴 ‘ 𝑘 ) = 𝐹 → ( 𝑥 ∈ 𝑋 → ( ( 𝐴 ‘ 𝑘 ) ‘ 𝑥 ) = ( 𝐹 ‘ 𝑥 ) ) ) |
| 95 |
92 94
|
ralrimi |
⊢ ( ( 𝐴 ‘ 𝑘 ) = 𝐹 → ∀ 𝑥 ∈ 𝑋 ( ( 𝐴 ‘ 𝑘 ) ‘ 𝑥 ) = ( 𝐹 ‘ 𝑥 ) ) |
| 96 |
|
mpteq12f |
⊢ ( ( ∀ 𝑥 𝑋 = 𝑋 ∧ ∀ 𝑥 ∈ 𝑋 ( ( 𝐴 ‘ 𝑘 ) ‘ 𝑥 ) = ( 𝐹 ‘ 𝑥 ) ) → ( 𝑥 ∈ 𝑋 ↦ ( ( 𝐴 ‘ 𝑘 ) ‘ 𝑥 ) ) = ( 𝑥 ∈ 𝑋 ↦ ( 𝐹 ‘ 𝑥 ) ) ) |
| 97 |
89 95 96
|
sylancr |
⊢ ( ( 𝐴 ‘ 𝑘 ) = 𝐹 → ( 𝑥 ∈ 𝑋 ↦ ( ( 𝐴 ‘ 𝑘 ) ‘ 𝑥 ) ) = ( 𝑥 ∈ 𝑋 ↦ ( 𝐹 ‘ 𝑥 ) ) ) |
| 98 |
97
|
adantl |
⊢ ( ( 𝜑 ∧ ( 𝐴 ‘ 𝑘 ) = 𝐹 ) → ( 𝑥 ∈ 𝑋 ↦ ( ( 𝐴 ‘ 𝑘 ) ‘ 𝑥 ) ) = ( 𝑥 ∈ 𝑋 ↦ ( 𝐹 ‘ 𝑥 ) ) ) |
| 99 |
|
retopon |
⊢ ( topGen ‘ ran (,) ) ∈ ( TopOn ‘ ℝ ) |
| 100 |
6 99
|
eqeltri |
⊢ 𝐾 ∈ ( TopOn ‘ ℝ ) |
| 101 |
100
|
a1i |
⊢ ( 𝜑 → 𝐾 ∈ ( TopOn ‘ ℝ ) ) |
| 102 |
|
cnf2 |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ ℝ ) ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) → 𝐹 : 𝑋 ⟶ ℝ ) |
| 103 |
7 101 8 102
|
syl3anc |
⊢ ( 𝜑 → 𝐹 : 𝑋 ⟶ ℝ ) |
| 104 |
103
|
ffnd |
⊢ ( 𝜑 → 𝐹 Fn 𝑋 ) |
| 105 |
2
|
dffn5f |
⊢ ( 𝐹 Fn 𝑋 ↔ 𝐹 = ( 𝑥 ∈ 𝑋 ↦ ( 𝐹 ‘ 𝑥 ) ) ) |
| 106 |
104 105
|
sylib |
⊢ ( 𝜑 → 𝐹 = ( 𝑥 ∈ 𝑋 ↦ ( 𝐹 ‘ 𝑥 ) ) ) |
| 107 |
106
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐴 ‘ 𝑘 ) = 𝐹 ) → 𝐹 = ( 𝑥 ∈ 𝑋 ↦ ( 𝐹 ‘ 𝑥 ) ) ) |
| 108 |
98 107
|
eqtr4d |
⊢ ( ( 𝜑 ∧ ( 𝐴 ‘ 𝑘 ) = 𝐹 ) → ( 𝑥 ∈ 𝑋 ↦ ( ( 𝐴 ‘ 𝑘 ) ‘ 𝑥 ) ) = 𝐹 ) |
| 109 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐴 ‘ 𝑘 ) = 𝐹 ) → 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) |
| 110 |
108 109
|
eqeltrd |
⊢ ( ( 𝜑 ∧ ( 𝐴 ‘ 𝑘 ) = 𝐹 ) → ( 𝑥 ∈ 𝑋 ↦ ( ( 𝐴 ‘ 𝑘 ) ‘ 𝑥 ) ) ∈ ( 𝐽 Cn 𝐾 ) ) |
| 111 |
110
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ { 1 , 2 } ) ∧ ( 𝐴 ‘ 𝑘 ) = 𝐹 ) → ( 𝑥 ∈ 𝑋 ↦ ( ( 𝐴 ‘ 𝑘 ) ‘ 𝑥 ) ) ∈ ( 𝐽 Cn 𝐾 ) ) |
| 112 |
91 3
|
nfeq |
⊢ Ⅎ 𝑥 ( 𝐴 ‘ 𝑘 ) = 𝐺 |
| 113 |
|
fveq1 |
⊢ ( ( 𝐴 ‘ 𝑘 ) = 𝐺 → ( ( 𝐴 ‘ 𝑘 ) ‘ 𝑥 ) = ( 𝐺 ‘ 𝑥 ) ) |
| 114 |
113
|
a1d |
⊢ ( ( 𝐴 ‘ 𝑘 ) = 𝐺 → ( 𝑥 ∈ 𝑋 → ( ( 𝐴 ‘ 𝑘 ) ‘ 𝑥 ) = ( 𝐺 ‘ 𝑥 ) ) ) |
| 115 |
112 114
|
ralrimi |
⊢ ( ( 𝐴 ‘ 𝑘 ) = 𝐺 → ∀ 𝑥 ∈ 𝑋 ( ( 𝐴 ‘ 𝑘 ) ‘ 𝑥 ) = ( 𝐺 ‘ 𝑥 ) ) |
| 116 |
|
mpteq12f |
⊢ ( ( ∀ 𝑥 𝑋 = 𝑋 ∧ ∀ 𝑥 ∈ 𝑋 ( ( 𝐴 ‘ 𝑘 ) ‘ 𝑥 ) = ( 𝐺 ‘ 𝑥 ) ) → ( 𝑥 ∈ 𝑋 ↦ ( ( 𝐴 ‘ 𝑘 ) ‘ 𝑥 ) ) = ( 𝑥 ∈ 𝑋 ↦ ( 𝐺 ‘ 𝑥 ) ) ) |
| 117 |
89 115 116
|
sylancr |
⊢ ( ( 𝐴 ‘ 𝑘 ) = 𝐺 → ( 𝑥 ∈ 𝑋 ↦ ( ( 𝐴 ‘ 𝑘 ) ‘ 𝑥 ) ) = ( 𝑥 ∈ 𝑋 ↦ ( 𝐺 ‘ 𝑥 ) ) ) |
| 118 |
117
|
adantl |
⊢ ( ( 𝜑 ∧ ( 𝐴 ‘ 𝑘 ) = 𝐺 ) → ( 𝑥 ∈ 𝑋 ↦ ( ( 𝐴 ‘ 𝑘 ) ‘ 𝑥 ) ) = ( 𝑥 ∈ 𝑋 ↦ ( 𝐺 ‘ 𝑥 ) ) ) |
| 119 |
|
cnf2 |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ ℝ ) ∧ 𝐺 ∈ ( 𝐽 Cn 𝐾 ) ) → 𝐺 : 𝑋 ⟶ ℝ ) |
| 120 |
7 101 9 119
|
syl3anc |
⊢ ( 𝜑 → 𝐺 : 𝑋 ⟶ ℝ ) |
| 121 |
120
|
ffnd |
⊢ ( 𝜑 → 𝐺 Fn 𝑋 ) |
| 122 |
3
|
dffn5f |
⊢ ( 𝐺 Fn 𝑋 ↔ 𝐺 = ( 𝑥 ∈ 𝑋 ↦ ( 𝐺 ‘ 𝑥 ) ) ) |
| 123 |
121 122
|
sylib |
⊢ ( 𝜑 → 𝐺 = ( 𝑥 ∈ 𝑋 ↦ ( 𝐺 ‘ 𝑥 ) ) ) |
| 124 |
123
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐴 ‘ 𝑘 ) = 𝐺 ) → 𝐺 = ( 𝑥 ∈ 𝑋 ↦ ( 𝐺 ‘ 𝑥 ) ) ) |
| 125 |
118 124
|
eqtr4d |
⊢ ( ( 𝜑 ∧ ( 𝐴 ‘ 𝑘 ) = 𝐺 ) → ( 𝑥 ∈ 𝑋 ↦ ( ( 𝐴 ‘ 𝑘 ) ‘ 𝑥 ) ) = 𝐺 ) |
| 126 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐴 ‘ 𝑘 ) = 𝐺 ) → 𝐺 ∈ ( 𝐽 Cn 𝐾 ) ) |
| 127 |
125 126
|
eqeltrd |
⊢ ( ( 𝜑 ∧ ( 𝐴 ‘ 𝑘 ) = 𝐺 ) → ( 𝑥 ∈ 𝑋 ↦ ( ( 𝐴 ‘ 𝑘 ) ‘ 𝑥 ) ) ∈ ( 𝐽 Cn 𝐾 ) ) |
| 128 |
127
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ { 1 , 2 } ) ∧ ( 𝐴 ‘ 𝑘 ) = 𝐺 ) → ( 𝑥 ∈ 𝑋 ↦ ( ( 𝐴 ‘ 𝑘 ) ‘ 𝑥 ) ) ∈ ( 𝐽 Cn 𝐾 ) ) |
| 129 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ { 1 , 2 } ) → 𝑘 ∈ { 1 , 2 } ) |
| 130 |
8 9
|
ifcld |
⊢ ( 𝜑 → if ( 𝑘 = 1 , 𝐹 , 𝐺 ) ∈ ( 𝐽 Cn 𝐾 ) ) |
| 131 |
130
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ { 1 , 2 } ) → if ( 𝑘 = 1 , 𝐹 , 𝐺 ) ∈ ( 𝐽 Cn 𝐾 ) ) |
| 132 |
5
|
fvmpt2 |
⊢ ( ( 𝑘 ∈ { 1 , 2 } ∧ if ( 𝑘 = 1 , 𝐹 , 𝐺 ) ∈ ( 𝐽 Cn 𝐾 ) ) → ( 𝐴 ‘ 𝑘 ) = if ( 𝑘 = 1 , 𝐹 , 𝐺 ) ) |
| 133 |
129 131 132
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ { 1 , 2 } ) → ( 𝐴 ‘ 𝑘 ) = if ( 𝑘 = 1 , 𝐹 , 𝐺 ) ) |
| 134 |
|
iftrue |
⊢ ( 𝑘 = 1 → if ( 𝑘 = 1 , 𝐹 , 𝐺 ) = 𝐹 ) |
| 135 |
133 134
|
sylan9eq |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ { 1 , 2 } ) ∧ 𝑘 = 1 ) → ( 𝐴 ‘ 𝑘 ) = 𝐹 ) |
| 136 |
135
|
orcd |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ { 1 , 2 } ) ∧ 𝑘 = 1 ) → ( ( 𝐴 ‘ 𝑘 ) = 𝐹 ∨ ( 𝐴 ‘ 𝑘 ) = 𝐺 ) ) |
| 137 |
133
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ { 1 , 2 } ) ∧ 𝑘 = 2 ) → ( 𝐴 ‘ 𝑘 ) = if ( 𝑘 = 1 , 𝐹 , 𝐺 ) ) |
| 138 |
|
neeq2 |
⊢ ( 𝑘 = 2 → ( 1 ≠ 𝑘 ↔ 1 ≠ 2 ) ) |
| 139 |
60 138
|
mpbiri |
⊢ ( 𝑘 = 2 → 1 ≠ 𝑘 ) |
| 140 |
139
|
necomd |
⊢ ( 𝑘 = 2 → 𝑘 ≠ 1 ) |
| 141 |
140
|
neneqd |
⊢ ( 𝑘 = 2 → ¬ 𝑘 = 1 ) |
| 142 |
141
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ { 1 , 2 } ) ∧ 𝑘 = 2 ) → ¬ 𝑘 = 1 ) |
| 143 |
142
|
iffalsed |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ { 1 , 2 } ) ∧ 𝑘 = 2 ) → if ( 𝑘 = 1 , 𝐹 , 𝐺 ) = 𝐺 ) |
| 144 |
137 143
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ { 1 , 2 } ) ∧ 𝑘 = 2 ) → ( 𝐴 ‘ 𝑘 ) = 𝐺 ) |
| 145 |
144
|
olcd |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ { 1 , 2 } ) ∧ 𝑘 = 2 ) → ( ( 𝐴 ‘ 𝑘 ) = 𝐹 ∨ ( 𝐴 ‘ 𝑘 ) = 𝐺 ) ) |
| 146 |
|
elpri |
⊢ ( 𝑘 ∈ { 1 , 2 } → ( 𝑘 = 1 ∨ 𝑘 = 2 ) ) |
| 147 |
146
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ { 1 , 2 } ) → ( 𝑘 = 1 ∨ 𝑘 = 2 ) ) |
| 148 |
136 145 147
|
mpjaodan |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ { 1 , 2 } ) → ( ( 𝐴 ‘ 𝑘 ) = 𝐹 ∨ ( 𝐴 ‘ 𝑘 ) = 𝐺 ) ) |
| 149 |
111 128 148
|
mpjaodan |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ { 1 , 2 } ) → ( 𝑥 ∈ 𝑋 ↦ ( ( 𝐴 ‘ 𝑘 ) ‘ 𝑥 ) ) ∈ ( 𝐽 Cn 𝐾 ) ) |
| 150 |
4 6 7 87 149
|
refsumcn |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ Σ 𝑘 ∈ { 1 , 2 } ( ( 𝐴 ‘ 𝑘 ) ‘ 𝑥 ) ) ∈ ( 𝐽 Cn 𝐾 ) ) |
| 151 |
85 150
|
eqeltrrd |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ ( ( 𝐹 ‘ 𝑥 ) + ( 𝐺 ‘ 𝑥 ) ) ) ∈ ( 𝐽 Cn 𝐾 ) ) |