| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sumpair.1 |
⊢ ( 𝜑 → Ⅎ 𝑘 𝐷 ) |
| 2 |
|
sumpair.3 |
⊢ ( 𝜑 → Ⅎ 𝑘 𝐸 ) |
| 3 |
|
sumupair.1 |
⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) |
| 4 |
|
sumupair.2 |
⊢ ( 𝜑 → 𝐵 ∈ 𝑊 ) |
| 5 |
|
sumupair.3 |
⊢ ( 𝜑 → 𝐷 ∈ ℂ ) |
| 6 |
|
sumupair.4 |
⊢ ( 𝜑 → 𝐸 ∈ ℂ ) |
| 7 |
|
sumupair.5 |
⊢ ( 𝜑 → 𝐴 ≠ 𝐵 ) |
| 8 |
|
sumupair.8 |
⊢ ( ( 𝜑 ∧ 𝑘 = 𝐴 ) → 𝐶 = 𝐷 ) |
| 9 |
|
sumupair.9 |
⊢ ( ( 𝜑 ∧ 𝑘 = 𝐵 ) → 𝐶 = 𝐸 ) |
| 10 |
|
disjsn2 |
⊢ ( 𝐴 ≠ 𝐵 → ( { 𝐴 } ∩ { 𝐵 } ) = ∅ ) |
| 11 |
7 10
|
syl |
⊢ ( 𝜑 → ( { 𝐴 } ∩ { 𝐵 } ) = ∅ ) |
| 12 |
|
df-pr |
⊢ { 𝐴 , 𝐵 } = ( { 𝐴 } ∪ { 𝐵 } ) |
| 13 |
12
|
a1i |
⊢ ( 𝜑 → { 𝐴 , 𝐵 } = ( { 𝐴 } ∪ { 𝐵 } ) ) |
| 14 |
|
prfi |
⊢ { 𝐴 , 𝐵 } ∈ Fin |
| 15 |
14
|
a1i |
⊢ ( 𝜑 → { 𝐴 , 𝐵 } ∈ Fin ) |
| 16 |
|
elpri |
⊢ ( 𝑘 ∈ { 𝐴 , 𝐵 } → ( 𝑘 = 𝐴 ∨ 𝑘 = 𝐵 ) ) |
| 17 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 = 𝐴 ) → 𝐷 ∈ ℂ ) |
| 18 |
8 17
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑘 = 𝐴 ) → 𝐶 ∈ ℂ ) |
| 19 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 = 𝐵 ) → 𝐸 ∈ ℂ ) |
| 20 |
9 19
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑘 = 𝐵 ) → 𝐶 ∈ ℂ ) |
| 21 |
18 20
|
jaodan |
⊢ ( ( 𝜑 ∧ ( 𝑘 = 𝐴 ∨ 𝑘 = 𝐵 ) ) → 𝐶 ∈ ℂ ) |
| 22 |
16 21
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ { 𝐴 , 𝐵 } ) → 𝐶 ∈ ℂ ) |
| 23 |
11 13 15 22
|
fsumsplit |
⊢ ( 𝜑 → Σ 𝑘 ∈ { 𝐴 , 𝐵 } 𝐶 = ( Σ 𝑘 ∈ { 𝐴 } 𝐶 + Σ 𝑘 ∈ { 𝐵 } 𝐶 ) ) |
| 24 |
|
nfv |
⊢ Ⅎ 𝑘 𝜑 |
| 25 |
1 24 8 3 5
|
sumsnd |
⊢ ( 𝜑 → Σ 𝑘 ∈ { 𝐴 } 𝐶 = 𝐷 ) |
| 26 |
2 24 9 4 6
|
sumsnd |
⊢ ( 𝜑 → Σ 𝑘 ∈ { 𝐵 } 𝐶 = 𝐸 ) |
| 27 |
25 26
|
oveq12d |
⊢ ( 𝜑 → ( Σ 𝑘 ∈ { 𝐴 } 𝐶 + Σ 𝑘 ∈ { 𝐵 } 𝐶 ) = ( 𝐷 + 𝐸 ) ) |
| 28 |
23 27
|
eqtrd |
⊢ ( 𝜑 → Σ 𝑘 ∈ { 𝐴 , 𝐵 } 𝐶 = ( 𝐷 + 𝐸 ) ) |