Metamath Proof Explorer


Theorem sumpair

Description: Sum of two distinct complex values. The class expression for A and B normally contain free variable k to index it. (Contributed by Glauco Siliprandi, 20-Apr-2017)

Ref Expression
Hypotheses sumpair.1
|- ( ph -> F/_ k D )
sumpair.3
|- ( ph -> F/_ k E )
sumupair.1
|- ( ph -> A e. V )
sumupair.2
|- ( ph -> B e. W )
sumupair.3
|- ( ph -> D e. CC )
sumupair.4
|- ( ph -> E e. CC )
sumupair.5
|- ( ph -> A =/= B )
sumupair.8
|- ( ( ph /\ k = A ) -> C = D )
sumupair.9
|- ( ( ph /\ k = B ) -> C = E )
Assertion sumpair
|- ( ph -> sum_ k e. { A , B } C = ( D + E ) )

Proof

Step Hyp Ref Expression
1 sumpair.1
 |-  ( ph -> F/_ k D )
2 sumpair.3
 |-  ( ph -> F/_ k E )
3 sumupair.1
 |-  ( ph -> A e. V )
4 sumupair.2
 |-  ( ph -> B e. W )
5 sumupair.3
 |-  ( ph -> D e. CC )
6 sumupair.4
 |-  ( ph -> E e. CC )
7 sumupair.5
 |-  ( ph -> A =/= B )
8 sumupair.8
 |-  ( ( ph /\ k = A ) -> C = D )
9 sumupair.9
 |-  ( ( ph /\ k = B ) -> C = E )
10 disjsn2
 |-  ( A =/= B -> ( { A } i^i { B } ) = (/) )
11 7 10 syl
 |-  ( ph -> ( { A } i^i { B } ) = (/) )
12 df-pr
 |-  { A , B } = ( { A } u. { B } )
13 12 a1i
 |-  ( ph -> { A , B } = ( { A } u. { B } ) )
14 prfi
 |-  { A , B } e. Fin
15 14 a1i
 |-  ( ph -> { A , B } e. Fin )
16 elpri
 |-  ( k e. { A , B } -> ( k = A \/ k = B ) )
17 5 adantr
 |-  ( ( ph /\ k = A ) -> D e. CC )
18 8 17 eqeltrd
 |-  ( ( ph /\ k = A ) -> C e. CC )
19 6 adantr
 |-  ( ( ph /\ k = B ) -> E e. CC )
20 9 19 eqeltrd
 |-  ( ( ph /\ k = B ) -> C e. CC )
21 18 20 jaodan
 |-  ( ( ph /\ ( k = A \/ k = B ) ) -> C e. CC )
22 16 21 sylan2
 |-  ( ( ph /\ k e. { A , B } ) -> C e. CC )
23 11 13 15 22 fsumsplit
 |-  ( ph -> sum_ k e. { A , B } C = ( sum_ k e. { A } C + sum_ k e. { B } C ) )
24 nfv
 |-  F/ k ph
25 1 24 8 3 5 sumsnd
 |-  ( ph -> sum_ k e. { A } C = D )
26 2 24 9 4 6 sumsnd
 |-  ( ph -> sum_ k e. { B } C = E )
27 25 26 oveq12d
 |-  ( ph -> ( sum_ k e. { A } C + sum_ k e. { B } C ) = ( D + E ) )
28 23 27 eqtrd
 |-  ( ph -> sum_ k e. { A , B } C = ( D + E ) )