| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sumpair.1 |
|- ( ph -> F/_ k D ) |
| 2 |
|
sumpair.3 |
|- ( ph -> F/_ k E ) |
| 3 |
|
sumupair.1 |
|- ( ph -> A e. V ) |
| 4 |
|
sumupair.2 |
|- ( ph -> B e. W ) |
| 5 |
|
sumupair.3 |
|- ( ph -> D e. CC ) |
| 6 |
|
sumupair.4 |
|- ( ph -> E e. CC ) |
| 7 |
|
sumupair.5 |
|- ( ph -> A =/= B ) |
| 8 |
|
sumupair.8 |
|- ( ( ph /\ k = A ) -> C = D ) |
| 9 |
|
sumupair.9 |
|- ( ( ph /\ k = B ) -> C = E ) |
| 10 |
|
disjsn2 |
|- ( A =/= B -> ( { A } i^i { B } ) = (/) ) |
| 11 |
7 10
|
syl |
|- ( ph -> ( { A } i^i { B } ) = (/) ) |
| 12 |
|
df-pr |
|- { A , B } = ( { A } u. { B } ) |
| 13 |
12
|
a1i |
|- ( ph -> { A , B } = ( { A } u. { B } ) ) |
| 14 |
|
prfi |
|- { A , B } e. Fin |
| 15 |
14
|
a1i |
|- ( ph -> { A , B } e. Fin ) |
| 16 |
|
elpri |
|- ( k e. { A , B } -> ( k = A \/ k = B ) ) |
| 17 |
5
|
adantr |
|- ( ( ph /\ k = A ) -> D e. CC ) |
| 18 |
8 17
|
eqeltrd |
|- ( ( ph /\ k = A ) -> C e. CC ) |
| 19 |
6
|
adantr |
|- ( ( ph /\ k = B ) -> E e. CC ) |
| 20 |
9 19
|
eqeltrd |
|- ( ( ph /\ k = B ) -> C e. CC ) |
| 21 |
18 20
|
jaodan |
|- ( ( ph /\ ( k = A \/ k = B ) ) -> C e. CC ) |
| 22 |
16 21
|
sylan2 |
|- ( ( ph /\ k e. { A , B } ) -> C e. CC ) |
| 23 |
11 13 15 22
|
fsumsplit |
|- ( ph -> sum_ k e. { A , B } C = ( sum_ k e. { A } C + sum_ k e. { B } C ) ) |
| 24 |
|
nfv |
|- F/ k ph |
| 25 |
1 24 8 3 5
|
sumsnd |
|- ( ph -> sum_ k e. { A } C = D ) |
| 26 |
2 24 9 4 6
|
sumsnd |
|- ( ph -> sum_ k e. { B } C = E ) |
| 27 |
25 26
|
oveq12d |
|- ( ph -> ( sum_ k e. { A } C + sum_ k e. { B } C ) = ( D + E ) ) |
| 28 |
23 27
|
eqtrd |
|- ( ph -> sum_ k e. { A , B } C = ( D + E ) ) |