Metamath Proof Explorer


Theorem dffn5f

Description: Representation of a function in terms of its values. (Contributed by Mario Carneiro, 3-Jul-2015)

Ref Expression
Hypothesis dffn5f.1
|- F/_ x F
Assertion dffn5f
|- ( F Fn A <-> F = ( x e. A |-> ( F ` x ) ) )

Proof

Step Hyp Ref Expression
1 dffn5f.1
 |-  F/_ x F
2 dffn5
 |-  ( F Fn A <-> F = ( z e. A |-> ( F ` z ) ) )
3 nfcv
 |-  F/_ x z
4 1 3 nffv
 |-  F/_ x ( F ` z )
5 nfcv
 |-  F/_ z ( F ` x )
6 fveq2
 |-  ( z = x -> ( F ` z ) = ( F ` x ) )
7 4 5 6 cbvmpt
 |-  ( z e. A |-> ( F ` z ) ) = ( x e. A |-> ( F ` x ) )
8 7 eqeq2i
 |-  ( F = ( z e. A |-> ( F ` z ) ) <-> F = ( x e. A |-> ( F ` x ) ) )
9 2 8 bitri
 |-  ( F Fn A <-> F = ( x e. A |-> ( F ` x ) ) )