| Step | Hyp | Ref | Expression | 
						
							| 1 |  | stoweidlem9.1 | ⊢ ( 𝜑  →  𝑇  =  ∅ ) | 
						
							| 2 |  | stoweidlem9.2 | ⊢ ( 𝜑  →  ( 𝑡  ∈  𝑇  ↦  1 )  ∈  𝐴 ) | 
						
							| 3 |  | mpteq1 | ⊢ ( 𝑇  =  ∅  →  ( 𝑡  ∈  𝑇  ↦  1 )  =  ( 𝑡  ∈  ∅  ↦  1 ) ) | 
						
							| 4 |  | mpt0 | ⊢ ( 𝑡  ∈  ∅  ↦  1 )  =  ∅ | 
						
							| 5 | 3 4 | eqtrdi | ⊢ ( 𝑇  =  ∅  →  ( 𝑡  ∈  𝑇  ↦  1 )  =  ∅ ) | 
						
							| 6 | 1 5 | syl | ⊢ ( 𝜑  →  ( 𝑡  ∈  𝑇  ↦  1 )  =  ∅ ) | 
						
							| 7 | 6 2 | eqeltrrd | ⊢ ( 𝜑  →  ∅  ∈  𝐴 ) | 
						
							| 8 |  | rzal | ⊢ ( 𝑇  =  ∅  →  ∀ 𝑡  ∈  𝑇 ( abs ‘ ( ( ∅ ‘ 𝑡 )  −  ( 𝐹 ‘ 𝑡 ) ) )  <  𝐸 ) | 
						
							| 9 | 1 8 | syl | ⊢ ( 𝜑  →  ∀ 𝑡  ∈  𝑇 ( abs ‘ ( ( ∅ ‘ 𝑡 )  −  ( 𝐹 ‘ 𝑡 ) ) )  <  𝐸 ) | 
						
							| 10 |  | fveq1 | ⊢ ( 𝑔  =  ∅  →  ( 𝑔 ‘ 𝑡 )  =  ( ∅ ‘ 𝑡 ) ) | 
						
							| 11 | 10 | fvoveq1d | ⊢ ( 𝑔  =  ∅  →  ( abs ‘ ( ( 𝑔 ‘ 𝑡 )  −  ( 𝐹 ‘ 𝑡 ) ) )  =  ( abs ‘ ( ( ∅ ‘ 𝑡 )  −  ( 𝐹 ‘ 𝑡 ) ) ) ) | 
						
							| 12 | 11 | breq1d | ⊢ ( 𝑔  =  ∅  →  ( ( abs ‘ ( ( 𝑔 ‘ 𝑡 )  −  ( 𝐹 ‘ 𝑡 ) ) )  <  𝐸  ↔  ( abs ‘ ( ( ∅ ‘ 𝑡 )  −  ( 𝐹 ‘ 𝑡 ) ) )  <  𝐸 ) ) | 
						
							| 13 | 12 | ralbidv | ⊢ ( 𝑔  =  ∅  →  ( ∀ 𝑡  ∈  𝑇 ( abs ‘ ( ( 𝑔 ‘ 𝑡 )  −  ( 𝐹 ‘ 𝑡 ) ) )  <  𝐸  ↔  ∀ 𝑡  ∈  𝑇 ( abs ‘ ( ( ∅ ‘ 𝑡 )  −  ( 𝐹 ‘ 𝑡 ) ) )  <  𝐸 ) ) | 
						
							| 14 | 13 | rspcev | ⊢ ( ( ∅  ∈  𝐴  ∧  ∀ 𝑡  ∈  𝑇 ( abs ‘ ( ( ∅ ‘ 𝑡 )  −  ( 𝐹 ‘ 𝑡 ) ) )  <  𝐸 )  →  ∃ 𝑔  ∈  𝐴 ∀ 𝑡  ∈  𝑇 ( abs ‘ ( ( 𝑔 ‘ 𝑡 )  −  ( 𝐹 ‘ 𝑡 ) ) )  <  𝐸 ) | 
						
							| 15 | 7 9 14 | syl2anc | ⊢ ( 𝜑  →  ∃ 𝑔  ∈  𝐴 ∀ 𝑡  ∈  𝑇 ( abs ‘ ( ( 𝑔 ‘ 𝑡 )  −  ( 𝐹 ‘ 𝑡 ) ) )  <  𝐸 ) |