| Step | Hyp | Ref | Expression | 
						
							| 1 |  | renegcl | ⊢ ( 𝐴  ∈  ℝ  →  - 𝐴  ∈  ℝ ) | 
						
							| 2 | 1 | 3ad2ant1 | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝑁  ∈  ℕ0  ∧  𝐴  ≤  1 )  →  - 𝐴  ∈  ℝ ) | 
						
							| 3 |  | simp2 | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝑁  ∈  ℕ0  ∧  𝐴  ≤  1 )  →  𝑁  ∈  ℕ0 ) | 
						
							| 4 |  | simpr | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐴  ≤  1 )  →  𝐴  ≤  1 ) | 
						
							| 5 |  | simpl | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐴  ≤  1 )  →  𝐴  ∈  ℝ ) | 
						
							| 6 |  | 1red | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐴  ≤  1 )  →  1  ∈  ℝ ) | 
						
							| 7 | 5 6 | lenegd | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐴  ≤  1 )  →  ( 𝐴  ≤  1  ↔  - 1  ≤  - 𝐴 ) ) | 
						
							| 8 | 4 7 | mpbid | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐴  ≤  1 )  →  - 1  ≤  - 𝐴 ) | 
						
							| 9 | 8 | 3adant2 | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝑁  ∈  ℕ0  ∧  𝐴  ≤  1 )  →  - 1  ≤  - 𝐴 ) | 
						
							| 10 |  | bernneq | ⊢ ( ( - 𝐴  ∈  ℝ  ∧  𝑁  ∈  ℕ0  ∧  - 1  ≤  - 𝐴 )  →  ( 1  +  ( - 𝐴  ·  𝑁 ) )  ≤  ( ( 1  +  - 𝐴 ) ↑ 𝑁 ) ) | 
						
							| 11 | 2 3 9 10 | syl3anc | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝑁  ∈  ℕ0  ∧  𝐴  ≤  1 )  →  ( 1  +  ( - 𝐴  ·  𝑁 ) )  ≤  ( ( 1  +  - 𝐴 ) ↑ 𝑁 ) ) | 
						
							| 12 |  | recn | ⊢ ( 𝐴  ∈  ℝ  →  𝐴  ∈  ℂ ) | 
						
							| 13 | 12 | 3ad2ant1 | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝑁  ∈  ℕ0  ∧  𝐴  ≤  1 )  →  𝐴  ∈  ℂ ) | 
						
							| 14 |  | nn0cn | ⊢ ( 𝑁  ∈  ℕ0  →  𝑁  ∈  ℂ ) | 
						
							| 15 | 14 | 3ad2ant2 | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝑁  ∈  ℕ0  ∧  𝐴  ≤  1 )  →  𝑁  ∈  ℂ ) | 
						
							| 16 |  | 1cnd | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝑁  ∈  ℕ0  ∧  𝐴  ≤  1 )  →  1  ∈  ℂ ) | 
						
							| 17 |  | mulneg1 | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝑁  ∈  ℂ )  →  ( - 𝐴  ·  𝑁 )  =  - ( 𝐴  ·  𝑁 ) ) | 
						
							| 18 | 17 | oveq2d | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝑁  ∈  ℂ )  →  ( 1  +  ( - 𝐴  ·  𝑁 ) )  =  ( 1  +  - ( 𝐴  ·  𝑁 ) ) ) | 
						
							| 19 | 18 | 3adant3 | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝑁  ∈  ℂ  ∧  1  ∈  ℂ )  →  ( 1  +  ( - 𝐴  ·  𝑁 ) )  =  ( 1  +  - ( 𝐴  ·  𝑁 ) ) ) | 
						
							| 20 |  | simp3 | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝑁  ∈  ℂ  ∧  1  ∈  ℂ )  →  1  ∈  ℂ ) | 
						
							| 21 |  | mulcl | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝑁  ∈  ℂ )  →  ( 𝐴  ·  𝑁 )  ∈  ℂ ) | 
						
							| 22 | 21 | 3adant3 | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝑁  ∈  ℂ  ∧  1  ∈  ℂ )  →  ( 𝐴  ·  𝑁 )  ∈  ℂ ) | 
						
							| 23 | 20 22 | negsubd | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝑁  ∈  ℂ  ∧  1  ∈  ℂ )  →  ( 1  +  - ( 𝐴  ·  𝑁 ) )  =  ( 1  −  ( 𝐴  ·  𝑁 ) ) ) | 
						
							| 24 |  | mulcom | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝑁  ∈  ℂ )  →  ( 𝐴  ·  𝑁 )  =  ( 𝑁  ·  𝐴 ) ) | 
						
							| 25 | 24 | oveq2d | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝑁  ∈  ℂ )  →  ( 1  −  ( 𝐴  ·  𝑁 ) )  =  ( 1  −  ( 𝑁  ·  𝐴 ) ) ) | 
						
							| 26 | 25 | 3adant3 | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝑁  ∈  ℂ  ∧  1  ∈  ℂ )  →  ( 1  −  ( 𝐴  ·  𝑁 ) )  =  ( 1  −  ( 𝑁  ·  𝐴 ) ) ) | 
						
							| 27 | 19 23 26 | 3eqtrd | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝑁  ∈  ℂ  ∧  1  ∈  ℂ )  →  ( 1  +  ( - 𝐴  ·  𝑁 ) )  =  ( 1  −  ( 𝑁  ·  𝐴 ) ) ) | 
						
							| 28 | 13 15 16 27 | syl3anc | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝑁  ∈  ℕ0  ∧  𝐴  ≤  1 )  →  ( 1  +  ( - 𝐴  ·  𝑁 ) )  =  ( 1  −  ( 𝑁  ·  𝐴 ) ) ) | 
						
							| 29 |  | 1cnd | ⊢ ( 𝐴  ∈  ℝ  →  1  ∈  ℂ ) | 
						
							| 30 | 29 12 | negsubd | ⊢ ( 𝐴  ∈  ℝ  →  ( 1  +  - 𝐴 )  =  ( 1  −  𝐴 ) ) | 
						
							| 31 | 30 | oveq1d | ⊢ ( 𝐴  ∈  ℝ  →  ( ( 1  +  - 𝐴 ) ↑ 𝑁 )  =  ( ( 1  −  𝐴 ) ↑ 𝑁 ) ) | 
						
							| 32 | 31 | 3ad2ant1 | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝑁  ∈  ℕ0  ∧  𝐴  ≤  1 )  →  ( ( 1  +  - 𝐴 ) ↑ 𝑁 )  =  ( ( 1  −  𝐴 ) ↑ 𝑁 ) ) | 
						
							| 33 | 11 28 32 | 3brtr3d | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝑁  ∈  ℕ0  ∧  𝐴  ≤  1 )  →  ( 1  −  ( 𝑁  ·  𝐴 ) )  ≤  ( ( 1  −  𝐴 ) ↑ 𝑁 ) ) |